Publicado jun 30, 2013



PLUMX
Google Scholar
 
Search GoogleScholar


Claudia Patricia Lamby Tovar

Olga Lucía Gómez González

Lorenza María Jaramillo Gómez

##plugins.themes.bootstrap3.article.details##

Resumen

Antecedentes: La a-amilasa salival humana (AASH) es la proteína más abundante en la saliva; tiene varias funciones que la hacen especial desde el punto de vista cariogénico, por lo cual puede estar relacionada con el índice de caries. Propósito: Determinar las diferencias en la concentración de AASH en niños con diferentes índices de caries. Métodos: Se obtuvieron muestras de saliva de 100 niños que se clasificaron dentro de cuatro de las siete categorías del Sistema Internacional de Valoración y Detección de Caries (ICDAS), con 25 individuos por grupo: sanos, opacidad blanca, microcavidad y cavidad extensa. Se determinó la cantidad total de proteína por el método de Bradford y la concentración AASH por medio de la técnica de Elisa indirecta. Los valores obtenidos de proteína total y AASH fueron analizados por medio del software Stata versión 9.2. Resultados: Al comparar las medias de la concentración de proteína total en los cuatro grupos de estudio, no hubo diferencias estadísticamente significativas. Los promedios de la concentración de AASH en tres de los cuatro grupos: sanos, microcavidad y opacidad blanca, no presentaron diferencias estadísticamente significativas. En el grupo de cavidad extensa, este valor fue menor, diferencia que fue estadísticamente significativa con respecto a los otros tres grupos. Conclusión: La menor concentración de AASH en el grupo con cavidad extensa posiblemente indica que, dada la redundancia funcional de esta enzima, la protección de las superficies orales es de mayor importancia.

 

Background: Human salivary a-amylase (HSAA) is the most abundant protein in saliva, has several functions that make it of special interest from a cariogenic point of view, thus may be related to the caries indexes. Purpose: Determine the differences according to the quantified amounts of HSAA in the saliva of children with different caries indexes. Methods: Salivary samples were obtained via spontaneous salivation from a total of 100 children, who were assigned into four groups (n=25 each) according to four categories of the International Caries Detection & Assessment System (ICDAS): sound, white opacity, microcavity and extensive cavity. The total quantity of protein present in each of the samples was determined through the Bradford Method and the concentration of HSAA was determined by an indirect ELISA technique. Non-parametric statistical was perform with Stata 9.2 software. Results: Non-significant statistical differences for variable total protein in the four groups were found. The concentration of HSAA showed statistically significant differences between groups of individuals with white opacity and extensive cavities, microcavity and extensive cavity, and sound and extensive cavity. Conclusions: The findings suggest that from the different functions identified for HSAA, protection of the tooth surfaces has a major relevance.

