
Introduction

Let (X ,τ) be a topological space and A⊆X . We will denote the complement
of A in X , the closure of A, the interior of A, the exterior of A, and the relative
topology on A, by X −A, A, Int(A), Ext(A), and τA, respectively. In 1963,
Levine [7] defined semi-open sets as a class of sets containing the open sets as
follows: A is semi-open if there exists an open set U such that U ⊆A⊆U , this
is equivalent to say that A⊆ Int(A). Using semi-open sets he also generalized
continuity by semi-continuity as follows: A function f : (X ,τ1)→ (Y,τ2) is
semi-continuous if for all V ∈ τ2, the preimage f −1(V ) ∈ SO (X ,τ1). The
complement of a semi-open set is called semi-closed [5]. A point x ∈X is called
a condensation point [6] of A if for every U ∈ τ with x ∈U , the set U ∩A is
uncountable. Hdeib [6] definedω-closed sets andω-open sets as follows: A is
calledω-closed if it contains all its condensation points. The complement of an
ω-closed set is calledω-open. The collection of allω-open sets of a topological
space (X ,τ) will be denoted by τω. In [1], the author proved that (X ,τω) is a
topological space and τ ⊆ τω. Moreover, it was observed that A is ω-open
if and only if for every x in A there is an open set U and a countable subset
C such that x ∈U −C ⊆A. Theω-closure of A in (X ,τ), denoted by A

ω
, is

the smallestω-closed set in (X ,τ) that contains A (cf. [1]). Theω-interior of
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A in (X ,τ), denoted by Intω(A), is the largestω-open set in (X ,τ) contained
in A. The ω-exterior of A in (X ,τ), denoted by Extω(A), is defined to be
Intω(X −A). It is clear that the ω-closure (resp. ω-interior) of A in (X ,τ)
equals the closure (resp. interior) of A in (X ,τω). In 2002, Al-Zoubi and
Al-Nashef [2] usedω-open sets to define semiω-open sets as a weaker form of
semi-open sets as follows: A is semiω-open if there exists anω-open set U such
that U ⊆A⊆U . The collection of all semiω-open sets of a topological space
(X ,τ) will be denoted by SωO (X ,τ). Al-Zoubi [4] used semiω-open sets to
introduce semi ω-continuous functions as a weaker form of ω-continuous
functions as follows: A function f : (X ,τ1)→ (Y,τ2) is semiω-continuous [4]
if for all V ∈ τ2, the preimage f −1(V ) ∈ SωO (X ,τ1). This paper is devoted
to defineωs -opennes as a property of sets that is strictly weaker than openness
and stronger than semi-openness as follows: A is ωs -open if there exists an
open set U such that U ⊆ A ⊆ U

ω
. We investigate this class of sets, and

use it to study a new property of functions strictly between continuity and
semi-continuity, and another new property of functions strictly between
slight continuity and slight semi-continuity.

Throughout this paper R, N,Q, andQc , will denote the set of real numbers,
the set of natural numbers, the set of rational numbers, and the set of irrational
numbers, respectively. For any non-empty set X we denote by τdisc the discrete
topology on X . Finally, by τu we mean the usual topology on R.

The following sequence of theorems will be useful in the sequel:

Theorem 1.1 ([3]). Let (X ,τ) be a topological space and A⊆X . Then

(a) If A is non-empty, then (τA)ω = (τω)A.

(b ) (τω)ω = τω.

Theorem 1.2 ([2]). Let (X ,τ) be a topological space. Then

(a) SO (X ,τ)⊆ SωO (X ,τ), and SO (X ,τ) 6= SωO (X ,τ) in general.

(b ) τω ⊆ SωO (X ,τ), and τω 6= SωO (X ,τ) in general.

Theorem 1.3 ([1]). Let (X ,τ) be a topological space. Then

(a) If (X ,τ) is anti-locally countable, then A
ω
= A for all A ∈ τω, and

Intω(A) = Int(A) for all ω-closed set A in (X ,τ).

(b ) If (X ,τ) is locally countable, then τω is the discrete topology.

