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Abstract
Computed tomography (CT) allows the three-dimensional 
internal structure reconstruction of an object illuminated 
with X-ray light. In CT, a set of two-dimensional pro-
jections are taken to reconstruct the underlying object 
structure. The number of projections needed for sensing 
a CT scene is determined by the Nyquist limit. In some 
cases, the imposed projections number is excessive. 
Compressive sensing (CS) has emerged as a new sampling 
technique requiring fewer projections than those specified 
by the Nyquist criterion. Instead of measuring the samples 
directly, they are encoded before being integrated into the 
detector. This paper describes a CS system for CT based 
on coded apertures. An optimized value of transmittance 
and an aperture distribution are selected such that the 
quality of reconstruction is maximized. Simulations show 
that results in reconstruction with 50% of measurements 
are comparable with the traditional CT method based on 
Nyquist criterion. Similarly, results indicate that the PSNR 
of reconstructed images can be controlled according to 
the number of projections taken.

Keywords 
computed tomography; compressive sensing; x-rays; 
coded aperture; transmittance

Resumen
La tomografía computarizada (TC) permite la recon-
strucción tridimensional de la estructura interna de un 
objeto que es iluminado con rayos X. En TC se toman 
un conjunto de proyecciones bidimensionales para luego 
reconstruir la estructura del objeto. El número de proye-
cciones necesarias para realizar el muestreo de una escena 
en TC se determina por el límite de Nyquist. En algunos 
casos, el número de proyecciones impuestas es excesivo. 
El muestreo compresivo (CS) ha emergido como una 
nueva técnica de muestreo que requiere un número menor 
de proyecciones que las especificadas por el criterio de 
Nyquist. En lugar de medir las muestras directamente, 
en CS, son codificadas antes de integrarse en el detector. 
En este trabajo se describe un sistema de CS para TC 
basado en aperturas codificadas. Se realiza la selección de 
los valores óptimos de transmitancia y la distribución de 
aperturas que garantizan una reconstrucción eficiente. 
Las simulaciones realizadas muestran que los resultados 
de las reconstrucciones con el 50 % de las medidas son 
comparables con las del método tradicional. Igualmente, 
los resultados indican que las imágenes reconstruidas 
tienen un PSNR que puede controlarse de acuerdo con el 
número de proyecciones tomadas.

Palabras clave 
tomografía computarizada; muestreo compresivo; rayos 
X; apertura codificada; transmitancia
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Introduction
Computed tomography (CT) is a technology established for the non-invasive ac-
quisition of images from the internal structure of the objects in three dimensions 
(3D) [1]. In CT, an object can be reconstructed from a set of two-dimensional 
projections, which are produced by illuminating the object with an X-ray source. 
CT is important for medical diagnosis and its applications address several areas 
of industry, material science, biophysics, among others [2]-[4].

The CT image reconstruction algorithms have been restricted by the Nyquist 
theorem [5]; thus, in some CT applications, the established number of projections 
is excessive since high X-ray dose could be destructive or carcinogenic for human 
beings [6]. For this reason, it appears the interest to find acquisition methods 
for reducing the object exposure to the X-ray radiation, without sacrificing the 
quality of the images.

Furthermore, compressed sensing (CS) has recently emerged as a branch of 
signal processing. It is based on the fact that many signals in nature can be repre-
sented by a few coefficients in some representation basis [7]. In CS, the sam-
ples are coded in order to reduce the data redundancy in a scene; these coded 
measurements are enough to reconstruct the signal with a comparable quality 
of the signal sampled following the Nyquist theorem [8].

Data reconstruction in traditional CT is performed from projections obtained 
in a detector that measures the X-ray attenuation after they pass through the 
object. To implement the CS theory in a CT configuration it is possible to in-
clude coded apertures that allow coding the measurements to take compressed 
samples. Coded apertures are two-dimensional arrays with patterns of opaque 
materials; sections that do not contain opaque material define the transmit-
tance of the aperture, that is, the light fraction that can pierce them [7]. In 
CT, this parameter can define the quantity of radiation that the object receives 
from each projection.

