Publicado abr 12, 2018



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Andrea Patricia Cortés Hidalgo

Oscar Hernando Roa Dueñas

Yardany Rafael Méndez Fandiño

Carlos Arturo Álvarez Moreno

##plugins.themes.bootstrap3.article.details##

Resumen

Introducción: La infección por levaduras del género Candida representa la causa más común de infecciones fúngicas invasivas. Su alta incidencia y la creciente resistencia frente a los azoles y, recientemente, a las equinocandinas ha generado la necesidad de buscar nuevas alternativas farmacológicas. Esta revisión presenta las principales alternativas farmacológicas en estudio frente a Candida resistente a equinocandinas. Métodos: Se buscó literatura referente al tema en las bases de datos Bireme, Clinical Key, Embase, Cochrane, Lilacs, Pubmed y Scopus. Se incluyeron 15 artículos en esta revisión. Resultados: Se exploran diferentes alternativas, incluyendo el aumento de dosis de las equinocandinas, su combinación con otros medicamentos y nuevos compuestos en estudio.

Keywords

echinocandins, Candida, drug resistance, fungal, antifungal agents.equinocandinas, Candida, farmacorresistencia fúngica, antifúngicos

References
Referencias
1. Pappas PG, Kauffman CA, Andes D, Benjamin D K, Calandra TF, Edwards JE, et al. Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis. 2009;48(5):503-35. doi: 10.1086/596757.

2. Pappas PG, Rex JH, Lee J, Hamill RJ, Larsen RA, Powderly W, et al. A prospective observational study of candidemia: Epidemiology, therapy, influences on mortality in hospitalized adult and pediatric patients. Clin Infect Dis. 2003;37(5):634-43. doi: 10.1086/376906.

3. Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. Nosocomial bloodstream infections in US hospitals: Analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis. 2004;39(3):309-17. doi: 10.1086/421946.

4. Wey SB, Mori M, Pfaller MA, Woolson RF, Wenzel RP. Hospital-acquired candidemia: The attributable mortality and excess length of stay. Arch Intern Med [Internet]. 1988;148(12):2642-5. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/3196127.

5. Voss A, le Noble JL, Verduyn F, Foudraine NA, Meis JF. Candidemia in intensive care unit patients: Risk factors for mortality. Infection 1997;25(1):8-11.

6. Glöckner A, Cornely OA. Practical considerations on current guidelines for the management of non-neutropenic adult patients with Candidaemia. Mycoses [Internet]. 2013;56(1):11-20. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/22574925.

7. Gudlaugsson O, Gillespie S, Lee K, Vande Berg J, Hu J, Messer S, Herwaldt L, Pfaller M, Diekema DL. Attributable mortality of nosocomial candidemia, revisited. Clin Infect Dis 2003;37(9):1172-7.

8. Colombo AL, Nucci M, Park BJ, Nouér SA, Arthington-Skaggs B, da Matta DA, Warnock D, Morgan J; Brazilian Network Candidemia Study. Epidemiology of candidemia in Brazil: A nationwide sentinel surveillance of candidemia in eleven medical centers. J Clin Microbiol. 2006;44(8):2816-
23. doi: 10.1128/JCM.00773-06.

9. Pittet D, Wenzel RP. Nosocomial bloodstream infections. Secular trends in rates, mortality and contribution to total hospital deaths. Arch Intern Med [Internet]. 1995;155(11):1177-84. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/7763123.

10. Nucci M, Queiroz-Telles F, Tobón AM, Restrepo A, Colombo AL. Epidemiology of opportunistic fungal infections in Latin America. Clin Infect Dis [Internet]. 2010;51(5):561-70. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/20658942.

11. Cortés JA, Jaimes JA, Leal AL. Incidence, prevalence of candidemia in critically ill patients in Colombia. Rev Chilena Infectol [Internet]. 2013;30(6):599-604. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/24522301.

12. Zaoutis TE, Argon J, Chu J, Berlin JA, Walsh TJ, Feudtner C. The epidemiology and attributable outcomes of candidemia in adults and children hospitalized in the United States: A propensity analysis. Clin Infect Dis [Internet]. 2005;41(9):1232-9. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/16206095.