ωs -Open sets

Definition 2.1. Let A of be a subset of a topological space (X ,τ). Then A is
calledωs -open of (X ,τ), if there exists U ∈ τ such that U ⊆A⊆ U

ω
and A
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is calledωs -closed if X −A isωs -open. The family of allωs -open subsets of
(X ,τ) will be denoted byωs (X ,τ).

Theorem 2.2. Let (X ,τ) be a topological space. Then τ ⊆ ωs (X ,τ) ⊆
SO (X ,τ).

Proof. Let A∈ τ. Take U = A. Then U ∈ τ and U ⊆ A⊆ U
ω

. This shows
that A ∈ ωs (X ,τ). It follows that τ ⊆ ωs (X ,τ). Let A ∈ ωs (X ,τ). Then
there exists U ∈ τ such that U ⊆A⊆U

ω
, but U

ω ⊆U . Thus A∈ SO (X ,τ).
This shows thatωs (X ,τ)⊆ SO (X ,τ).

In the following example we will see that, in general, neither of the two
inclusions in Theorem 2.2 are equalities:

Example 2.3. Consider (R,τ), where τ = {∅,R,N,Qc ,N ∪Qc}. It is not
difficult to check that Nω = N, N = Q, and Qcω = R − N. Thus Q ∈
SO (X ,τ)−ωs (X ,τ) and R−N ∈ωs (X ,τ)−τ.

Theorem 2.4. Let (X ,τ) be a topological space. Then

(a) If (X ,τ) is anti-locally countable, then ωs (X ,τ) = SO (X ,τ).

(b ) If (X ,τ) is locally countable, then τ =ωs (X ,τ).

Proof. (a) By Theorem 2.2 it is sufficient to show that SO (X ,τ)⊆ωs (X ,τ).
Let A ∈ SO (X ,τ). Then there exists U ∈ τ such that U ⊆ A ⊆ U . Since
(X ,τ) is anti-locally countable, then by Theorem 1.3 (a), U =U

ω
. It follows

that A∈ωs (X ,τ).
(b) By Theorem 2.2 it is sufficient to show that ωs (X ,τ) ⊆ τ. Let us take
A∈ωs (X ,τ). Then there exists U ∈ τ such that U ⊆A⊆ U

ω
. Since (X ,τ)

is locally countable, then by Theorem 1.3 (b), U
ω
=U . It follows that A=U

and hence A∈ τ.

The following example shows that ω-open sets and ωs -open sets are
independent:

Example 2.5. Consider (R,τ) where τ = {∅,R, [0,∞)}. It is not difficult
to check that [0,∞)

ω
= R. Thus [−1,∞) ∈ ωs (X ,τ)− τω and (0,∞) ∈

τω−ωs (X ,τ).

Theorem 2.6. A subset A of a topological space (X ,τ) is ωs -open if and only if
A⊆ Int(A)

ω
.

Proof. Necessity. Let A beωs -open. Then there exists some U ∈ τ such that
U ⊆A⊆ U

ω
. Since U ⊆A, then U = Int(U )⊆ Int(A) and so U

ω ⊆ Int(A)
ω

.
Therefore, A⊆ Int(A)

ω
.
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Sufficiency. Suppose that A⊆ Int(A)
ω

. Take U = Int(A). Then U ∈ τ with
U ⊆A⊆ U

ω
. It follows that A isωs -open.

Theorem 2.7. Arbitrary unions of ωs -open sets in a topological space isωs -open.

Proof. Let (X ,τ) be a topological space and let {Aα : α ∈ ∆} ⊆ ωs (X ,τ).
For each α ∈∆, there exists Uα ∈ τ such that Uα ⊆ Aα ⊆ Uα

ω
. So, we have

⋃

α∈∆Uα ∈ τ, with
⋃

α∈∆
Uα ⊆

⋃

α∈∆
Aα ⊆

⋃

α∈∆
Uα

ω ⊆
⋃

α∈∆
Uα

ω

.

It follows that
⋃

α∈∆Aα ∈ωs (X ,τ).

Corollary 2.8. If {Cα : α ∈∆} is a collection ofωs -closed subsets of a topological
space (X ,τ), then

⋂

{Cα : α ∈∆} is ωs -closed.