Some works have focused on developing models for joining CS to CT [9]-[11]. 
Nevertheless, the measurement architectures design to improve the quality of 
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the reconstructions has not been detailed. In this work, a multisource CT system 
is designed from a measurement matrix model by using CT theory and the sam-
pling principle of coded measurements, thus, the geometry of the architecture 
is described and an analysis of the parameters of coded apertures and number of 
X-ray sources are performed to ensure efficient tomography reconstruction. In 
order to specify the results, this study is organized as follows: Section 1 explains 
in detail the traditional acquisition model, compressed sensing theory, and the 
proposed model; Section 2 brings coded apertures design; Section 3 describes 
reconstruction algorithms; Section 4 shows simulations results, and finally, the 
discussion section is presented.

1. Acquisition Methods
Traditional CT method (known as transmission CT) is based on estimating the 
X-ray attenuation after the rays pass through the underlying object [1]. In the 
last few years, some methods to measure changes in the X-ray intensity have 
been developed . These methods use multiple sources and optical instruments 
which modulate the beams to improve quality and to reduce the radiation dose. 

Recently, systems based on the influence of the number of X-ray sources over 
CT reconstructions have been proposed. For instance the systems, Pioneering Dy-
namic Spatial Reconstruction of Mayo Clinic [12], Line Sources CT [13], Inverse-geometry 
CT, and Ultimately a rebirth of stationary CT [14] have multiple X-ray sources 
distributed in different ways. The usage of more sources allows reducing the 
data acquisition time, decreasing the radiation dose, and increasing the spatial 
resolution of images and reconstruction accuracy. Although developments of 
acquisition technologies have centered on detection systems, it is expected that 
the next advance focuses on the use of multiple X-ray sources [15]. 

On the other hand, compressive sensing technique has been used for trans-
mission CT reconstruction, and thus Compressive CT (CCT) method has been 
established. CCT is investigated in multisource systems [10]. The implementa-
tion of CS in CT seeks to reduce the number of measurements in the sampling 
process without risking the image quality. In the next subsections, the measure 
acquisition model in CT and CS is detailed and the CCT experimental system 
is also detailed.

1.1. Transmission CT
Figure 1 shows an object Q discretized when it is lightened with X-rays from a 
source S. This representation is composed of voxels that form Q

1
 cross-sections 
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or slices, each one with Q
2
 × Q

3
 superficial dimensions. For each voxel (with 

dimensions dx × dy × dz) an attenuation µ is allocated. 

Figure 1. Diagram of  a cone beam flat panel X-ray transmission system. S is an X-ray source, Q is 
an object, D is a detector array (flat panel detector), I0 and I(x) are initial and measured intensities, 

respectively

Source: authors’ own presentation

Considering a ray with intensity I
0
, which passes through the object with a 

non-homogeneous attenuation distribution μ(x), the ray intensity I(x) measured 
by the detector D depends on the distance x passed through and the attenuation 
μ(x) of each point in its trajectory. This can be modeled as:

I( x ) = I0e
μ( x )dx

L  (1)

This phenomenon obeys Lambert Beer’s law, and can be rewritten as:

ln I(x)
I0

= μ(x)
L

dx  (2)
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Eq. (2) is described as the fraction of transmitted light through the object 
and it can be assigned to a one-dimensional projection, received with regard 
to an angle of incidence. Reconstruction lies in estimating the distribution of the 
attenuation coefficients μ(x) from that information [1].

1.2. Compressive Sensing
Compressive sensing (CS) is a new theory to acquire and to reconstruct a signal 
efficiently by searching a sparse solution to an underdetermined system of lin-
ear equations [16]. As opposed to the traditional signal acquisition process, CS 
allows sampling rates close to signal intrinsic information rate, which is much 
lower than Nyquist criteria. 

The CS theory is based on two conditions principally: (1) the sparsity of digital 
signals and (2) the incoherence of the measurement matrix which depends on 
the sensing trajectory [17]. 

An image is sparse if the most of its elements are close or are equal to zero. 
Assuming a linear measurement process that calculates M« N internal products 
between f and a collection of vectors {φj}j=1

M, as yi = <f, φj >, then,

y = Φf, (3)

where the set of yi projections form the vector y of M elements, Φ ∈ ℝM × N is the 
measurement matrix, φj

T is the jth row of Φ, and f is the underlying signal. Taken 
into account the reconstruction of f from y, it is known that there exist infinite 
solutions for the equation (3), because the dimensionality of y is much lesser 
than the dimensionality of f. Thus, there are fewer equations than unknowns.