13. Ruhnke M, Eigler A, Tennagen I, Geiseler B, Engelmann E, Trautmann M. Emergence of fluconazole-resistant strains of Candida albicans in patients with recurrent oropharyngeal candidosis and human immunodeficiency virus infection. J Clin Microbiol [Internet]. 1994;32(9):2092-8. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/7814530.

14. Beyda ND, Lewis RE, Garey KW. Echinochandin resistance in Candida species: Mechanisms of reduced susceptibility and therapeutic approaches. Ann Pharmacother [Internet]. 2012;46(7-8):1086-96. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/22811350.

15. Food and Drug Administration, Center for Drug Evaluation and Research, Division of Special Pathogen and Immunologic Drug Products. CANCIDASTM for invasive aspergillosis: Background document [Internet]. 2001. Disponible en: http://www.fda.gov/ohrms/dockets/ac/01/briefing/3676b1_01.pdf.

16. U. S. Food and Drug Administration. Drug approval package: Mycamine
(Micafungin Sodium) injection [Internet]. 2005. Disponible en http://www.accessdata.fda.gov/drugsatfda_docs/nda/2005/21-506_Mycamine.cfm.

17. U. S. Food and Drug Administration. Package insert for ERAXIS (anidulafungin) for injection [Internet]. Disponible en: https://www.accessdata.fda.gov/drugsatfda_docs/label/2006/021632s002lbl.pdf.

18. Glöckner A, Steinbach A, Vehreschild JJ, Cornely OA. Treatment of invasive candidiasis with echinocandins. Mycoses [Internet]. 2009;52(6):476-86. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/19076282.

19. Vallabhaneni S, Kallen A, Tsay S, et al. Investigation of the first seven reported cases of Candida auris, a globally emerging invasive, multidrug-resistant fungus – United States, May 2013-August 2016. MMWR Morb Mortal Wkly Rep. ePub: 4 November 2016;16.

20. Morales-López SE, Parra-Giraldo CM, Ceballos-Garzón A, Martínez HP, Rodríguez GJ, Álvarez-Moreno CA, et al. Invasive infections with multidrug-resistant yeast Candida auris, Colombia. Emerg Infect Dis. 2017;23(1):162-4. doi: https://dx.doi.org/10.3201/eid2301.161497.

21. Dimopoulos G, Antonopoulou A, Armaganidis A, Vincent JL. How to select an antifungal agent in critically ill patients. J Crit Care [Internet]. 2013;28(5):717-27. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/2401829.

22. Denning, D. W. Echinocandins: A new class of antifungal. J Antimicrob Chemother [Internet]. 2002;49(6):889-91. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/12039879.

23. Castanheira M, Woosley LN, Diekema DJ, Messer SA, Jones RN, Pfaller MA. Low prevalence of fks1 hot spot 1 mutations in a worldwide collection of Candida strains. Antimicrob Agents Chemother. 2010;54(6):2655-9.

24. Shields RK, Nguyen MH, Press EG, Updike CL, Clancy CJ. Caspofungin MICs correlate with treatment outcomes among patients with Candida glabrata invasive candidiasis and prior echinocandin exposure. Antimicrob Agents Chemother [Internet].2013;57(8):3528-35. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/23669387.

25. Pfaller MA, Castanheira M, Lockhart SR, Ahlquist AM, Messer SA, Jones RN. Frequency of decreased susceptibility and resistance to echinocandins among fluconazole-resistant bloodstream isolates of Candida glabrata. J Clin Microbiol [Internet]. 2012;50(4):1199-203. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/22278842.

26. Wiederhold NP, Najvar LK, Bocanegra R, Molina D, Olivo M, Graybill JR. In vivo efficacy of anidulafungin and caspofungin against Candida glabrata and association with in vitro potency in the presence of sera. Antimicrob Agents Chemother [Internet]. 2007;51(5):1616-20. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/17307976.

27. Wiederhold NP, Najvar LK, Bocanegra RA, Kirkpatrick WR, Patterson TF. Caspofungin dose escalation for invasive candidiasis due to resistant Candida albicans. Antimicrob Agents Chemother [Internet]. 2011;55(7):3254-60. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/21502632.

28. Domán M, Kovács R, Perlin DS, Kardos G, Gesztelyi R, Juhász B, Bozó A, Majoros L. Dose escalation studies with caspofungin against Candida glabrata. J Med Microbiol [Internet]. 2015;64(9):998-1007. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/26296340.

