##plugins.themes.bootstrap3.article.main##


Leidy Yurani Cárdenas Parra https://orcid.org/0000-0001-7505-8539

Jorge Enrique Perez Cárdenas https://orcid.org/0000-0002-7829-6505

Resumen

Introducción: Los esfuerzos terapéuticos orientados a atender las micosis por Candida spp. se han enfocado en el empleo de azoles; sin embargo, en la literatura científica se discute su beneficio, por los amplios y descritos mecanismos de resistencia. Objetivo: Describir los mecanismos de resistencia al fluconazol expresados por la especie Candida glabrata, con la intención de que sean considerados dentro de las variables de elegibilidad para la intervención. Método: Se realizó una revisión integrativa utilizando la pregunta orientadora: ¿cuáles son los mecanismos de resistencia al fluconazol expresados por la especie Candida glabrata? Veintinueve estudios obtenidos de la base de datos PubMed cumplieron los criterios del análisis crítico propuesto por el instrumento PRISMA, utilizado para la selección de los artículos incluidos para su revisión en este manuscrito. Las categorías bajo las cuales se organizaron los elementos de análisis fueron: sobrexpresión de bombas de eflujo y modificaciones en la enzima lanosterol 14-alfa-desmetilasa. Resultados: Los mecanismos de resistencia al fluconazol expresados por Candida glabrata están determinados principalmente por la regulación a la alza de bombas de adenosina-trifosfato Binding Cassette (ABC) y por la modificación del punto de unión con su blanco farmacológico: la enzima lanosterol 14-alfa-desmetilasa. Conclusión: Los mecanismos de resistencia expresados por Candida glabrata se asocian con la modificación estructural de la diana farmacológica y la sobreexpresión de bombas de eflujo de manera diferencial a otras especies. Se sugiere que Candida glabrata es intrínsecamente menos susceptible al fluconazol.

##plugins.themes.bootstrap3.article.details##

Keywords

Candida glabrata, Candida, Resistencia, Azoles, Fluconazol (DeCS)

References
1. Falagas ME, Roussos N, Vardakas KZ. Relative frequency of albicans and the various non-albicans Candida spp. among candidemia isolates from inpatients in various parts of the world: a systematic review. Int J Infect Dis. 2010;14(11):e954-66. https://doi.org/10.1016/j.ijid.2010.04.006
2. Yeşilkaya A, Azap Ö, Aydın M, Akçil Ok M. Epidemiology, species distribution, clinical characteristics and mortality of candidaemia in a tertiary care university hospital in Turkey, 2007-2014. Mycoses. 2017;60(7):433-9. https://doi.org/10.1111/myc.12618
3. Savastano C, de Oliveira Silva E, Gonçalves LL, Nery JM, Silva NC, Dias ALT. Candida glabrata among Candida spp. from environmental health practitioners of a Brazilian Hospital. Braz J Microbiol Publ Braz Soc Microbiol. 2016;47(2):367-72. https://doi.org/10.1016/j.bjm.2015.05.001
4. Goemaere B, Becker P, Van Wijngaerden E, Maertens J, Spriet I, Hendrickx M, et al. Increasing candidaemia incidence from 2004 to 2015 with a shift in epidemiology in patients preexposed to antifungals. Mycoses. 2018;61(2):127-33. https://doi.org/10.1111/myc.12714
5. Sasso M, Roger C, Sasso M, Poujol H, Barbar S, Lefrant J-Y, et al. Changes in the distribution of colonising and infecting Candida spp. isolates, antifungal drug consumption and susceptibility in a French intensive care unit: A 10-year study. Mycoses. 2017;60(12):770-80. https://doi.org/10.1111/myc.12661
6. de Bedout C, Gómez BL. Candida and candidiasis: the challenge continues for an early diagnosis. Infectio. 2010;14:s159-71.