CS exploits the principle of most of the natural signals can be expressed in a 
suitable basis with a small number of coefficients. Sparsity is a key requirement 
for the application of CS theory. However, many signals of nature are not sparse, 
but they can become sparse adopting a transformation. For instance, a CT image 
has non-zero values in most of its pixels, as opposed to his wavelet coefficients; 
in these basis functions, the non-zero coefficients are sparse and they contain 
the most important information of the original image.

Mathematically, a discrete signal f ∈ ℝn can be expressed as:
 
f = Ψx (4)
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where x is the coefficients sequence of f, and the basis Ψ is a matrix with 
columns ϕ

1
, ..., ϕG. Clearly, f and x are equivalent representations of the same 

signal, f  is a linear combination of barely F base vectors, F << G [17].
In accordance with equations (3) and (4):

y = Φ f = Φ Ψx = Θ x (5)

where Θ = ΦΨ ∈ ℝM × N is the sensing matrix. The undetermined equation 
system in (5) causes the recuperation of x to be impossible without more infor-
mation. Fortunately, in CS it is possible to solve (5) if we satisfy the condition 
that the measurement matrix Φ is incoherent with the sparse transformation 
Ψ. The incoherence means that object to be reconstructed having a sparse 
representation in Ψ cannot be sparse in the domain in which it was acquired. 
Coherence measures the highest correlation between the elements of Φ and Ψ. 
If Φ and Ψ contain correlated elements, coherence is high, otherwise it is low.

The condition of incoherence can preserve the information, since it requires 
that energy of the signal to be distributed for the entire detection domain. Each 
measurement has information of all the image components. Ideally, a mea-
surement matrix ensures that relevant information on any compressible signal 
is not damaged by the reduced dimensionality from f to y [17], [18].

1.3. Compressive CT
A strategy to introduce CS theory in a CT configuration consists of in-
cluding elements of the system that allow coding the measurements to get 
incoherence samples [19]. These elements are coded apertures, due to their 
effects on the light. Coded apertures are two-dimensional arrays with patterns 
of opaque materials; sections that do not contain opaque material define 
their transmittance, i.e., the fraction of light that can pass through them. Figure 2 
depicts the geometry of the sampling system for compressive CT used 
in this work. A system with multiple sources setting in an array including 
coded apertures T1 and T2, which modulate the projected beams from the 
i-th source to a plane with multiple detectors that measure the attenuation 
generated by an object f.
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Figure 2. CS system for CT based on coded apertures

Source: authors’ own presentation

In this case, the coded apertures are located between the X-ray source and 
the object; therefore, they modulate the energy of conical beams producing a 
coded projection in the detector plane. The coded aperture elements of dimen-
sions N × N, located between the i-th source Si and the object, are denoted as 
Txy

i 0,1{ } , where 0 blocks the X-ray beam and 1 allows it to cross . The matrix 
i = diag T11

i ,T12
i ,...,TNN

i( )  is defined. To generalize the measurement for several 
sources the matrix Φ is defined as the concatenation of the  Φi matrices, i.e., 

= 0 1 ... P 1
; and the matrix Φi is the sensing matrix related with the ith 

source. Defining the data cube arranging in the representation basis Ψ, the 
measurements that will be detected by the X-ray sensor can be modeled as:

y = i
i=0

P 1

f = f = x  (6)

where P is the total number of sources, Φ is the sensing matrix, and Θ is 
the CS matrix for CT. Figure 3 illustrates a sampling matrix Φ for an object 
of two slices of Q

1
 × Q

3
 and a detector array of N2 where each row represent 

the trajectory of a single X-ray and the grayscale values represent the different 
attenuation values.
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Figure 3. The matrix Φ is presented for an object of  two slices of  Q1 × Q3 = 8 × 8. Grayscale 
pixels represent the different attenuation values in the trajectory of  x-rays

Source: authors’ own presentation

If measurement in a single projection is not sufficient for reconstruction, ad-
ditional projections or shots per source are required, each with a distinct coded 
aperture. The number of shots can be expressed in terms of the compression 
ratio (Cr) and it is defined as:

Cr =
N2K

Q  (7)

Where K is the number of shots.

The number of sources used in the CCT configuration may vary. Also, they 
are disposed in an array. Figure 4 shows some examples of source distributions. 
Figure 4a illustrates a distribution of 2 sources on the x and y-axes, Figure 4b 
shows a distribution of 3 sources on the x and y-axes.

