Uso de capacidades de innovación tecnológica de los profesionales en contabilidad: El caso de cuatro universidades en Suramérica
HTML Full Text
PDF
XML

Palabras clave

currículo
Inteligencia artificial
competencias
contabilidad
herramientas tecnológicas

Cómo citar

Uso de capacidades de innovación tecnológica de los profesionales en contabilidad: El caso de cuatro universidades en Suramérica. (2025). Cuadernos De Contabilidad, 26, 1-18. https://doi.org/10.11144/Javeriana.cc26.itpc
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar

Resumen

En el marco de la quinta revolución industrial y del nuevo paradigma científico-tecnológico, en este artículo se presentan los resultados de una investigación cuyo propósito fue analizar el uso de herramientas de innovación tecnológica aplicadas por un grupo de profesionales en contabilidad de cuatro universidades de Suramérica. Este documento, con un enfoque mixto, agrupa el diagnóstico sobre el uso de capacidades de innovación tecnológica por parte de 85 profesionales en contabilidad. La información fue recolectada mediante cuestionarios tipo Likert e interpretada con estadística descriptiva; además, se trianguló con la información obtenida a través de entrevistas en profundidad y con aquella identificada en la revisión de literatura. Los resultados demuestran que el uso de capacidades de innovación tecnológica por parte de los profesionales en contabilidad es deficiente en relación con la expectativa teórica identificada. Por ello, los programas que forman estos profesionales deben propender por el desarrollo de las competencias requeridas para operar en este nuevo ecosistema contable. Este documento representa un aporte al conocimiento, pues permite reconocer las debilidades en la formación de los profesionales en contabilidad en relación con las herramientas tecnológicas, con el fin de que los programas de contaduría pública de Suramérica mejoren sus currículos por competencias, de acuerdo con las necesidades identificadas.

HTML Full Text
PDF
XML

Agustí, M. y Orta, M. (2022). Big data and artificial intelligence in the fields of accounting and auditing: A bibliometric analysis. Spanish Journal of Finance and Accounting / Revista Española de Financiación y Contabilidad, 52(1), pp. 1–27. https://doi.org/10.1080/02102412.2022.2099675

ACCA (2016). Professional accountants – the future: Drivers of change and future skills. Association of Chartered Certified Accountants. https://www.accaglobal.com

Al-Qatanani, D. (2024). The impact of artificial intelligence implementation on accounting information systems in commercial banks operating in the Tabuk region. Pakistan Journal of Life and Social Sciences, 22(2). https://doi.org/10.57239/PJLSS-2024-22.2.00395

Aldredge, M., Rogers, C. y Smith, J. (2021). The strategic transformation of accounting into a learned profession. Industry and Higher Education, 35(2), pp. 83–88. https://doi.org/10.1177/0950422220954319

Appelbaum, D. y Nehmer, R. (2017). Using drones in internal and external audits: An exploratory framework. Journal of Emerging Technologies in Accounting, 14(1), pp. 99–113. https://doi.org/10.2308/jeta-51704

Assidi, S., Omran, M., Rana, T. y Borgi, H. (2025). The role of AI adoption in transforming the accounting profession: A diffusion of innovations theory approach. Journal of Accounting y Organizational Change. Publicación anticipada en línea. https://doi.org/10.1108/JAOC-04-2024-0124

Bhimani, A. y Willcocks, L. (2014). Digitisation, ‘Big Data’ and the transformation of accounting information. Accounting and Business Research, 44(4), pp. 469–490. https://doi.org/10.1080/00014788.2014.910051

Boritz, J. E. y Stratopoulos, T. C. (2023). AI and the accounting profession: Views from industry and academia. Journal of Information Systems, 37(3), pp. 1–9. https://doi.org/10.2308/ISYS-2023-054

Brabete, V., Barbu, C. M., Cîrciumaru, D., Goagără, D. y Berceanu, D. (2024). Redesign of accounting education to meet the challenges of artificial intelligence – A literature review. Amfiteatru Economic, 26(65), pp. 275–293. https://doi.org/10.24818/EA/2024/65/275