7. Valle GMM del. Candida glabrata: un patógeno emergente. Biociencias. 2016;10(1):89-102. https://doi.org/10.18041/2390-0512/bioc..1.2859
8. Rodríguez AZ, Gómez C de B, Restrepo CAA, Parra HH, Arteaga MA, Moreno AR, et al. [Susceptibility to fluconazole and voriconazole of Candida species isolated from intensive care units patients in Medellin, Colombia (2001-2007)]. Rev Iberoam Micol. 2010;27(3):125-9. https://doi.org/10.1016/j.riam.2010.04.001
9. Magalhães YC, Bomfim MRQ, Melônio LC, Ribeiro PCS, Cosme LM, Rhoden CR, et al. Clinical significance of the isolation of Candida species from hospitalized patients. Braz J Microbiol Publ Braz Soc Microbiol. 2015;46(1):117-23. https://doi.org/10.1590/S1517-838246120120296
10. Tapia P C. Candida glabrata. Rev Chil Infectol. 2008;25(4):293-293. http://dx.doi.org/10.4067/S0716-10182008000400009
11. Olaechea P, Lerma FA, Martínez MP, Ordeñana JI, López-Pueyo MJ, Betolaza IS, et al. Evolución del consumo de antifúngicos en pacientes críticos. Estudio multicéntrico observacional, 2006-2010. Enferm Infecc Microbiol Clin. 2012;30(8):435-40. https://doi.org/10.1016/j.eimc.2012.02.006
12. Sanguinetti M, Posteraro B, Lass-Flörl C. Antifungal drug resistance among Candida species: mechanisms and clinical impact. Mycoses. 2015;58 Suppl 2:2-13. https://doi.org/10.1111/myc.12330
13. Florez J, Armijo JA, De Cost MA. Reacciones adversas a los medicamentos y farmacovigilancia. En: Flórez J, Armijo JA, editores. Farmacología humana. 5.a ed. Barcelona: Masson; 2008. p. 129-46.
14. Isaza G, Fuentes J, Marulanda T, Buriticá O, Machado J, Moncada J. Generalidades de farmacología. En: Isaza G, Fuentes J, Marulanda T, et al., editores. Fundamentos de farmacología en terapéutica. 6.a ed. Bogotá: Celsus; 2014. p. 27-31.
15. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 21 de julio de 2009;6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097
16. Deorukhkar SC, Saini S. Virulence factors attributed to pathogenicity of non albicans Candida species isolated from Human Immunodeficiency virus infected patients with oropharyngeal candidiasis. Ann Pathol Lab Med. 2015;2(2):A62-66. https://doi.org/10.1155/2014/456878
17. Ahmad KM, Kokošar J, Guo X, Gu Z, Ishchuk OP, Piškur J. Genome structure and dynamics of the yeast pathogen Candida glabrata. FEMS Yeast Res. 2014;14(4):529-35. https://doi.org/10.1111/1567-1364.12145
18. Muller H, Hennequin C, Gallaud J, Dujon B, Fairhead C. The asexual yeast Candida glabrata maintains distinct a and alpha haploid mating types. Eukaryot Cell. 2008;7(5):848-58. https://doi.org/10.1128/EC.00456-07
19. Bairwa G, Rasheed M, Taigwal R, Sahoo R, Kaur R. GPI (glycosylphosphatidylinositol)-linked aspartyl proteases regulate vacuole homoeostasis in Candida glabrata. Biochem J. 2014;458(2):323-34. https://doi.org/10.1042/BJ20130757
20. Lesage G, Bussey H. Cell Wall Assembly in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 2006;70(2):317-43. https://doi.org/10.1128/MMBR.00038-05
21. Pontón J. La pared celular de los hongos y el mecanismo de acción de la anidulafungina. Rev Iberoam Micol. 2008;25(2):78-82. https://doi.org/10.1016/S1130-1406(08)70024-X
22. Chaffin WL, López-Ribot JL, Casanova M, Gozalbo D, Martínez JP. Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol Mol Biol Rev MMBR. 1998;62(1):130-80
23. Okada H, Abe M, Asakawa-Minemura M, Hirata A, Qadota H, Morishita K, et al. Multiple functional domains of the yeast l,3-beta-glucan synthase subunit Fks1p revealed by quantitative phenotypic analysis of temperature-sensitive mutants. Genetics. 2010;184(4):1013-24. https://doi.org/10.1534/genetics.109.109892
24. Spanova M, Czabany T, Zellnig G, Leitner E, Hapala I, Daum G. Effect of lipid particle biogenesis on the subcellular distribution of squalene in the yeast Saccharomyces cerevisiae. J Biol Chem. 2010;285(9):6127-33. https://doi.org/10.1074/jbc.M109.074229
25. Base de datos en farmacología Drugbank. Fluconazole [Internet]. Washington: FDA. 2018 [citado 2018 oct 7]. Disponible en: https://www.drugbank.ca/drugs/DB00196
26. Tuck SF, Patel H, Safi E, Robinson CH. Lanosterol 14 alpha-demethylase (P45014DM): effects of P45014DM inhibitors on sterol biosynthesis downstream of lanosterol. J Lipid Res. 1991;32(6):893-902.