2. Coded Aperture Design
Coded apertures are grids with patterns of opaque materials. Transmittance 
is the quantity of energy that passes through an object, for this case, it is the 
magnitude that expresses the quantity of X-ray light that is definitely projected 
over an object [20]. The coded apertures have been developed and tested on 
X-ray systems based on fan beam geometry [21]. The coded pattern is modeled 
in Matlab, a mold of the aperture is printed and is filled with Tungsten powder 
and it is sealed with epoxy resin.
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Figure 4. Different source distributions. (a) 2 sources on the x and y-axes.  
(b) 3 Sources on the x and y-axes 

a) b)

Source: authors’ own presentation

In a system based on coded apertures, the quality of reconstructions depends 
on the selection of the coded apertures used in the sampling. Coded apertures 
are traditionally used in multi-spectral signals sampling systems [22]. Coded 
apertures used in such systems employ type Boolean, binary, grayscale, and Ha-
damard random codes. 

Boolean patterns where the (x, y) element of the ith coded aperture, 
Txy

i 0,1{ }, have allowed getting the best results in spectral image reconstruction 
[20].

In this work, the Boolean pattern is employed, which not only encodes X-ray 
signals but also reduces the exposure of the object. The transmittance of a coded 
aperture is calculated as: 

Tr
i =

Txy
i

N 2
y=1

N 1

x=0

N 1

 (8)

Where N2 represents the size of the coded aperture.
Figure 5 illustrates different Boolean random matrixes representing coded 

apertures like the ones used in this work. Figure 5a shows one coded aperture 
with a transmittance of 30%, Figure 5b with a transmittance of 50%, and Figure 
5c with a transmittance of 70%, this means that 30%, 50% and 70% of the 
elements, randomly distributed, of the apertures allow light crossing, respectively.
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Figure 5. Coded apertures with different transmittances (a) 30%, (b) 50% and (c) 70%

a) b) c)

Source: authors’ own presentation

3. Reconstruction Methods

3.1. CT Reconstruction
The image reconstruction problem is to assign the suitable transmittance µ to 
each voxel in order to discretize the object. To realize such assignment, analytical 
or iterative methods are used. Analytical methods are the direct solution of a 
linear equation system; two examples of these methods are back projection and 
filtered back projection FBP, which is known to be very fast [1]. Iterative methods 
include Algebraic Reconstruction Technique (ART), and iterative algorithms, 
such as the Simultaneous Iterative Reconstruction Technique (SIRT) [23], [24] 
used in this work for comparison. The SIRT consists of three phases, executed 
in an iterative fashion: (1) projection of the estimated object, (2) correction 
factor computation (updates), and (3) back projection updates of the estimated 
object. The SIRT algorithm is one of many methods to solve the system of linear 
equations (8) by minimizing:

Ax = b, (9)

Where x represents the image, b represents the projections, and A represents 
the scanning process.

SIRT alternates forward and back projections. Its update equation is:

xt + 1 = xt + CAT R (b - Axt) (10)

Where C and R are diagonal matrices that contain the inverse of the sum of 
the columns and rows of the system matrix, and the transposed matrix AT back 
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projects the projection images onto the reconstruction area. Given a ray sum, it 
describes which pixels are hit by that ray.

For these traditional reconstruction algorithms the number of projections 
must satisfy the Nyquist limit to avoid streaking artifacts. 

3.2. CS Reconstruction
Given a set of measurements y, which depend on the source configuration, the 
reconstruction of the CT projections focuses on solving a linear underdeter-
minate equation system by estimating f as an optimization problem. For CT 
reconstruction it is necessary to use algorithms that can be adjusted to converge 
quickly on problems of this type; in this work the results obtained with the Gra-
dient Projection for Sparse Reconstruction (GPSR) algorithm and the TwIST 
algorithm are presented. The GPSR method is an algorithm used for spectral 
image estimation with the assumption that the signal of interest is sparse or 
compressible in some basis. Then the reconstruction consists on recovering x 
such that the cost function is minimized as

f = argminx y x
2

2
+ x

1( )  (11)

where Ψ is a sparse representation basis, Θ is the compressive sensing matrix, 
x is the sparse coefficients vector, the parameter τ is a regularization constant, 
and   

1  and   
2  correspond to the l

1
 y l

2
 norms, respectively.