The following example shows that the intersection of twoωs -open sets need
not to beωs -open in general:

Example 2.9. Consider (R,τu). Let A= [0,1], B = [1,2]. By Theorem 1.3 (a),
(0,1)

ω
= (0,1) = A, and (1,2)

ω
= (1,2) = B . Thus A,B ∈ ωs (X ,τ), but

A∩B = {1} /∈ωs (X ,τ).

Theorem 2.10. For any topological space, the intersection of two ωs -open sets
where one of them is open is also ωs -open.

Proof. Let (X ,τ) be a topological space, A ∈ τ and B ∈ ωs (X ,τ). Choose
a set U ∈ τ such that U ⊆ B ⊆ U

ω
. Now we have A∩ U ∈ τ, and then

A∩U ⊆A∩B ⊆A∩U
ω ⊆A∩U

ω
. This shows that, A∩B ∈ωs (X ,τ).

Corollary 2.11. For any topological space, the union of twoωs -closed sets where
one of them is closed is also ωs -closed.

Theorem 2.12. Let (X ,τ) be a topological space, B a non-empty subset of X and
A⊆ B. Then

(a) If A∈ωs (X ,τ), then A∈ωs (B ,τB).

(b ) If B ∈ τ and A∈ωs (B ,τB), then A∈ωs (X ,τ).

Proof. (a) Let A ∈ ωs (X ,τ). Then there is U ∈ τ such that U ⊆ A ⊆ U
ω

.
Then U = U ∩ B ⊆ A⊆ U

ω ∩ B . Note that U
ω ∩ B is the closure of U in

(τω)B and by Theorem 1.1 (a), it is the closure of U in (τB )ω. This shows that
A∈ωs (B ,τB).
(b) Let B ∈ τ and A∈ωs (B ,τB). Since A∈ωs (B ,τB), there is V ∈ τB such
that V ⊆A⊆H where H is the closure of V in (B , (τB )ω). Since B ∈ τ, then
V ∈ τ. Also, V ⊆A⊆H ⊆V

ω
. Therefore, A∈ωs (X ,τ).
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Theorem 2.13. Let (X ,τ) be a topological space. Let A∈ωs (X ,τ) and suppose
that A⊆ B ⊆A

ω
, then B ∈ωs (X ,τ).

Proof. Since A∈ωs (X ,τ), there exists U ∈ τ such that U ⊆A⊆ U
ω

. Since
A⊆ U

ω
, then A

ω
⊆ U

ω
. Since B ⊆ A

ω
, then B ⊆ U

ω
. Therefore, we have

U ∈ τ and U⊆A⊆ B ⊆U
ω

. This shows that B ∈ωs (X ,τ).

Theorem 2.14. For any topological space (X ,τ) we have that SO (X ,τω) =
ωs (X ,τω).

Proof. By Theorem 2.2, we have ωs (X ,τω) ⊆ SO (X ,τω). Conversely, let
A∈ SO (X ,τω), then there exists U ∈ τω such that U ⊆A⊆H , where H is
the closure of U in (X ,τω). By Theorem 1.1 (b), we have (τω)ω = τω and so
H =U

ω
. It follows that A∈ωs (X ,τω).

Theorem 2.15. For any topological space (X ,τ) we have the relation τ =
{Int(A) : A∈ωs (X ,τ)}.

Proof. It follows because from Theorem 2.2 we have τ ⊆ωs (X ,τ).

Theorem 2.16. A subset C of a topological space (X ,τ) is ωs -closed if and only
if Intω(C )⊆C .

Proof. Necessity. Suppose that C is ωs -closed in (X ,τ). Then X − C is
ωs -closed and by Theorem 2.6, X −C ⊆ Int(X −C )

ω
. So

Intω(C )⊆ Extω(X −C )
= Extω(Ext(C ))

=X −Ext(C )
ω

=X − Int(X −C )
ω

⊆C .

Sufficiency. Suppose that Intω(C )⊆C . Then

X −C ⊆X − Intω(C )

=X −Extω(X −C )
=X −Extω(Ext(C ))

= (Ext(C ))
ω

= Int(X −C )
ω

.