27. Fonseca E, Silva S, Rodrigues CF, Alves CT, Azeredo J, Henriques M. Effects of fluconazole on Candida glabrata biofilms and its relationship with ABC transporter gene expression. Biofouling. 2014;30(4):447-57. https://doi.org/10.1080/08927014.2014.886108
28. Castanheira M, Messer SA, Jones RN, Farrell DJ, Pfaller MA. Activity of echinocandins and triazoles against a contemporary (2012) worldwide collection of yeast and moulds collected from invasive infections. Int J Antimicrob Agents. 2014;44(4):320-6. https://doi.org/10.1016/j.ijantimicag.2014.06.007
29. Roetzer A, Gratz N, Kovarik P, Schüller C. Autophagy supports Candida glabrata survival during phagocytosis. Cell Microbiol. 2010;12(2):199-216. https://doi.org/10.1111/j.1462-5822.2009.01391
30. Chelsea M, Armstrong A, Armstrong E. Principios de quimioterapia. En: Brunton L, Chabner B, Knollman B, editores. Bases fisiopatológicas del tratamiento farmacológico. 4.a ed. Barcelona: Lippincott Williams and Wilkins; 2017. p. 661-74.
31. Nabili M, Abdollahi Gohar A, Badali H, Mohammadi R, Moazeni M. Amino acid substitutions in Erg11p of azole-resistant Candida glabrata: Possible effective substitutions and homology modelling. J Glob Antimicrob Resist. 2016;5:42-6. https://doi.org/10.1016/j.jgar.2016.03.003
32. Morace G, Perdoni F, Borghi E. Antifungal drug resistance in Candida species. J Glob Antimicrob Resist. 2014;2(4):254-9. https://doi.org/10.1016/j.jgar.2014.09.002
33. Morio F, Jensen RH, Le Pape P, Arendrup MC. Molecular basis of antifungal drug resistance in yeasts. Int J Antimicrob Agents. 2017;50(5):599-606. https://doi.org/10.1016/j.ijantimicag.2017.05.012
34. Flórez J, Peralta G, Mediavilla A. Enfermedades infecciosas. En: Flórez J, Armijo JA, editores. Farmacología humana. 5.a ed. Barcelona: Masson; 2008. p. 1301-16.
35. Sheppard D, Lampiris H. Fármacos quimioterapéuticos. En: Katzung BG, Masters SB, Trevor AJ, editores. Farmacología básica y clínica. 12.a ed. México: McGraw-Hill; 2013. p. 849-60.