29. Jabra-Rizk MA, Shirtliff M, James C, Meiller T. Effect of Farnesol on Candida dubliniensis biofilm formation and fluconazole resistance. FEMS Yeast Res [Internet] 2006;6(7):1063-73. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/17042756.

30. Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B, Shoemaker R, et al. Quorum sensing in the dimorphic fungus Candida albicans is mediated by Farnesol. Appl Environ Microbiol [Internet]. 2001;67(7):2982-92. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/11425711.

31. Shirtliff ME, Krom BP, Meijering RA, Peters BM, Zhu J, Scheper MA, Harris ML, Jabra-Rizk MA. Farnesol-induced apoptosis in Candida albicans. Antimicrob Agents Chemother [Internet]. 2009;53(6): 2392-401. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/19364863.

32. Cordeiro RA, Teixeira CE, Brilhante RS, Castelo-Branco DS, Paiva MA, Giffoni Leite JJ, Lima DT, Monteiro AJ, Sidrim JJ, Rocha MF. Minimum inhibitory concentrations of amphotericin B, azoles and caspofungin against Candida species are reduced by Farnesol. Med Mycol [Internet]. 2013;51(1):53-9. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/22712455.

33. Alem MA, Douglas LJ. Prostaglandins in production during growth of Candida albicans biofilms. J Med Microbiol. 2005;54(11):1001-5.

34. Bink A, Kucharíková S, Neirinck B, Vleugels J, Van Dijck P, Cammue BP, Thevissen K. The nonsteroidal antiinflammatory drug diclofenac potentiates the in vivo activity of caspofungin against Candida albicans biofilms. J Infect Dis. 2012;206 (11):1790-7.

35. Vane JR, Botting R. M. Mechanism of action of nonsteroidal anti-inflammatory drugs. Am J Med [Internet]. 1998;104(3A)2S-8S;discussion 21S-22S. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/9572314.

36. Noverr MC, Phare SM, Toews GB, Coffey MJ, Huffnagle G. B. Pathogenic yeasts Cryptococcus neoformans and Candida albicans produce immunomodulatory prostaglandins. Infect Immun [Internet]. 2001;69(5):2957-63. Disponible en:
https://www.ncbi.nlm.nih.gov/pubmed/11292712.

37. Erb-Downward JR, Noverr MC. Characterization of prostaglandin E2 production by Candida albicans. Infect Immun [Internet]. 2007;75(7):3498-505. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/17470538.

38. Nagappan V, Deresinski S. Reviews of anti-infective agents: posaconazole: A broad-spectrum triazole antifungal agent. Clin Infect Dis [Internet]. 2007;45(12):1610-7. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/18190324.

39. Xiao L, Madison V, Chau AS, Loebenberg D, Palermo RE, McNicholas PM. Three-dimensional models of wild-type and mutated forms of cytochrome P450 14alpha-sterol demethylases from Aspergillus fumigatus and Candida albicans provide insights into posaconazole binding. Antimicrob Agents Chemother [Internet]. 2004;48(2):568-74. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/14742211.

40. Chau AS, Mendrick CA, Sabatelli FJ, Loebenberg D, McNicholas PM. Application of real-time quantitative PCR to molecular analysis of Candida albicans strains exhibiting reduced susceptibility to azoles. Antimicrob Agents Chemother. 2004;48(6):2124-31.

41. Hof H. A new, broad-spectrum azole antifungal: posaconazole-mechanisms of action and resistance, spectrum of activity. Mycoses [Internet]. 2006;49 Suppl 1:2-6. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/16961575.

42. Chen YL, Lehman VN, Averette AF, Perfect JR, Heitman J. Posaconazole exhibits in vitro and in vivo synergistic antifungal activity with caspofungin or FK506 against Candida albicans. PLoS One. 2013;8(3):e57672.

43. Sucher AJ, Chahine EB, Balcer H. E. Echinocandins: the newest class of antifungals. Ann Pharmacother [Internet]. 2009;43(10):1647-57. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/19724014.

44. Walker LA, Munro CA, de Bruijn I, Lenardon MD, McKinnon A, Gow NA. Stimulation of chitin synthesis rescues Candida albicans from echinocandins. PLoS Pathog [Internet]. 2008;4(4). Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/18389063.