By Theorem 2.6 it follows that X −C isωs -open, and hence C isωs -closed.
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Definition 2.17. Let (X ,τ) be a topological space and let A⊆X .

(a) Theωs -closure of A in (X ,τ) is denoted by A
ωs and defined as follows:

A
ωs =

⋂

{C : C isωs -closed in (X ,τ) and A⊆C }.

(b) The ωs -interior of A in (X ,τ) is denoted by Intωs
(A) and defined as

follows:

Intωs
(A) =

⋃

{U : U isωs -open in (X ,τ) and U ⊆A}.

Remark 2.18. Let (X ,τ) be a topological space and let A⊆X . Then

(a) A
ωs is the smallestωs -closed set in (X ,τ) containing A.

(b) A isωs -closed in (X ,τ) if and only if A=A
ωs .

(c) Intωs
(A) is the largestωs -open set in (X ,τ) contained in A.

(d) A isωs -open in (X ,τ) if and only if A= Intωs
(A).

(e) x ∈A
ωs if and only if for every B ∈ωs (X ,τ) with x ∈ B , A∩B 6=∅.

(f) Intωs
(X −A)∩A

ωs =∅.

(g) X = Intωs
(X −A)∪A

ωs .

(h) X −A
ωs = Intωs

(X −A) and X − Intωs
(X −A) =A

ωs .

Theorem 2.19. Let f : (X ,τ) → (Y,σ) be an open function such that
f : (X ,τω) → (Y ,σω) is continuous. Then for every A ∈ ωs (X ,τ) we have
f (A) ∈ωs (Y,σ).

Proof. Let A∈ωs (X ,σ). Then there exists U ∈ τ such that U ⊆A⊆U
ω

, and
so f (U )⊆ f (A)⊆ f (U

ω
). Since f : (X ,τ)→ (Y,σ) is open, then f (U ) ∈ σ .

Since f : (X ,τω)→ (Y,σω) is continuous, then f (U
ω
)⊆ f (U )

ω
. It follows

that f (A) ∈ωs (Y,σ).

The condition “open function” cannot be dropped from Theorem 2.19 as
shown by:

Example 2.20. Consider f : (R,τdisc)→ (R,τu), where f (x) = 0 for all x ∈R.
Then it is obvious that f : (R, (τdisc)ω)→ (R, (τu)ω) is continuous. On the
other hand, {0} ∈ωs (R,τdisc) but f ({0}) = {0} /∈ωs (R,τu).
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ωs -Continuous functions

Definition 3.1. A function f : (X ,τ)→ (Y ,σ) is called ωs -continuous, if
for each V ∈ σ , the preimage f −1(V ) ∈ωs (X ,σ).

Theorem 3.2. The notions of continuity satisfy that

(a) Every continuous function is ωs -continuous.

(b ) Every ωs -continuous function is semi-continuous.

Proof. Theorem 2.2.

The following example will show that the converse of each of the two
implications in Theorem 3.2 is not true in general:

Example 3.3. Let f , g : (R,τ)→ ({a, b} ,τdisc), with τ as in Example 2.3 and

f (x) =

(

a if x ∈N
b if x ∈R−N

and g (x) =

(

a if x ∈Qc

b if x ∈Q
.

Since f −1({a}) = N ∈ τ ⊆ ωs (R,τ) and f −1({b}) = R−N ∈ ωs (R,τ)−
τ, then f is ωs -continuous but not continuous. Also, Since g−1({a}) =
Qc ∈ τ ⊆ SO (X ,τ) and g−1({b}) = Q ∈ SO (R,τ)−ωs (R,τ), then f is
semi-continuous but notωs -continuous.

Theorem 3.4. Let f : (X ,τ)→ (Y,σ) be a function.

(a) If (X ,τ) is locally countable, then f is continuous if and only if f is
ωs -continuous.

(b ) If (X ,τ) is anti-locally countable, then f is ωs -continuous if and only if f
is semi-continuous.

Proof. (a) It is a consequence of Theorems 2.4 (a) and 3.2 (a).

(b) It is a consequence of Theorems 2.4 (b) and 3.2 (b).

