Resumen
Las prácticas de earnings management ocurren cuando una firma usa la discrecionalidad en la elaboración de sus estados financieros y en la estructuración de sus transacciones, para alterar los beneficios reportados e inducir a error a los agentes interesados en el desempeño de la compañía; el fraude contable es la forma extrema de este tipo de prácticas. Este estudio analizó los efectos de una práctica extrema de earnings management —la repactación unilateral de créditos morosos— en los estados financieros e indicadores de desempeño de La Polar; y evaluó el efecto de la revelación de tales prácticas en los retornos accionarios de la firma y del sector retail de Chile. Se concluyó que la contabilidad de repactaciones mejoró la apariencia de los estados financieros y los indicadores de la firma; y que, una vez revelada esta situación, el mercado castigó el precio de las acciones de La Polar y también de las otras compañías de retail, ante las sospechas de que estas también realizaran repactaciones no reveladas en sus estados financieros.
Association of Certied Fraud Examiners, ACFE (2014). Report to the Nations on Occupational Fraud and Abuse: 2014 Global Fraud Study. Austin, Texas: ACFE. Recuperado de https://www.acfe.com/rttn/docs/2014-report-to-nations.pdf
Badertscher, B. A., Phillips, J. D., Pincus, M. & Rego, S. O. (2009). Earnings Management Strategies and the Trade-Off between Tax Benefits and Detection Risk: To Conform or Not to Conform? e Accounting Review, 84(1), 63-97.
Becker, G. S. (1968). Crime and Punishment: An Economic Approach. Journal of Political Economy, 76(2), 169-217.
Beneish, M. D. (1999). the Detection of Earnings Manipulation. Financial Analysts Journal, 55(5), 24-36.
Block, M. K. & Gerety, V. E. (1995). Some Experimental Evidence on Differences between Student and Prisoner
Reactions to Monetary Penalties and Risk. e Journal of Legal Studies, 24(1), 123-138.
Brazel, J. F., Jones, K. L. & Zimbelman, M. F. (2009). Using Nonnancial Measures to Assess Fraud Risk. Journal of
Accounting Research, 47(5), 1135-1166.
Brown, Stephen & Warner, Jerold B. (1980). Measuring Security Price Performance. Journal of Financial Economics,
(3), 205-258.
Burgstahler, D. & Eames, M. (2006). Management of Earnings and Analysts' Forecasts to Achieve Zero and Small
Positive Earnings Surprises. Journal of Business Finance & Accounting, 33(5-6), 633-652.
Burns, N. & Kedia, S. (2006). the Impact of Performance-based Compensation on Misreporting. Journal of Financial
Economics, 79(1), 35-67.
Chih, H., Shen, C., & Kang, F. (2008). Corporate Social Responsibility, Investor Protection, and Earnings Management: Some International Evidence. Journal of Business Ethics, 79(1/2), 179-198. Recuperado
Cressey, D. (1950). the Criminal Violation of Financial Trust. American Sociological Review, 15 (6), 738-743.
Cressey, D. (1953). Other People's Money: the Social Psychology of Embezzlement. New York, New York: the Free Press.
Crutchley, C. E., Jensen, M. R. H., & Marshall, B. B. (2007). Climate for Scandal: Corporate Environments that
Contribute to Accounting Fraud. the Financial Review, 42(1), 53-73.
Davidson, S., Stickney, C. P., & Weil, R. L. (1987). Accounting: the Language of Business. 7th ed., Sun Lakes, Arizona:
Thomas Horton and Daughters.
Dechow, P. M. & Skinner, D. J. (2000). Earnings Management: Reconciling the Views of Accounting Academics, Practitioners, and Regulators. Accounting Horizons, 14(2), 235-250. Recuperado de https://pdfs.semanticscholar.org/179a/a8f31458e3692be458ccdb8b8cb98faca7ec.pdf
Dorminey, J., Fleming, A. S., Kranacher, M., & Riley, R. A. (2012). the Evolution of Fraud theory. Issues in Accounting
Education, 27(2), 555-579.
Fanning, Kurt M. & Cogger, Kenneth O. (1998). Neural Network Detection of Management Fraud Using Published
Financial Data. Intelligent Systems in Accounting, Finance & Management, 7(1), 21-41.