Cai, L. y Zhu, Y. (2015). The challenges of data quality and data quality assessment in the big data era. Data Science Journal, 14, Artículo 2. https://doi.org/10.5334/dsj-2015-002

Cingillioglu, I., Gal, U. y Prokhorov, A. (2024). AI-experiments in education: An AI-driven randomized controlled trial for higher education research. Education and Information Technologies, 29, pp. 19649–19677. https://doi.org/10.1007/s10639-024-12633-y

Constantiou, I. D. y Kallinikos, J. (2015). New Games, New Rules: Big Data and the Changing Context of Strategy. Journal of Information Technology, 30(1), pp. 44–57. https://doi.org/10.1057/jit.2014.17

Dai, J. y Vasarhelyi, M. A. (2017). Toward blockchain-based accounting and assurance. Journal of Information Systems, 31(3), pp. 5–21. https://doi.org/10.2308/isys-51804

Deliu, D. y Olariu, A.-M. (2024). The role of artificial intelligence and big data analytics in shaping the future of professions in Industry 6.0: Perspectives from an emerging market. Electronics, 13(24), 4983. https://doi.org/10.3390/electronics13244983

Drescher, D. (2017). Blockchain basics: A non-technical introduction in 25 steps (1a ed.). Apress. https://doi.org/10.1007/978-1-4842-2604-9

Duque-Espinoza, G., Córdova-León, F. & Sigüencia-Muñoz, A. (2024). Resiliencia empresarial en la MIPyME: evidencia de Ecuador. Cuadernos de Contabilidad, 25, 1-27. https://doi.org/10.11144/Javeriana.cc25.reme

Gershman, S. J., Horvitz, E. J. y Tenenbaum, J. B. (2015). Computational rationality: A converging paradigm for intelligence in brains, minds, and machines. Science, 349(6245), pp. 273–278. https://doi.org/10.1126/science.aac6076

Ghahramani, Z. (2015). Probabilistic machine learning and artificial intelligence. Nature, 521(7553), pp. 452–459. https://doi.org/10.1038/nature14541

Gonçalves, M. J. A., da Silva, A. C. F. y Ferreira, C. G. (2022). The future of accounting: How will digital transformation impact the sector? Informatics, 9(1), 19. https://doi.org/10.3390/informatics9010019

Griffiths, M. D. y Auer, M. (2022). Limit-setting in gambling: Some further thoughts and observations on Delfabbro and King (2021). International Gambling Studies, 22(3), pp. 337–343. https://doi.org/10.1080/14459795.2021.2009003

Grosu, V., Cosmulese, C. G., Socoliuc, M., Ciubotariu, M.-S. y Mihaila, S. (2023). Testing accountants' perceptions of the digitization of the profession and profiling the future professional. Technological Forecasting and Social Change, 193, 122630. https://doi.org/10.1016/j.techfore.2023.122630

Gusc, J., Bosma, P., Jarka, S. y Biernat-Jarka, A. (2022). Big data, artificial intelligence, and blockchain in true cost accounting for energy transition in Europe. Energies, 15(3), 1089. https://doi.org/10.3390/en15031089

Handoyo, S. (2024). Evolving paradigms in accounting education: A bibliometric study on the impact of information technology. The International Journal of Management Education, 22(3), 100998. https://doi.org/10.1016/j.ijme.2024.100998

Holmes, A. F. y Douglass, A. (2022). Artificial intelligence: Reshaping the accounting profession and the disruption to accounting education. Journal of Emerging Technologies in Accounting, 19(1), pp. 53–68. https://doi.org/10.2308/JETA-2020-054

Hopfgartner, N., Auer, M., Helic, D. y Griffiths, M. D. (2024). Using artificial intelligence algorithms to predict self-reported problem gambling among online casino gamblers from different countries using account-based player data. International Journal of Mental Health and Addiction. Publicación anticipada en línea. https://doi.org/10.1007/s11469-024-01312-1

Huerta, E. y Jensen, S. (2017). An accounting information systems perspective on data analytics and big data. Journal of Information Systems, 31(3), pp. 101–114. https://doi.org/10.2308/isys-51799

