##plugins.themes.bootstrap3.article.main##


Ricardo Otero-Caicedo

Stevenson Bolívar

Nicolás Rincón-García

Resumen

En Colombia, el comercio electrónico está aumentando considerablemente según cifras de la Cámara Colombiana de Comercio Electrónico, CCCE. En este mercado, las grandes superficies como Jumbo, La 14, Almacenes Éxito y Carulla, entre otras, participan por medio del servicio de entregas a domicilio (Home delivery). Este servicio se compone de 3 etapas principales, que comienzan con la recepción de la orden, continúan con la recolección en el almacén de los productos que componen la orden (order picking) y finalizan con la entrega al cliente (delivery). La eficiencia en los procesos logísticos es esencial para garantizar la rentabilidad de los supermercados en este segmento. En particular, la etapa de order picking es fundamental, ya que representa cerca de la mitad de los costos de bodega. Enmarcado en el proceso picking en tienda, en este documento se presenta y analiza la comparación de dos alternativas de entrega de productos: i) durante el mismo día, ii) en el día siguiente. En el primer caso, los pedidos se despachan a medida que van llegando, siguiendo el criterio FIFO (first in first out) para la asignación de cada orden a cada operario. En el segundo caso, las órdenes se acumulan y se despachan al día siguiente, lo que permite agrupar las órdenes en lotes (batching) y asignar a cada operario uno o varios lotes para realizar el picking. Estas dos alternativas se compararon utilizando simulación por eventos discretos. Los resultados indicaron que sostener al cliente la promesa de entrega durante el mismo día de colocación del pedido, incrementa los costos operacionales de picking en 450% enpromedio.

##plugins.themes.bootstrap3.article.details##

Keywords

Entrega a domicilio, recolección de productos, creación de lotes, simulación por eventos discretos.

References
Armbruster, Dieter & Gel, Esma S. (2006). Bucket Brigades Revisited: Are They Always Effective? European Journal of Operational Research, 172 (1), 213-229. http://doi.org/10.1016/j.ejor.2004.08.044


Bartholdi, John J. & Eisenstein, Donald D. (1996). A Production Line that Balance Itself. Operations Research, 44 (1), Special Issue on New Directions in Operations Management, 21-34.


Boyer, Kenneth K. & Hult, G. Thomas M. (2006). Customer Behavioral Intentions for Online Purchases: An Examination of Fulfillment Method and Customer Experience Level. Journal of Operations
Management, 24 (2), 124-147. http://doi.org/10.1016/j.jom.2005.04.002


Bühler, Dominic; Klein, Robert & Neugebauer, Michael (2016). Model-Based Delivery Cost Approximation in Attended Home Services. Computers & Industrial Engineering, 98 (C), 78-90. http://doi.org/10.1016/j.cie.2016.05.014


Cámara Colombiana de Comercio Electrónico, CCCE (2016). Estudio Observatorio de compra online – Segunda oleada, Colombia 2016. Bogotá. Disponible en: https://www.ccce.org.co/sites/default/files/biblioteca/Infograf%C3%ADa%20.pdf


Chen, Yi-zhou; Shen, Shi Fei; Chen, Tao & Yang, Rui (2014). Path Optimization Study for Vehicles Evacuation Based on Dijkstra Algorithm. Procedia Engineering, 71, 159-165. http://doi.org/10.1016/j.proeng.2014.04.023.Disponible en: https://www.researchgate.net/publication/262769062_Path_Optimization_Study_for_Vehicles_Evacuation_based_on_Dijkstra_Algorithm


Duin, J. H. Ron van; Goffau, Wim de; Wiegmans, Bart; Tavasszy, Lori A. & Saes, Maurice (2016). Improving Home Delivery Efficiency by Using Principles of Address Intelligence for B2C Deliveries.
Transportation Research Procedia, 12, 14-25. http://doi.org/10.1016/j.trpro.2016.02.006. Disponible en: http://repository.tudelft.nl/islandora/object/uuid%3Aa2f956b9-57ad-4f41-ad09-df318acf7234


Durand, Bruno & González-Feliu, Jesús (2012). Urban Logistics and E-Grocery: Have Proximity Delivery Services a Positive Impact on Shopping Trips? Procedia – Social and Behavioral Sciences, 39, 510-520. http://doi.org/10.1016/j.sbspro.2012.03.126


Ehmke, Jan Fabian & Campbell, Ann Melissa (2014). Customer Acceptance Mechanisms for Home Deliveries in Metropolitan Areas. European Journal of Operational Research, 233 (1), 193-207. http://doi.org/10.1016/j.ejor.2013.08.028. Disponible en: https://www.researchgate.net/profile/
Ann_Campbell4/publication/270992093_Customer_acceptance_mechanisms_for_home_deliveries_in_metropolitan_areas/links/561e607208aef097132c1b49/Customer-acceptance-mechanisms-forhome-deliveries-in-metropolitan-areas.pdf


Hall, Randolph W. (1993). Distance Approximations for Routing Manual Pickers in a Warehouse. IIE
Transactions, 25 (4), 76-87. http://doi.org/10.1080/07408179308964306

Henn, Sebastian & Wäscher, Gerhard (2012). Tabu Search Heuristics for the Order Batching Problem in Manual Order Picking Systems. European Journal of Operational Research, 222 (3), 484-494. http://doi.
org/10.1016/j.ejor.2012.05.049