36. Silva V, Díaz MC, Febré N. Vigilancia de la resistencia de levaduras a antifúngicos. Rev Chil Infectol. 2002;19 (suppl 2):149-56. http://dx.doi.org/10.4067/S0716-10182002019200016
37. Becher R, Wirsel SGR. Fungal cytochrome P450 sterol 14α-demethylase (CYP51) and azole resistance in plant and human pathogens. Appl Microbiol Biotechnol. 2012;95(4):825-40. https://doi.org/10.1007/s00253-012-4195-9
38. Morace G, Perdoni F, Borghi E. Antifungal drug resistance in Candida species. J Glob Antimicrob Resist. 2014;2(4):254-9. https://doi.org/10.1016/j.jgar.2014.09.002
39. Biswas C, Chen SC-A, Halliday C, Kennedy K, Playford EG, Marriott DJ, et al. Identification of genetic markers of resistance to echinocandins, azoles and 5-fluorocytosine in Candida glabrata by next-generation sequencing: a feasibility study. Clin Microbiol Infect. 2017;23(9):676.e7-676.e10. https://doi.org/10.1016/j.cmi.2017.03.014
40. Morio F, Jensen RH, Le Pape P, Arendrup MC. Molecular basis of antifungal drug resistance in yeasts. Int J Antimicrob Agents. 2017;50(5):599-606. https://doi.org/10.1016/j.ijantimicag.2017.05.012
41. Silva DB dos S, Rodrigues LMC, Almeida AA de, Oliveira KMP de, Grisolia AB. Novel point mutations in the ERG11 gene in clinical isolates of azole resistant Candida species. Mem Inst Oswaldo Cruz. 2016;111(3):192-9. https://doi.org/10.1590/0074-02760150400
42. Puri N, Manoharlal R, Sharma M, Sanglard D, Prasad R. Overcoming the heterologous bias: an in vivo functional analysis of multidrug efflux transporter, CgCdr1p in matched pair clinical isolates of Candida glabrata. Biochem Biophys Res Commun. 2011;404(1):357-63. https://doi.org/10.1016/j.bbrc.2010.11.123
43. Clinical and Laboratory Standards Institute (CLSI). Methods for antifungal disk diffusion susceptibility testing of yeasts; approved guideline-Second Edition; 2009. CLSI Document M44-A2: [Internet]. 2009. Disponible en: https://clsi.org/media/1634/m44a2_sample.pdf
44. Clinical and Laboratory Standards Institute (CLSI). Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard-Third Edition; 2008. CLSI Document M27-A3 [Internet]. 2008. Disponible en: https://clsi.org/media/1461/m27a3_sample.pdf
45. Clinical and Laboratory Standards Institute (CLSI). reference method for broth dilution antifungal susceptibility testing of yeasts; fourth informational supplement; 2012. CLSI Document M27-S4. [Internet]. 2012. Disponible en: https://clsi.org/media/1897/m27ed4_sample.pdf
46. Clinical and Laboratory Standards Institute (CLSI). Perfomance stands for antifungal susceptibility testing of yeasts; first edition; 2017. CLSI Document M60 [Internet]. 2017. Disponible en: https://clsi.org/standards/products/microbiology/documents/m60/
47. Branco J, Ola M, Silva RM, Fonseca E, Gomes NC, Martins-Cruz C, et al. Impact of ERG3 mutations and expression of ergosterol genes controlled by UPC2 and NDT80 in Candida parapsilosis azole resistance. Clin Microbiol Infect. 2017;23(8):575.e1-575.e8. https://doi.org/10.1016/j.cmi.2017.02.002
48. Tapia C. Antifúngicos y resistencia. Rev Chil Infectol. 2012;29(3):357-357. http://dx.doi.org/10.4067/S0716-10182012000300020
49. Pfaller MA. Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment. Am J Med. 2012;125(1 Suppl):S3-13. https://doi.org/10.1016/j.amjmed.2011.11.001
50. Abbes S, Amouri I, Sellami H, Neji S, Trabelsi H, Cheikhrouhou F, et al. Changes in genotype and fluconazole susceptibility of isolates from patients with Candida glabrata in Tunisia. Thérapie. 2014;69(5):449-55. https://doi.org/10.2515/therapie/2014059