Theorem 3.5. A function f : (X ,τ)→ (Y,σ) is ωs -continuous if and only if
for every x ∈X and every open set V containing f (x) there exists U ∈ωs (X ,τ)
such that x ∈U and f (U )⊆V .

Proof. Necessity. Assume that f : (X ,τ) → (Y ,σ) is ωs -continuous. Let
us take V ∈ σ with f (x) ∈ V . By ωs -continuity, f −1(V ) ∈ ωs (X ,τ). Set
U = f −1(V ). Then U ∈ωs (X ,τ) satisfies x ∈U and f (U )⊆V .

Sufficiency. Let V ∈ σ . For each x ∈ f −1(V )we have f (x) ∈V , and thus there
exists Ux ∈ ωs (X ,τ) such that x ∈ Ux , f (Ux) ⊆ V , and x ∈ Ux ⊆ f −1(V ).
Thus f −1(V ) =

⋃

{Ux : x ∈ f −1(V )}. Therefore, by Theorem 2.7, it follows
f −1(V ) ∈ωs (X ,τ). This shows that f isωs -continuous.
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Theorem 3.6. Let f : (X ,τ) → (Y,σ) be a function. Then the following
conditions are equivalent:

(a) The function f is ωs -continuous.

(b ) Inverse images of all members of a baseB for σ are in ωs (X ,τ).

(c ) Inverse images of all closed subsets of (Y,σ) are ωs -closed in (X ,τ).

(d ) For every A⊆X we have f (A
ωs )⊆ f (A).

(e ) For every B ⊆ Y we have f −1(B)
ωs ⊆ f −1(B).

( f ) For every B ⊆ Y we have f −1(Int(B))⊆ Intωs
( f −1(B)).

Proof. (a)=⇒ (b). Obvious.

(b)=⇒ (c). SupposeB is a base for σ such that f −1(B) ∈ωs (X ,τ) for every
B ∈B . Let C be a non-empty closed subset of (Y,σ). Then Y −C ∈ τ−{∅}.
ChooseB ∗ ⊆B such that Y −C =

⋃

{B : B ∈B ∗}. Then

X − f −1(C ) = f −1(Y −C )
= f −1�⋃{B : B ∈B ∗}

�

=
⋃

{ f −1(B) : B ∈B ∗}.

By assumption f −1(B) ∈ωs (X ,τ) for every B ∈B ∗, then by Theorem 2.7
we have X − f −1(C ) ∈ωs (X ,τ), and hence f −1(C ) isωs -closed in (X ,τ).

(c) =⇒ (d). Let A ⊆ X . Then f (A) is closed in (Y,σ), and by (c)
f −1( f (A)) is ωs -closed in (X ,τ). Since A ⊆ f −1( f (A)) ⊆ f −1( f (A)), and
f −1( f (A)) is ωs -closed in (X ,τ), then A

ωs ⊆ f −1( f (A)), and thus f (A
ωs ) ⊆

f ( f −1( f (A)))⊆ f (A).
(d) =⇒ (e). Let B ⊆ Y . Then f −1(B) ⊆ X , and by (d) f ( f −1(B)

ωs ) ⊆
f ( f −1(B))⊆ B . Therefore, f −1(B)

ωs ⊆ f −1(B).
(e) =⇒ (f). Let B ⊆ Y . Then by (e), f −1(Y −B)

ωs ⊆ f −1(Y −B). Also by
Theorem 2.19 (h), X −X − f −1(B)

ωs = Intωs
( f −1(B)). Thus,

f −1(Int(B)) = f −1(Y −Y −B)

=X − f −1(Y −B)

⊆X − f −1(Y −B)
ωs

=X −X − f −1(B)
ωs

= Intωs
( f −1(B)).

Lemma 3.7. Let (X ,τ) be a topological space and let A⊆X . Then

A
ωs =A∪ Intω(A).
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Proof. Since A
ωs is ωs -closed, then by Theorem 2.15 Intω((A

ωs )) =

Intω(A
ωs ) ⊆ A

ωs . Therefore, Intω(A) ⊆ Intω((A
ωs )) ⊆ A

ωs , and hence
A∪ Intω(A)⊆A

ωs . To see that A
ωs =A∪ Intω(A), it is sufficient to show that

A∪ Intω(A) isωs -closed. Since Intω(A)⊆A, then Intω(A)⊆A. Therefore,

Intω(A∪ Intω(A)) = Intω(A∪ Intω(A))

= Intω(A)

⊆A∪ Intω(A),

and by Theorem 2.15 it follows that A∪ Intω(A) isωs -closed.