Hong, Soondo; Johnson, Andrew L. & Peters, Brett A. (2012). Batch Picking in Narrow-Aisle Order Picking Systems with Consideration for Picker Blocking. European Journal of Operational Research, 221 (3), 557-570. http://doi.org/10.1016/j.ejor.2012.03.045. Disponible en: https://www.researchgate.net/
publication/257196172_Batch_picking_in_narrow-aisle_order_picking_systems_with_consideration_for_picker_blocking


Hong, Soondo & Kim, Youngjoo (2017). A Route-Selecting Order Batching Model with the S-Shape Routes in a Parallel-Aisle Order Picking System. European Journal of Operational Research, 257 (1), 185-196.http://doi.org/10.1016/j.ejor.2016.07.017


Hsu, Chih-Ming; Chen, Kai-Ying & Chen, Mu-Chen (2005). Batching Orders in Warehouses by Minimizing Travel Distance with Genetic Algorithms. Computers in Industry, 56 (2), 169-
178. http://doi.org/10.1016/j.compind.2004.06.001


Hwang, Heung Suk & Cho, Gyu Sung (2006). A Performance Evaluation Model for Order Picking Warehouse Design. Computers and Industrial Engineering, 51 (2), 335-342.
http://doi.org/10.1016/j.cie.2005.10.002


Javelin Group (2011). How Many Stores Will We Really Need? UK Non-Food Retailing in 2020. Disponible en: http://www.javelingroup. com/white_paper/white_paper_registration_how_many_stores/


Koo, Pyung-Hoi (2009). The Use of Bucket Brigades in Zone Order Picking Systems. OR Spectrum, 31 (4), 759-774. http://doi.org/10.1007/s00291-008-0131-x


Koster, René de (1994). Performance Approximation of Pick-To-Belt Order Picking Systems. European Journal of Operational Research, 72 (3), 558-573. http://doi.org/10.1016/0377-2217(94)90423-5. Disponible en: https://repub.eur.nl/pub/11836/PerformanceApproximation_1994pdf.pdf


Koster, René de; Le-Duc, Tho & Roodbergen, Kees Jan (2007). Design and Control of Warehouse Order Picking: A Literature Review. European Journal of Operational Research, 182 (2), 481-501. http://doi.
org/10.1016/j.ejor.2006.07.009. Disponible en: http://roodbergen.com/publications/EJOR2007.pdf


Le-Duc, Tho & Koster, René de (2007). Travel Time Estimation and Order Batching in a 2-Block Warehouse. European Journal of Operational Research, 176 (1), 374-388.
http://doi.org/10.1016/j.ejor.2005.03.052


Liao, Shu-hsien; Chen, Yin-ju & Lin, Yi-tsun (2011). Mining Customer Knowledge to Implement Online Shopping and Home Delivery for Hypermarkets. Expert Systems with Applications, 38 (4), 3982-3991.
http://doi.org/10.1016/j.eswa.2010.09.059. Disponible en: ftp://140.131.110.38/leecc/public/SPSS&AppofStatistics/2011Papers/Reference/Mining%20customer%20knowledge%20to%20implement%20online%20shopping%20and%20home%20delivery%20for%20hypermarkets.pdf


Martello, Silvano & Toth, Paolo (1987). Algorithms for Knapsack Problems. North- Holland Mathematics Studies, 132 (C), 213-257. http://doi.org/10.1016/S0304-0208(08)73237-7





Pan, Jason Chao-Hsien; Shih, Po-Hsun & Wu, Ming-Hung (2015). Order Batching in a Pick-and-Pass Warehousing System with Group Genetic Algorithm. Omega, 57, 238-248. http://doi.org/10.1016/j.
omega.2015.05.004


Park, Minyoung & Regan, Amelia (2004). Issues in Emerging Home Delivery Operations. University of California Transportation Center, 2 (2), 1-13. http://doi.org/10.1068/a201285


Rincón-García, Nicolás (2016). Freight Transport, Routing Software and Time- Dependent Vehicle Routing Models. Doctoral Thesis. University of Southampton, Faculty of Engineering and the Environment, Southampton, England. Disponible en: https://eprints.soton.ac.uk/397141/1/FINAL%2520ETHESIS%2520FOR%2520EPRINTS%252025739344.pdf


Saskia, Seidel; Mareï, Nora & Blanquart, Corinne (2016). Innovations in e-Grocery and Logistics olutions for Cities. Transportation Research Procedia, 12, 825-835. http://doi.org/10.1016/j.trpro.2016.02.035


Visser, Johan; Nemoto, Toshinori & Browne, Michael (2014). Home Delivery and the Impacts on Urban Freight Transport: A Review. Procedia - Social and Behavioral Sciences, 125, 15-27. http://doi.org/10.1016/j.sbspro.2014.01.1452


Yu, Mengfei & Koster, René de (2010). Enhancing Performance in Order Picking Processes by Dynamic Storage Systems. International Journal of Production Research, 48 (16), 4785-4806. http://doi.
org/10.1080/00207540903055693
Cómo citar
Otero-Caicedo, R., Bolívar, S., & Rincón-García, N. (2017). Comparación a través del picking en tienda de dos alternativas de entrega en un entorno de servicio a domicilio en supermercados. Área temática: logística en ciudad. Cuadernos De Contabilidad, 17(44). https://doi.org/10.11144/Javeriana.cc17-44.ctpt
Sección
Artículos
Artículos más leídos del mismo autor/a