On the other side, the TwIST algorithm [25] is another framework used 
frequently to recover signals from compressed measurements. TwIST describes 
a data cube as the solution to the minimization problem:

f̂TwIST , H( ) = argmin
f

1
2

y x
2

2
+ HTV (x)  (12)

where the choices for the reguylarization function HTV(x) include, but are 
not limited to, the l

1
 norm. Traditionally, TwIST uses the total variation (TV) 

regularizer HTV(x) given by
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x i +1, j,k( ) x i, j,k( )( )2
+ x i, j +1,k( ) x i, j,k( )( )2

i, jk

 (13)

The TV terms penalize the solution candidates with higher discrete gradients 
horizontally and vertically. With this regularizer the TwIST estimates the data 
cube, corresponding to finding a compromise between the lack of fitness of 
a candidate estimate to the measurement data and its degree or undesirability, 
given by the penalty term ΦTV(f ).

The TV norm measures how much an image varies across pixels so that a 
highly textured or noised image will have a large TV norm whereas a smooth or 
piecewise constant image would have a small TV norm. Finally, the parameter γ  
in (12) specifies the relative weight of the constraints versus the data fidelity term.

4. Simulations and Results
To show the experimental results we simulate the sampling process given a set 
of measurements y as in equation (3). The coded apertures are applied to elim-
inate a portion of the measurements. This down-sampled set of measurements is 
the input of the reconstruction algorithms as shown in equation (6).

Taking into account the system illustrated in Figure 2, in order to verify the 
CCT design, two configurations are tested. Firstly, a synthetic data cube Shepp 
Logan Phantom from Matlab R2015a MathWorks with images of 64 × 64 and 
6 slices (Q = 24576) are used, the detector and coded aperture are configured in 
64 × 64 pixels. Figure 6 shows some cross sections of the synthetic data cube. 

Figure 6. Cross sections from synthetic data cube Shepp Logan phantom from Matlab

Source: authors’ own presentation 
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Secondly, a real data cube is used from a lungs medical test; the data cube 
has 60 slices of 1024 × 1024 pixels. Figure 7 shows some cross sections of the real 
data cube. Thus, simulations to determine the effect of some parameters on the 
quality of reconstruction are performed. 

Figure 7. Cross sections of  human lungs

Source: Claudia Córdoba, medical radiology, 2010

The first parameter to consider was the number of sources, for this experiment 
coded apertures with a transmittance of 50% were used, and the compression 
ratio was 0.5, established because that is the mean value. The average results 
obtained from the reconstruction with the GPRS algorithm are presented in 
Table 1. In the last column, the results of 200 iterations of the SIRT algorithm 
are included as a traditional reconstruction reference.

Table 1. PSNR average for systems with different number of  sources

source x source y total sources PSNR ave. [dB]
PSNR ave. [dB] SIRT 
algorithm (Nyquist)

4 4 16 31.17 37.92
3 4 12 31.93 33.30
4 3 12 31.98 34.59
2 5 10 27.20 28.16
5 2 10 23.73 28.35
3 3 9 31.24 29.28
2 3 6 27.29 25.34
3 2 6 26.14 25.56
2 2 4 21.82 20.42
1 1 1 14.63 14.79

Source: authors’ own presentation
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As shown in Table 1, experiments were performed with different number 
and distribution of the sources. The best result in PSNR values is 31.98 [dB], 
with a distribution of 4 sources in the x-axis and 3 sources in the y-axis, a value 
that does not change significantly if the sources are increased in any axis due to 
the geometry and data cube size. These results show the effect of the number 
of sources on the image quality. It can be observed that 9 sources are sufficient 
to obtain high PSNR values with the system using a detector array of 64 × 64. 
Furthermore, it can be concluded that the results of the reconstructions with 
50% of the measurements are comparable, and in some cases of higher quality, 
than those made with the number of measurements required for Nyquist.

For the second experiment random coded apertures were designed with 
different transmittance values; it is possible to find the relationship between the 
transmittance values of the coded apertures and the reconstruction quality. 
The geometry of 3 × 3 sources, 64 × 64 detector array, coded apertures, and 
the compression ratio of 0.5 were used for simulations. Figure 8 shows the 
results (in PSNR average values) obtained in ten repetitions for each specific 
transmittance value with random coded apertures. It shows that the simulations 
with the best PSNR were those corresponding to a transmittance value of 50% 
for the GPSR algorithm.