Theorem 3.8. Let f : (X ,τ) → (Y,σ) be a function. Then the following
statements are equivalent:

(a) f is ωs -continuous.

(b ) For every A⊆X we have f (Intω(A))⊆ f (A).

(c ) For every B ⊆ Y we have Intω( f −1(B))⊆ f −1(B).

Proof. (a) =⇒ (b). Suppose that f is ωs -continuous. Let A⊆ X . Then by
Theorem 3.6 (d), f (A

ωs )⊆ f (A). Therefore, by Lemma 3.7 we have

f (Intω(A))⊆ f (A
ωs )⊆ f (A).

(b) =⇒ (a). We will apply Theorem 3.6 (d). Let A ⊆ X . Then by (b), we
have f (Intω(A))⊆ f (A). Also, we have f (A)⊆ f (A) always. Therefore, by
Lemma 3.7 we have

f (A
ωs ) = f (A∪ Intω(A))

= f (A)∪ f (Intω(A))

⊆ f (A).

(a) =⇒ (c). Suppose that f is ωs -continuous. Let B ⊆ Y . Then by
Theorem 3.6 (e), f −1(B)

ωs ⊆ f −1(B). Therefore, by Lemma 3.7 we have

Intω( f −1(B))⊆ f −1(B)
ωs ⊆ f −1(B).

(c)=⇒ (a). We will apply Theorem 3.6 (e). Let B ⊆ Y . Then by (c), we have
Intω( f −1(B))⊆ f −1(B). Also, we have f −1(B)⊆ f −1(B) always. Therefore,
by Lemma 3.7 we have

f −1(B)
ωs = f −1(B)∪ Intω( f −1(B))⊆ f −1(B).
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Theorem 3.9. If f : (X ,τ)→ (Y,σ) is ωs -continuous and g : (Y,σ)→ (Z ,λ)
is continuous, then g ◦ f : (X ,τ)→ (Z ,λ) is a ωs -continuous.

Proof. Let V ∈ λ. Since g is continuous, then g−1(V ) ∈ σ . Since f is
ωs -continuous, then (g ◦ f )−1(V ) = f −1(g−1(V )) ∈ωs (X ,τ).

In general, the composition of twoωs -continuous functions does not need to
beωs -continuous as the following example clarifies:

Example 3.10. Let f , g : (R,τu)→ (R,τu), where

f (x) =

(

x if x ≤ 1

0 if x > 1
, and g (x) =

(

0 if x < 1

3 if x ≥ 1
.

Then

(g ◦ f )(x) =

(

0 if x 6= 1

3 if x = 1
.

Since f and g are obviously semi-continuous and (R,τu) is anti-locally
countable, then by Theorem 3.4 (b) f and g are ωs -continuous. On the
other hand, since (2,∞) ∈ τu but (g ◦ f )−1(2,∞) = {1} /∈ ωs (R,τu), then
g ◦ f is notωs -continuous.

Theorem 3.11. Let { fα : (X ,τ) → (Yα,σα)}α∈∆ be a family of functions. If
the function f : (X ,τ) → (

∏

α∈∆Yα,τprod) defined by f (x) = ( fα(x))α∈∆ is
ωs -continuous, then fα is ωs -continuous, for every α ∈∆.

Proof. Suppose that f is ωs -continuous and let β ∈ ∆. Then fβ = πβ ◦ f
where πβ : (

∏

α∈∆Yα,τprod) → (Yβ,σβ) is the projection function on Yβ.
Since πβ is continuous, then by Theorem 3.9, fβ isωs -continuous.

The following example will show that the converse of Theorem 3.11 is not
true in general:

Example 3.12. Define f , g : (R,τu)→ (R,τu), and h : (R,τu)→ (R×R,τprod)
by

f (x) =

(

2 if x ≤ 0

−2 if x > 0
, g (x) =

(

−2 if x < 0

2 if x ≥ 0
, and h(x) = ( f (x), g (x)).