51. López-Ávila K, Dzul-Rosado KR, Lugo-Caballero C, Arias-León JJ, Zavala-Castro JE. Mecanismos de resistencia antifúngica de los azoles en Candida albicans: una revisión. Rev Bioméd. 2016;27(3):127-36. http://dx.doi.org/10.32776/revbiomed.v27i3.541
52. Vermitsky J-P, Edlind TD. Azole Resistance in Candida glabrata: coordinate upregulation of multidrug transporters and evidence for a Pdr1-Like transcription factor. Antimicrob Agents Chemother. 2004;48(10):3773-81. https://doi.org/10.1128/AAC.48.10.3773-3781.2004
53. Kanafani ZA, Perfect JR. Resistance to antifungal agents: mechanisms and clinical impact. Clin Infect Dis. 2008;46(1):120-8. https://doi.org/10.1086/524071
54. Pfaller MA, Castanheira M, Lockhart SR, Ahlquist AM, Messer SA, Jones RN. Frequency of decreased susceptibility and resistance to echinocandins among fluconazole-resistant bloodstream isolates of Candida glabrata. J Clin Microbiol. 2012;50(4):1199-203. https://doi.org/10.1128/JCM.06112-11
55. Ghannoum MA, Rice LB. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin Microbiol Rev. 1999;12(4):501-17
56. Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal. 2016;6(2):71-9. doi 10.1016/j.jpha.2015.11.005
57. Sakagami T, Kawano T, Yamashita K, Yamada E, Fujino N, Kaeriyama M, et al. Antifungal susceptibility trend and analysis of resistance mechanism for Candida species isolated from bloodstream at a Japanese university hospital. J Infect Chemother. 2019;25(1):34-40. https://doi.org/10.1016/j.jiac.2018.10.007
58. Rocha DAS, Sa LFR de, Pinto ACC, Junqueira M de L, Silva EM da, Borges RM, et al. Characterisation of an ABC transporter of a resistant Candida glabrata clinical isolate. Mem Inst Oswaldo Cruz. 2018;113(4):e170484. https://doi.org/10.1590/0074-02760170484
59. Szweda P, Gucwa K, Romanowska E, Dzierz Anowska-Fangrat K, Naumiuk Ł, Brillowska-Da Browska A, et al. Mechanisms of azole resistance among clinical isolates of Candida glabrata in Poland. J Med Microbiol. 2015;64(6):610-9. https://doi.org/10.1099/jmm.0.000062
60. Holmes AR, Keniya MV, Ivnitski-Steele I, Monk BC, Lamping E, Sklar LA, et al. The monoamine oxidase A inhibitor clorgyline is a broad-spectrum inhibitor of fungal ABC and MFS transporter efflux pump activities which reverses the azole resistance of Candida albicans and Candida glabrata clinical isolates. Antimicrob Agents Chemother. 2012;56(3):1508-15. https://doi.org/10.1128/AAC.05706-11
61. Salazar SB, Wang C, Münsterkötter M, Okamoto M, Takahashi-Nakaguchi A, Chibana H, et al. Comparative genomic and transcriptomic analyses unveil novel features of azole resistance and adaptation to the human host in Candida glabrata. FEMS Yeast Res. 2018;18(1). https://doi.org/10.1093/femsyr/fox079
62. Tsai H-F, Sammons LR, Zhang X, Suffis SD, Su Q, Myers TG, et al. Microarray and molecular analyses of the azole resistance mechanism in Candida glabrata oropharyngeal isolates. Antimicrob Agents Chemother. 2010;54(8):3308-17. https://doi.org/10.1128/AAC.00535-10
63. Hou X, Xiao M, Wang H, Yu S-Y, Zhang G, Zhao Y, et al. Profiling of PDR1 and MSH2 in Candida glabrata bloodstream isolates from a multicenter study in China. Antimicrob Agents Chemother. 2018;62(6). https://doi.org/10.1128/AAC.00153-18
Cómo citar
Cárdenas Parra, L., & Perez Cárdenas, J. (2020). Mecanismos de resistencia a fluconazol expresados por Candida glabrata: una situación para considerar en la terapéutica. Investigación En Enfermería: Imagen Y Desarrollo, 22. https://doi.org/10.11144/Javeriana.ie22.mrfe
Sección
Artículos de Revisión Integrativa o Sistemática
Artículos más leídos del mismo autor/a