Keywords
References
1. Peng Y, Chen X, Sato T, Rankin SA, Tsuji RF, Ge Y. Purification and high-resolution top-down mass spectrometric characterization of human salivary α-amylase. Anal Chem. 2012 Apr 3; 84(7): 3339-46.
2. Spielmann N, Wong DT. Saliva: diagnostics and therapeutic perspectives. Oral Dis. 2011 May; 17(4): 345-54.
3. Martins C, Buczynski AK, Maia LC, Siqueira WL, Castro GF. Salivary proteins as a biomarker for dental caries-A systematic review. J Dent. 2013 Jan; 41(1): 2-8.
4. Bailey UM, Punyadeera C, Cooper-White JJ, Schulz BL. Analysis of the extreme diversity of salivary alpha-amylase isoforms generated by physiological proteolysis using liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2012 Dec 12; 911: 21-6.
5. Fisher SZ, Govindasamy L, Tu C, Agbandje-McKenna M, Silverman DN, Rajaniemi HJ, McKenna R. Structure of human salivary alpha-amylase crystallized in a C-centered monoclinic space group. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006 Feb 1; 62(Pt 2): 88-93.
6. Ramasubbu N, Ragunath C, Mishra PJ, Thomas LM, Gyémánt G, Kandra L. Human salivary alpha-amylase Trp58 situated at subsite -2 is critical for enzyme activity. Eur J Biochem. 2004 Jun; 271(12): 2517-29.
7. Scannapieco FA, Torres G, Levine MJ. Salivary alpha-amylase: role in dental plaque and caries formation. Crit Rev Oral Biol Med. 1993; 4(3-4): 301-7.
8. Carlén A, Bratt P, Stenudd C, Olsson J, Strömberg N. Agglutinin and acidic proline-rich protein receptor patterns may modulate bacterial adherence and colonization on tooth surfaces. J Dent Res. 1998 Jan; 77(1): 81-90.
9. Chaudhuri B, Rojek J, Vickerman MM, Tanzer JM, Scannapieco FA. Interaction of salivary alpha-amylase and amylase-binding-protein A (AbpA) of Streptococcus gordonii with glucosyltransferase of S gordonii and Streptococcus mutans. BMC Microbiol. 2007 Jun 25; 7: 60.
10. Rohleder N, Nater UM. Determinants of salivary alpha-amylase in humans and methodological considerations. Psychoneuroendocrinology. 2009 May; 34(4): 469-85.
11. Carlén A, Bratt P, Stenudd C, Olsson J, Strömberg N. Agglutinin and acidic proline-rich protein receptor patterns may modulate bacterial adherence and colonization on tooth surfaces. J Dent Res. 1998 Jan; 77(1): 81-90.
12. Douglas CW, Pease AA, Whiley RA. Amylase-binding as a discriminator among oral streptococci. FEMS Microbiol Lett. 1990 Jan 1; 54(1-3): 193-7.
13. Aguirre A, Levine MJ, Cohen RE, Tabak LA. Immunochemical quantitation of alpha-amylase and secretory IgA in parotid saliva from people of various ages. Arch Oral Biol. 1987; 32(4): 297-301.
14. Ekstrand KR, Martignon S, Ricketts DJ, Qvist V. Detection and activity assessment of primary coronal caries lesions: a methodologic study. Oper Dent. 2007 May-Jun; 32(3): 225-35.
15. Wong DT. Salivaomics. J Am Dent Assoc. 2012 Oct; 143(10 Suppl): 19S-24S. PubMed PMID: 23034834.
16. Farrell JJ, Zhang L, Zhou H, Chia D, Elashoff D, Akin D, Paster BJ, Joshipura K, Wong DT. Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut. 2012 Apr; 61(4): 582-8.
17. Liu J, Duan Y. Saliva: a potential media for disease diagnostics and monitoring. Oral Oncol. 2012 Jul; 48(7): 569-77.
18. Hoek GH, Brand HS, Veerman EC, Amerongen AV. Toothbrushing affects the protein composition of whole saliva. Eur J Oral Sci. 2002 Dec; 110(6): 480-1.
19. Slavkin HC. Toward molecularly based diagnostics for the oral cavity. J Am Dent Assoc. 1998 Aug; 129(8): 1138-43.
20. Aydin S. A comparison of ghrelin, glucose, alpha-amylase and protein levels in saliva from diabetics. J Biochem Mol Biol. 2007 Jan 31; 40(1): 29-35.
21. Rohleder N, Wolf JM, Maldonado EF, Kirschbaum C. The psychosocial stress-induced increase in salivary alpha-amylase is independent of saliva flow rate. Psychophysiology. 2006 Nov; 43(6): 645-52.
22. Nater UM, Rohleder N, Gaab J, Berger S, Jud A, Kirschbaum C, Ehlert U. Human salivary alpha-amylase reactivity in a psychosocial stress paradigm. Int J Psychophysiol. 2005 Mar; 55(3): 333-42.
23. Helmerhorst EJ, Oppenheim FG. Saliva: a dynamic proteome. J Dent Res. 2007 Aug; 86(8): 680-93.
24. Fiehn NE, Oram V, Moe D. Streptococci and activities of sucrases and alpha-amylases in supragingival dental plaque and saliva in three caries activity groups. Acta Odontol Scand. 1986 Feb; 44(1): 1-9.
25. Wolf JM, Nicholls E, Chen E. Chronic stress, salivary cortisol, and alpha-amylase in children with asthma and healthy children. Biol Psychol. 2008 Apr; 78(1): 20-8.
26. Yavuzyilmaz E, Yumak O, Akdoğanli T, Yamalik N, Ozer N, Ersoy F, Yeniay I. The alterations of whole saliva constituents in patients with diabetes mellitus. Aust Dent J. 1996 Jun; 41(3): 193-7.
27. Neyraud E, Palicki O, Schwartz C, Nicklaus S, Feron G. Variability of human saliva composition: possible relationships with fat perception and liking. Arch Oral Biol. 2012 May; 57(5): 556-66.
28. Quarino L, Dang Q, Hartmann J, Moynihan N. An ELISA method for the identification of salivary amylase. J Forensic Sci. 2005 Jul; 50(4): 873-6.
Cómo citar
Lamby Tovar, C. P., Gómez González, O. L., & Jaramillo Gómez, L. M. (2013). Concentración de α-amilasa salival en niños con diferentes índices de caries / Salivary α-Amylase Concentration in Children with Different Caries Indexes. Universitas Odontologica, 32(68), 45–50. Recuperado a partir de https://revistas.javeriana.edu.co/index.php/revUnivOdontologica/article/view/SICI%3A%202027-3444%28201301%2932%3A68%3C45%3ACASNIC%3E2.0.CO%3B2-3
Sección
Dossier Temático

Artículos más leídos del mismo autor/a

1 2 > >>