Figure 8. PSNR average for each transmittance value for GPSR

32
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28

26
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22

20

Transmittance

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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Source: authors’ own presentation
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Figure 9 shows the results of simulations performed for the TwIST algorithm 
were the best result was achieved with a transmittance value of 80%. However, 
it is lower than the GPSR results.

Figure 9. PSNR average for each transmittance value for TwIST
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Transmittance
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14

12

10

8
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Source: authors’ own presentation

Results of reconstructed cross sections of the synthetic data cube are pre-
sented in Figure 10. Figure 10a shows a cross section of the original data cube, 
Figure 10b shows a cross section reconstructed with the SIRT algorithm (tra-
ditional method), using a source array of 3 × 3 (PSNR = 30.01 [dB]); Figure 
10c shows a cross section reconstructed with the GPSR algorithm, using a 
source array of 3 × 3 and coded apertures with transmittance of 50% (PSNR 
= 31.22 [dB]); and Figure 10d shows a cross section reconstructed with the 
TwIST algorithm, using a source array of 3 × 3 and coded apertures with 
transmittance of 80% (PSNR = 21.46 [dB]). It can be noted the quality of 
the reconstructed image with the GPSR algorithm is higher than the quality 
obtained by other algorithms.

In addition, in Figure 11 reconstructed cross sections from a real data cube 
of a human patient thorax are shown. The configuration used for this slice was 
a detector matrix of 128 × 128 and 9 sources, and the compression ratio was 
0.33 as it is shown in Figure 4b. Figure 11a shows a cross section of the original 
data cube. Figure 11b shows a cross section reconstructed with SIRT algorithm 
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(Nyquist), PSNR=33.37 [dB]. Figure 11c shows a cross section reconstructed 
with GPSR algorithm, transmittance of 50% and PSNR=35.07 [dB].

Figure 10. Comparison between a cross section of  the original cube and a cross section 
reconstructed with 9 sources

a) b)

c) d)

Note. (a) Cross section of  the original data cube. (b) Cross section reconstructed with SIRT algorithm (Nyquist),  
PSNR=30.01[dB]. (c) Cross section reconstructed with GPSR algorithm , transmittance of  50% and PSNR=31.22 [dB].  

(d) Cross section reconstructed with TwIST algorithm, transmittance of  80%, and PSNR=21.46 [dB].  
Source: authors’ own presentation

Table 2 shows the results of simulations for different compression ratios with 
the GPSR algorithm. It can be seen that the quality of reconstruction with 4 and 
9 sources increases while with 1 source remains unchanged. It can be observed 
in Table 2 that the image quality increases when more measurements are used.
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Figure 11. Comparison between cross sections from a real data cube from a human thorax 
reconstructed from a configuration of  128 × 128 detectors and 3 × 3 sources

a) b) c)

Note. (a) Cross section of  the original data cube. (b) Cross section reconstructed with SIRT algorithm (traditional), 
PSNR=33.37 [dB]. (c) Cross section reconstructed with GPSR algorithm, transmittance of  50% and PSNR=35.07 [dB]. 

Source: authors’ own presentation

Table 2. PSNR average for systems with different number of  sources and shots

Sources Cr 1×1 2×2 3×3
Shots PSNR ave. [dB]

2 0.33 14.63 21.82 31.24
3 0.50 14.67 24.72 33.45
4 0.66 14.63 25.17 34.28

Source: authors’ own presentation

5. Discussion 
The compressive sensing technique allows compressing a signal at the acquisition 
step by using different sample patterns and the projections needed to recover 
data are less than the Nyquist rate. Some previous works have focused on de-
veloping models for joining CS to CT, nevertheless, it has not been detailed the 
measurement architectures design to improve the quality of the reconstructions. 
We have proposed a multisource CT system for measuring coded projections 
physically by using coded apertures. It is demonstrated that physical coding can 
be used for data compression in CT. 
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Simulations indicate that the compressive CT architecture provides compa-
rable results to those achieved with traditional CT architectures and the recon-
struction algorithms used for CS require a fewer number of measurements 
than traditional algorithms used in CT to obtain comparable results.

In this work it was found that the number of sources, their distribution and 
the transmittance of coded apertures are important factors that largely de-
fine the quality of reconstructions. Additionally, with the result of simulations, 
it was found that the transmittance with the best results obtained is 50% and 
the corresponding average PSNR is 31.01 [dB].
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