45. Klis FM, De Groot P, Hellingwerf K. Molecular organization of the cell wall of Candida albicans. Med Mycol [Internet]. 2001;39 Suppl 1:1-8. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/11800263.

46. Walker LA, Gow NA, Munro CA. Elevated chitin content reduces the susceptibility of Candida species to caspofungin. Antimicrob Agents Chemother [Internet]. 2013;57(1):146-54. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/23089748.

47. Lenardon MD, Munro CA, Gow NA. Chitin synthesis and fungal pathogenesis. Curr Opin Microbiol [Internet]. 2010;13(4):416-23. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/20561815.

48. Escobar C. Nuevos antimicóticos y su uso en dermatología. Med Cut Iber Lat Am. 2004;32(6):231-42.

49. De Ruijter AJ, Van Gennip AH, Caron HN, Kemp S, Van Kuilenburg AB. Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochem J [Internet]. 2003;370(3):737-49. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/12429021.

50. Smith WL, Edlind TD. Histone deacetylase inhibitors enhance Candida albicans sensitivity to azoles and related antifungals: correlation with reduction in CDR and ERG upregulation. Antimicrob Agents Chemother [Internet]. 2002;46(11):3532-9. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/12384361.

51. Pfaller MA, Rhomberg PR, Messer SA, Castanheira M. In vitro activity of a Hos2 deacetylase inhibitor, MGCD290, in combination with echinocandins against echinocandin-resistant Candida species. Diagn Microbiol Infect Dis [Internet]. 2015;81(4):259-63. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/25600842.

52. Mirati Therapeutics. MethylGene reports results of phase II Trial of MGCD290 [Internet]. Disponible en: http://ir.mirati.com/releasedetail.cfm?releaseid=787643.

53. Rusnak F, Mertz P. Calcineurin: form and function. Physiol Rev [Internet]. 2000;80(4):1483-521. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/11015619.

54. Li Y, Sun S, Guo Q, Ma L, Sh, C, Su L, Li H. In vitro interaction between azoles and cyclosporin A against clinical isolates of Candida albicans determined by the chequerboard method , time-kill curves. J Antimicrob Chemother [Internet]. 2008;61(3):577-85. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/18194958.

55. Shinde RB, Chauhan NM, Raut JS, Karuppayil SM. Sensitization of Candida albicans biofilms to various antifungal drugs by cyclosporine A. Ann Clin Microbiol Antimicrob [Internet]. 2012;11(27). Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/23035934.

56. Miyazaki M, Horii T, Hata K, Watanabe NA, Nakamoto K, Tanaka K, Shirotori S, Murai N, Inoue S, Matsukura M, Abe S, Yoshimatsu K, Asada M. In vitro activity of E1210, a novel antifungal, against clinically important yeasts, molds. Antimicrob Agents Chemother [Internet]. 2011;55(10):4652-8. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/21825291.

57. Chaffin WL. Candida albicans cell wall proteins. Microbiol Mol Biol Rev. 2008;72(3):495-544.

58. Sheppard DC, Yeaman MR, Welch WH, Phan QT, Fu Y, Ibrahim AS, Filler SG, Zhang M, Waring AJ, Edwards JE. Functional and structural diversity in the Als protein family of Candida albicans. J Biol Chem [Internet]. 2004;279(29):30480-9. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/15128742.

59. Pfaller MA, Hata K, Jones RN, Messer SA, Moet GJ, Castanheira M. In vitro activity of a novel broad-spectrum antifungal, E1210, tested against Candida spp. as determined by CLSI broth microdilution method. Diagn Microbiol Infect Dis [Internet]. 2011;71(2):167-70. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/21696907.

60. Wiederhold NP, Najvar LK, Fothergill AW, McCarthy DI, Bocanegra R, Olivo M, Kirkpatrick WR, Everson MP, Duncanson FP, Patterson TF. The investigational agent E1210 is effective in treatment of experimental invasive candidiasis caused by resistant Candida albicans. Antimicrob Agents Chemother [Internet]. 2015;59(1): 690-2. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/25331706.

61. Peláez F, Cabello A, Platas G, Díez MT, González del Val A, Basilio A, Martán I, et al. The discovery of enfumafungin, a novel antifungal compound produced by an endophytic Hormonema species biological activity and taxonomy of the producing organisms. Syst Appl Microbiol [Internet]. 2000;23(3):333-43. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/11108011.