ICAEW (2015). Annual Report 2015. Institute of Chartered Accountants in England and Wales. https://www.icaew.com

Igou, A., Power, D. J., Brosnan, S. y Heavin, C. (2023). Digital futures for accountants. Journal of Emerging Technologies in Accounting, 20(1), pp. 39–57. https://doi.org/10.2308/JETA-2020-088

Jordan, M. y Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), pp. 255–260. https://doi.org/10.1126/science.aaa8415

Kristandl, G., Quinn, M. y Strauss, E. (2015). Controlling und Cloud Computing – Wie die Cloud den Informationsfluss in KMU ändert. ZfKE – Zeitschrift für KMU & Entrepreneurship, 63(3-4), pp. 281-304. https://doi.org/10.3790/zfke.63.3-4.281

Kokina, J. y Davenport, T. (2017). The emergence of artificial intelligence: How automation is changing auditing. Journal of Emerging Technologies in Accounting, 14(1), pp. 115–122. https://doi.org/10.2308/jeta-51730

Leitner-Hanetseder, S., Lehner, O. M., Eisl, C. y Forstenlechner, C. (2021). A profession in transition: Actors, tasks and roles in AI-based accounting. Journal of Applied Accounting Research, 22(3), pp. 539–556. https://doi.org/10.1108/JAAR-10-2020-0201

Mancini, D., Lombardi, R. y Tavana, M. (2021). Four research pathways for understanding the role of smart technologies in accounting. Meditari Accountancy Research, 29(5), pp. 1041–1062. https://doi.org/10.1108/MEDAR-03-2021-1258

Marques, S., Gonçalves, R., Lopes da Costa, R., Pereira, L. F. y Dias, A. L. (2023). The impact of intelligent systems on management accounting. International Journal of Intelligent Information Technologies, 19(1), pp. 1–32. https://doi.org/10.4018/IJIIT.324601

Moll, J. y Yigitbasioglu, O. (2019). The role of internet-related technologies in shaping the work of accountants: New directions for accounting research. The British Accounting Review, 51(6), 100833. https://doi.org/10.1016/j.bar.2019.04.002

Moore, W. B. y Felo, A. (2021). The evolution of accounting technology education: Analytics to STEM. Journal of Education for Business, 97(2), pp. 105–111. https://doi.org/10.1080/08832323.2021.1895045

Mulholland, A., Pyke, J. y Fingar, P. (2010). Enterprise nube computing: A strategy guide for business and technology leaders—and the rest of us. Meghan-Kiffer Press. https://books.google.com.co/books?id=CNiJSQAACAAJ

Naik, S. B. K. (2024). Barriers to the Adoption of E-Learning in Higher Education Institutes (HEI). International Journal of E-Services and Mobile Applications, 17(1), 1–19. https://doi.org/10.4018/ijesma.365667

Nakamoto, S. (2009). Bitcoin: A peer-to-peer electronic cash system. Cryptography Mailing List. https://bitcoin.org/bitcoin.pdf

Nielsen, S. (2022). Management accounting and the concepts of exploratory data analysis and unsupervised machine learning: A literature study and future directions. Journal of Accounting y Organizational Change, 18(5), pp. 811–853. https://doi.org/10.1108/JAOC-08-2020-0107

Ng, C. (2023). Teaching advanced data analytics, robotic process automation, and artificial intelligence in a graduate accounting program. Journal of Emerging Technologies in Accounting, 20(1), pp. 223–243. https://doi.org/10.2308/JETA-2022-025

Nowak, A., Lukowicz, P. y Horodecki, P. (2018). Assessing artificial intelligence for humanity: Will AI be our biggest ever advance? Or the biggest threat [Opinion]. IEEE Technology and Society Magazine, 37(4), pp. 26–34. https://doi.org/10.1109/MTS.2018.2876105

Okoye, K., Hussein, H., Arrona-Palacios, A., Quintero, H. N., Peña Ortega, L. O., Sánchez, A. L., … Hosseini, S. (2023). Education and Information Technologies, 28, 2291-2360. https://doi.org/10.1007/s10639-022-11214-1