Feroz, E. H., Kwon, T. M., Pastena, V. S. & Park, K. (2000). the Efficacy of Red Flags in Predicting the SEC's Targets: an Articial Neural Networks Approach. Intelligent Systems in Accounting, Finance & Management, 9 (3), 145-157.
Festinger, L. (1957). A theory of Cognitive Dissonance. Stanford, California: Stanford University Press.
Fung, M. K. (2015). Cumulative Prospect theory and Managerial Incentives for Fraudulent Financial Reporting.
Contemporary Accounting Research, 32(1), 55-75.
García-Osma, B., Gill de Albornoz, B., & Gisbert-Clemente, A. (2005). La investigación sobre Earnings Managements. Revista Española de Financiación y Contabilidad, 34(127), 1001-1033. Recuperado de http://aeca.es/old/refc_1972-2013/2005/127-8.pdf
Grogger, J. (1991). Certainty vs. Severity of Punishment. Economic Inquiry, 29(2), 297-309.
Healy, P. M. & Wahlen, J. M. (1999). A Review of the Earnings Management Literature and Its Implications for Standard Setting. Accounting Horizons, 13(4), 365-383. Recuperado de https://fisher.osu.edu/~young.53/Healy-Wahlen
Hennes, K. M., Leone, A. J., & Miller, B. P. (2008). the Importance of Distinguishing Errors from Irregularities in Restatement Research: the Case of Restatements and CEO/CFO Turnover. e Accounting Review, 83(6),1487-1519.
Hogan, C. E., Rezaee, Z., Riley, R. A. & Velury, U. K. (2008). Financial Statement Fraud: Insights from the Academic Literature. Auditing: A Journal of Practice & theory, 27(2), 231-252.
Kanapickienė, R. & Grundienė, Ž. (2015). the Model of Fraud Detection in Financial Statements by Means of Financial Ratios. Procedia – Social and Behavioral Sciences, 213, 321-327. Recuperado de http://ac.els-cdn.com/S1877042815059005/1-s2.0-S1877042815059005-main.pdf?_tid=abdd1aa0-1261-11e7-ba4e-00000aab0f01&acdnat=1490559816_1d60c30f933a57e6235247070fba9dad
Karpoff, J. M., Lee, D. S., & Martin, G. S. (2008). the Consequences to Managers for Financial Misrepresentation. Journal of Financial Economics, 88(2), 193-215. Recuperado de http://leeds-faculty.colorado.edu/bhagat/Con sequencesToManagersFinancialMisrepresentation.pdf
La Polar, Comunicación de un Hecho Esencial a la Superintendencia de Valores y Seguros, SVS. Santiago, 9 de junio de 2011. Recuperado de http://www.svs.gob.cl/documentos/hes/hes_2011060090353.pdf
La Polar, Memoria Anual 2010. Recuperado de http://www.nuevapolar.cl/wp-content/uploads/2014/10/pumem_2
_96874030_20110413_134025.pdf
Lenard, M. J. & Alam, P. (2009). An Historical Perspective on Fraud Detection: from Bankruptcy Models to most Effective Indicators of Fraud in Recent Incidents. Journal of Forensic & Investigative Accounting, 1(1), 1-27. Recuperado de https://www.academia.edu/1540262/An_historical_perspective_on_fraud_detection_From_bankruptcy_models_to_most_effective_indicators_of_fraud_in_recent_incidents
National Association of Certied Fraud Examiners (1993). Cooking the Books: What Every Accountant Should Know About Fraud. Self-Study Workbook, No. 92-5401. Austin, TX: NACFE. Recuperado de http://www.acfe.com/
O'Connor, J. P.; Priem, R. L.; Coombs, J. E. & Gilley, K. M. (2006). Do CEO Stock Options Prevent or
Promote Fraudulent Financial Reporting? e Academy of Management Journal, 49 (3), 483-500. Disponible en: https://www.researchgate.net/publication/274753416_Do_CEO_Stock_Options_Prevent_or_Promote _Fraudulent_Financial_Reporting
Persons, O. S. (1995). Using Financial Statement Data to Identify Factors Associated with Fraudulent Financing Reporting. Journal of Applied Business Research, 11 (3), 38-46. Recuperado de https://www.cluteinstitute.com
/ojs/index.php/JABR/article/view/5858/5936
Ramamoorti, S. (2008). e Psychology and Sociology of Fraud: Integrating the Behavioral Sciences Component into Fraud and Forensic Accounting Curricula. Issues in Accounting Education, 23 (4), 521-533. Recuperado de http://m.jthomasniu.org/class/781/Readings/psychoffraud.pdf
Ramamoorti, S., Morrison, D. & Koletar, J. W. (2009). Bringing Freud to Fraud: Understanding the State-of-Mind of the C-Level Suite/White Collar Offender through ‘‘A-B-C’’ Analysis. Working paper, Institute for Fraud Prevention (IFP) at West Virginia University. Recuperado de http://theifp.org/research-grants/IFP-Whitepaper-3.pdf
Ravisankar, P., Ravi, V., Raghava-Rao, G., & Bose, I. (2011). Detection of Financial Statement Fraud and Feature Selection Using Data Mining Techniques. Decision Support Systems, 50(2), 491-500.