62. Onishi J, Meinz M, Thompson J, Curotto J, Dreikorn S, Rosenbach M, et al. Discovery of novel antifungal (1,3)-β-D-glucan synthase inhibitors. Antimicrob Agents Chemother [Internet]. 2000;44(2):368-77. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/10639364.

63. Jiménez-Ortigosa C, Paderu P, Motyl MR, Perlin D. S. Enfumafungin derivative MK-3118 shows increased in vitro potency against clinical echinocandin-resistant Candida Species and Aspergillus species isolates. Antimicrob Agents Chemother [Internet]. 2014;58(2):1248-51. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/24323472.

64. Pfaller MA, Messer SA, Motyl MR, Jones RN, Castanheira M. Activity of MK-3118, a new oral glucan synthase inhibitor, tested against Candida spp. by two international methods (CLSI and EUCAST). J Antimicrob Chemother [Internet]. 2013;68(4):858-63. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/23190764.

65. Masaphy S. A novel echinocandin MIG0310 with anticandida activity from newly isolated Fusarium sp. strain MS-R1. J Appl Microbiol [Internet]. 2014;116(6):1458-64. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/24674450.

66. Locke J, Almaguer A, Zuill D, Bartizal K. Characterization of in vitro resistance development to the novel echinocandin, CD101, in Candida species. Antimicrob Agents Chemother. 2016;60(10):6100-7. doi: 10.1128/AAC.00620-16.

67. Pfaller M, Messer S, Rhomberg P, Jones R, Castanheira M. Activity of a long-acting echinocandin, CD101, determined using CLSI and EUCAST reference methods, against Candida and Aspergillus spp., including echinocandin-and azole-resistant isolates. J Antimicrob Chemother. 2016;71(10):2868-73. doi:10.1093/jac/dkw214.

68. Zhao Y, Perez WB, Jiménez-Ortigosa C, Hough G, Locke JB, Ong V, Bartizal K, Perlin DS. CD101: a novel long-acting echinocandin. Cell Microbiol. 2016;18(9):1308-16. doi: 10.1111/cmi.12640.

69. Ong V, Miesel L, Bartizal K, Huang HH, Chien JC. Prolonged efficacy following one dose of a novel echinocandin, CD101, in a neutropenic mouse model of disseminated candidiasis [Internet]. San Diego: Cidara Therapeutics; s. f. Disponible en: http://www.eurofins.com/media/313673/eurofins_cidera.pdf.

70. Krishnan BR, James KD, Polowy K, Bryant BJ, Vaidya A, Smiths S, Laudeman CP. CD101, a novel echinocandin with exceptional stability properties and enhanced aqueous solubility. J Antibiot (Tokyo). 2017;70(2):130-5. doi: 10.1038/ja.2016.89.

71. Castanheira M, Messer SA, Rhomberg PR, Jones RN, Pfaller MA. Activity of a novel echinocandin biafungin (CD101) tested against most common Candida and Aspergillus species, including echinocandin-and azole-resistant strains. M-1082 ICAAC 2014 JMI Laboratories North Liberty, IA, USA.

72. Nishikawa H, Yamada E, Shibata T, Uchihashi S, Fan H, Hayakawa H, Nomura N, Mitsuyama J. Uptake of T-2307, a novel arylamidine, in Candida albicans. J Antimicrob Chemother [Internet]. 2010;65(8): 1681-7. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/20513704.

73. Wiederhold NP, Najvar LK, Fothergill AW, Bocanegra R, Olivo M, McCarthy DI, Kirkpatrick WR, Fukuda Y, Mitsuyama J, Patterson T F. The novel arylamidine T-2307 maintains in vitro and in vivo activity against echinocandin-resistant Candida albicans. Antimicrob Agents Chemother [Internet]. 2015;59(2):1341-3. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/25451054.

74. T-2307 Antifungal agent Phase 1 [Internet]. Disponible en: http://www.toyama-chemical.co.jp/en/rd/pipeline/index.htm.

75. Beyda N, Regen S, Lewis R, Garey K. Immunomodulatory agents as
adjunctive therapy for the treatment of resistant Candida species. Current Fungal Infection Reports. 2013;7(2):119-25.