Since f and g are obviously semi-continuous, and (R,τu) is anti-locally
countable, then by Theorem 3.4 (b) f and g are ωs -continuous. On the
other hand, since (0,∞)× (−∞, 0) ∈ τprod but h−1

�

(0,∞)× (−∞, 0)
�

=
{0} /∈ωs (R,τu), then h is notωs -continuous.
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Theorem 3.13. Let { fα : (X ,τ)→ (Yα,σα)}α∈∆ be a family of functions. If fα0

is ωs -continuous for some α0 ∈∆, and if fα is continuous for all α ∈∆−{α0},
then the function f : (X ,τ)→ (

∏

α∈∆Yα,τprod) defined by f (x) = ( fα(x))α∈∆ is
ωs -continuous.

Proof. We will apply statement (b) of Theorem 3.6. Let A be a basic open
set of (

∏

α∈∆Yα,τprod), without loss of generality we may assume that A=
π−1
α0
(Uα0
)∩π−1

α1
(Uα1
)∩ · · · ∩π−1

αn
(Uαn
), where Uαi

is a basic open set of Yαi
for

all i = 0,1, . . . , n. Then

f −1(A) = ((πα0
◦ f )−1(Uα0

))∩ ((πα1
◦ f )−1(Uα1

))∩ · · · ∩ ((παn
◦ f )−1(Uαn

))

= ( f −1
α0
(Uα0
))∩

�

( f −1
α1
(Uα1
))∩ · · · ∩ ( f −1

αn
(Uαn
))
�

.

By assumption f −1
α0
(Uα0
) ∈ ωs (X ,τ) and f −1

αi
(Uαi
) ∈ τ for all i = 0,1, . . . , n.

Thus ( f −1
α1
(Uα1
)) ∩ · · · ∩ ( f −1

αn
(Uαn
)) ∈ τ, and by Theorem 2.9, we have that

f −1(A) ∈ωs (X ,τ). It follows that f isωs -continuous.

Corollary 3.14. Let f : (X ,τ) → (Y,σ) be a function and denote by
g : (X ,τ)→ (X ×Y,τprod) the graph function of f given by g (x) = (x, f (x)),
for every x ∈X . Then g is ωs -continuous if and only if f is ωs -continuous.

Proof. Necessity. Suppose that g isωs -continuous. Then by Theorem 3.11, f
isωs -continuous.

Sufficiency. Suppose that f is ωs -continuous. Note that h(x) = (I (x), f (x))
where I : (X ,τ)→ (X ,τ) is the identity functions. Since the function I is
continuous, then by Theorem 3.13, g isωs -continuous.
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Intermédio entre conjuntos abertos e semiaberto
Resumo. Introduzimos e investigamos os conjuntos ωs-abertos como uma
nova classe de conjuntos que se localiza estritamente entre os conjuntos 
abertos e semiabertos. Usamos os conjuntos ωs-abertos para introduzir as
funções ωs-contínuas como um novo tipo de função que se encontram entre
as funções contínuas e semicontínuas. Proporcionamos vários resultados 
e exemplos relacionados com nossos novos conceitos. Particularmente, 
obtemos algumas caracterizações das funções ωs-contínuas.

Palavras-chave: Conjunto semiaberto; Conjunto ω-aberto; Função 
semicontínua

Intermedio entre conjuntos abiertos y semiabiertos
Resumen. Introducimos e investigamos los conjuntos ωs-abiertos como
una nueva clase de conjuntos que se ubica estrictamente entre los conjuntos 
abiertos y semi-abiertos. Usamos los conjuntos ωs-abiertos para introducir
las funciones ωs-continuas como un nuevo tipo de funciones que se
encuentran entre las funciones continuas y semicontinuas. Proporcionamos 
varios resultados y ejemplos relacionados con nuestros nuevos conceptos. 
En particular, obtenemos algunas caracterizaciones de las funciones 
ωs-continuas.

Palabras clave: Conjunto semiabierto; Conjunto ω-abierto; Función 
semicontinua
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