Schipper, K. (1989). Commentary on Earnings Management. Accounting Horizons, 3(4), 91-102.
Schmidt, P. & Witte, A. D. (1984). An Economic Analysis of Crime and Justice: eory, Methods and Applications. New York: Academic Press.
Song, X., Hu, Z., Du, J., & Sheng, Z. (2014). Application of Machine Learning Methods to Risk Assessment of Financial Statement Fraud: Evidence from China. Journal of Forecasting, 33(8), 611-626.
Spathis, C., Doumpos, M., & Zopounidis, C. (2002). Detecting Falsied Financial Statements: a Comparative Study Using Multicriteria Analysis and Multivariate Statistical Techniques. European Accounting Review, 11(3), 509-535. Recuperado de https://www.researchgate.net/publication/24080080_Detecting_falsified_financial_statements_A_comparative_study_using_multicriteria_analysis_and_multivariate_statistical_techniques
Stice, J. D. (1991). Using Financial and Market Information to Identify Pre-Engagement Factors Associated with Lawsuits against Auditors. e Accounting Review, 66(3), 516-533.
Traslaviña, H. (2013). Llegar y llevar: cómo se aguó la estafa del siglo. 1a ed., Santiago de Chile: Mandrágora Ediciones,
Colección La Plaza Mayor.
Trompeter, G. M., Carpenter, T. D., Desai, N., Jones, K. L., & Riley, R. A. Jr. (2013). A Synthesis of Fraud-Related Research. Auditing: A Journal of Practice & theory, 32(1), 287-321.
Tversky, A. & Kahneman, D. (1992). Advances in Prospect eory: Cumulative Representation of Uncertainty. Journal of Risk and Uncertainty, 5(4), 297-323.
Ullah, S., Massoud, N., & Scholnick, B. (2014). the Impact of Fraudulent False Information on Equity Value. Journal of Business Ethics, 120(2), 219-235. Recuperado de https://www.ualberta.ca/business/-/media/4F64C184CEB640F69CEAA9DABFFEFA50
Walker, M. (2013). How Far Can We Trust Earnings Numbers? What Research Tells Us about Earnings Management. Accounting and Business Research, 43 (4), 445-481.
Wells, J. T. (1997). Occupational Fraud and Abuse. Austin, Texas: Obsidian Publishing.
Witte, A. D. (1980). Estimating the Economic Model of Crime with Individual Data. Quarterly Journal of Economics,
(1), 57-84.
Zack, G. M. (2009). Fair Value Accounting Fraud: New Global Risks & Detection Techniques. 1st ed., New York, New
York: John Wiley & Sons, Inc.
El aval sobre la intervención de la obra (revisión, corrección de estilo, traducción, diagramación) y su posterior divulgación se otorga mediante una licencia de uso y no a través de una cesión de derechos, lo que representa que la revista y la Pontificia Universidad Javeriana se eximen de cualquier responsabilidad que se pueda derivar de una mala práctica ética por parte de los autores. En consecuencia de la protección brindada por la licencia de uso, la revista no se encuentra en la obligación de publicar retractaciones o modificar la información ya publicada, a no ser que la errata surja del proceso de gestión editorial. La publicación de contenidos en esta revista no representa regalías para los contribuyentes.