76. Hübel K, Dale DC, Liles W. C. Therapeutic use of cytokines to modulate phagocyte function for the treatment of infectious diseases: current status of granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, macrophage colony-stimulating factor and interferon-gamma. J Infect Dis [Internet]. 2002;185(10):1490-501. Disponible en:
https://www.ncbi.nlm.nih.gov/pubmed/11992286.

77. Gozalbo D, Maneu V, Gil ML. Role of IFN-gamma in immune responses to Candida albicans infections. Front Biosci (Landmark Ed) [Internet]. 2014;19:1279-90. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/24896350.

78. Netea MG, Van der Meer JW, Van Deuren M, Kullberg B. J. Proinflammatory cytokines and sepsis syndrome: not enough, or too much of a good thing? Trends Immunol [Internet]. 2003;24(5):254-8. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/12738419.

79. Djeu JY, Liu, JH, Wei, S, Rui, H, Pearson CA, Leonard WJ, Blanchard DK. Function associated with IL-2 receptor-beta on human neutrophils: Mechanism of activation of antifungal activity against Candida albicans by IL-2. J Immunol [Internet]. 1993;150(3):960-70. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/8380826.

80. Bugli F, Cacaci M, Martini C, Torelli R, Posteraro B, Sanguinetti M, Paroni Sterbini F. Human monoclonal antibody-based therapy in the treatment of invasive candidiasis. Clin Dev Immunol. 2013;403121. doi: 10.1155/2013/403121.

81. Cowen LE, Singh SD, Köhler JR, Collins C, Zaas AK, Schell WA, et al. Harnessing Hsp90 function as a powerful, broadly effective therapeutic strategy for fungal infectious disease. Proc Natl Acad Sci U S A [Internet]. 2009;106(8):2818-23. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/19196973.

82. Karwa R, Wargo KA. Efungumab: a novel agent in the treatment of invasive candidiasis. Ann Pharmacother [Internet]. 2009;43(11):1818-23. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/19773528.

83. Matthews RC, Rigg G, Hodgetts S, Carter T, Chapman C, Gregory C, Illidge C, Burnie J. Preclinical assessment of the efficacy of mycograb, a human recombinant antibody against fungal HSP90. Antimicrob Agents Chemother [Internet]. 2003;47(7):2208-16. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/12821470.

84. Hodgetts S, Nooney L, Al-Akeel R, Curry A, Awad S, Matthews R, Burnie J. Efungumab and caspofungin: pre-clinical data supporting synergy. J Antimicrob Chemother [Internet]. 2008;61(5):1132-9. https://www.ncbi.nlm.nih.gov/pubmed/18299636.

85. Cassone A, Casadevall A. Recent progress in vaccines against fungal diseases. Curr Opin Microbiol. 2012;15(4):27-33. doi: 10.1016/j.mib.2012.04.004.

86. Kumar P, Chen K, Kolls JK. Th17 cell based vaccines in mucosal immunity. Curr Opin Immunol [Internet]. 2013;25(3):373-80. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/23669353.

87. Spampinato C, Leonardi D. Candida infections, causes, targets, and resistance mechanisms: traditional and alternative antifungal agents. Biomed Res Int [Internet]. 2013;204237. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/23878798.

88. Cidara Therapeutics. Rezafungin (CD101 IV) overview [Internet]. Disponible en: http://www.cidara.com/cd101-iv/.

89. SCYNEXIS. SCYNEXIS, Inc. initiates enrollment of the phase 2 study of SCY-078 in vulvovaginal candidiasis [Internet]. Jersey City; 2015. Disponible en: http://ir.scynexis.com/news-releases/news-release-details/scynexis-inc-initiates-enrollment-phase-2-study-scy-078.

90. Adis Insight. MGCD 290: Drug profile [Internet]. Disponible en: http://adisinsight.springer.com/drugs/800018871

91. Nett J. Future directions for anti-biofilm therapeutics targeting Candida. Expert Rev. Anti Infect Ther. 2014;12(3):375-82. doi: 10.1586/14787210.2014.885838.
Cómo citar
Cortés Hidalgo, A. P., Roa Dueñas, O. H., Méndez Fandiño, Y. R., & Álvarez Moreno, C. A. (2018). Opciones terapéuticas frente a especies de Candida resistentes a las equinocandinas. Universitas Medica, 59(2). https://doi.org/10.11144/Javeriana.umed59-2.cand
Sección
Artículos de revisión

Artículos más leídos del mismo autor/a