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., McGuinness, L. A., Stewart, L. A., Thomas, J., Tricco, A. C., Welch, V. A., Whiting, P., Moher, D., Yepes-Nuñez, J. J., Urrútia, G., Romero-García, M., & Alonso-Fernández, S. (2021). Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas. Revista Española de Cardiología, 74(9), 790-799. https://doi.org/10.1016/j.recesp.2021.06.016

Pantea, M. F., Cilan, T. F., Cuc, L. D., Rad, D., Bâtcă-Dumitru, G. C., Șendroiu, C., Almași, R. C., Feher, A. y Gomoi, B. C. (2024). Optimizing Romanian managerial accounting practices through digital technologies: A resource-based and technology-deterministic approach to sustainable accounting. Electronics, 13(16), 3206. https://doi.org/10.3390/electronics13163206

Qasim, A. y Kharbat, F. F. (2020). Blockchain technology, business data analytics, and artificial intelligence: Use in the accounting profession and ideas for inclusion into the accounting curriculum. Journal of Emerging Technologies in Accounting, 17(1), pp. 107–117. https://doi.org/10.2308/jeta-52649

Richins, G., Stapleton, A., Stratopoulos, T. C. y Wong, C. (2017). Big data analytics: Opportunity or threat for the accounting profession? Journal of Information Systems, 31(3), pp. 63–79. https://doi.org/10.2308/isys-51805

Sales de Aguiar, T. R. (2024). ChatGPT: Reflections from the UK higher education institutions, accountancy bodies and BIG4s. Accounting Research Journal, 37(3), pp. 308–329. https://doi.org/10.1108/ARJ-07-2023-0184

Schmitz, J. y Leoni, G. (2019). Accounting and auditing at the time of blockchain technology: A research agenda. Australian Accounting Review, 29, pp. 331–342. https://doi.org/10.1111/auar.12286

Sutisnawati, Y. y Maulani, W. K. (2019). Big data impact in development e-commerce. IOP Conference Series: Materials Science and Engineering, 662(3), 032054. https://doi.org/10.1088/1757-899X/662/3/032054

Swan, M. (2017). Anticipating the economic benefits of blockchain. Technology Innovation Management Review, 7(10), pp. 6–13. https://doi.org/10.22215/timreview/1109

Tavares, M. C., Azevedo, G., Marques, R. P. y Bastos, M. A. (2023). Challenges of education in the accounting profession in the Era 5.0: A systematic review. Cogent Business y Management, 10(2). https://doi.org/10.1080/23311975.2023.2220198

Tiberius, V. y Hirth, S. (2019). Impacts of digitization on auditing: A Delphi study for Germany. Journal of International Accounting, Auditing and Taxation, 37, 100288. https://doi.org/10.1016/j.intaccaudtax.2019.100288

Wutzler, J. (2024). Outsmarting artificial intelligence in the classroom—Incorporating large language model-based chatbots into teaching. Issues in Accounting Education, 39(4), pp. 183–206. https://doi.org/10.2308/ISSUES-2023-064

Yaqoob, I., Hashem, I. A. T., Gani, A., Mokhtar, S., Ahmed, E., Anuar, N. B. y Vasilakos, A. V. (2016). Big data: From beginning to future. International Journal of Information Management, 36(6, Parte B), pp. 1231–1247. https://doi.org/10.1016/j.ijinfomgt.2016.07.009

Yoon, K., Hoogduin, L. y Zhang, L. (2015). Big data as complementary audit evidence. Accounting Horizons, 29(2), pp. 431–438. https://doi.org/10.2308/acch-51076

Zhang, Y., Xiong, F., Xie, Y., Fan, X. y Gu, H. (2020). The impact of artificial intelligence and blockchain on the accounting profession. IEEE Access, 8, pp. 110461–110477. https://doi.org/10.1109/ACCESS.2020.3000505

Zhang, C., Zhu, W., Dai, J., Wu, Y. y Chen, X. (2025). Drivers and concerns of adopting artificial intelligence in managerial accounting. Accounting y Finance, pp. 1–33. https://doi.org/10.1111/acfi.13404

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Derechos de autor 2025 Héctor Darío Betancur, Jackeline Guerra