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Resumen
En este artículo se describe una alterna-
tiva numérica para solucionar sistemas 
de ecuaciones no lineales con raíces 
reales y/o complejas. Para ello se con-
virtió el problema de solución directa 
de tales sistemas en un problema de 
optimización, y se resolvió utilizando 
el método de enjambre de partículas 
apropiadamente modificado para tal 
tarea. A título demostrativo se inclu-
yen algunos resultados con sistemas de 
dos, cinco y diez ecuaciones, resueltos 
en un computador convencional y en 
un arreglo de cuatro nodos. Se con-
cluyó que la estrategia es válida para 
solucionar este tipo de sistemas. Por 
otra parte, no se detectó una mejora 
en los tiempos de computación cuando 
se utilizó el cluster.

Palabras clave
Optimización mediante enjambre de 
partículas, sistemas de ecuaciones 
no lineales, metaheurística, cluster.

Abstract
In this article we describe a nume-
rical alternative to sovlve systems of 
nonlinear equations with real and/or 
complex roots. The problem of solving 
directly such systems was transformed 
into an optimization one, which was 
solved using a specially modified par-
ticle swarm method. As an example, 
system of two, five and ten equations 
were solved using a conventional per-
sonal computer as well as a cluster of 
four nodes. It was concluded that this 
strategy is valid for solving this type of 
systems of equations. Moreover, using 
the cluster no computational time 
improvement was detected.

Key words
Particle swarm optimization, nonlinear 
system of equations, metaheuristic, 
cluster

Resumo
Este artigo descreve uma alternativa 
numérica para resolução de sistemas de 
equações não lineares com raízes reais e/
ou complexas. Para isso, o problema de 
solução direta de tais sistemas virou-
se para um problema de otimização 
e resolveu-se utilizando o método de 
enxame de partículas devidamente 
modificado para esta tarefa. A ma-
neira de demonstração incluem-se 
alguns resultados com os sistemas de 
dois, cinco e dez equações, resolvidos 
em computador convencional e num 
arranjo de quatro nós. Concluiu-se que 
a estratégia é válida para resolver este 
tipo de sistema. Além disso, nenhuma 
melhoria foi detectada nos tempos 
de computação quando o cluster foi 
utilizado.

Palavras-chave
Utilização mediante enxame de par-
tículas, sistemas de equações não 
lineares, meta-heurística, cluster.



Introduction
Given the difficulty for representing physical phenomena through one or more 
non-linear systems of equations (NSE), it is necessary to have several analytic 
and/or numerical methods available for solving them (Grosan and Abraham, 
2008; Bianchini et al., 2001; Floudas, 1999; Ortega and Rheinboldt, 1970). 
Some of these systems do not have a single root (solution), so finding them 
becomes a mathematical and computational challenge, which is, as of today, an 
open research topic. In some cases, algebraic approaches can be used to find some 
of them. However, most NSE are too difficult to solve in this way, so numerical 
approaches are used to obtain approximate solutions, with a given error margin 
(Luo et al., 2008). One of the most used methods is multidimensional Newton 
Raphson (NR). In spite of its simple algorithm and high convergence speed, its 
main weakness is that it is dependent on a user-defined starting point, which 
needs to be close to the desired solution, meaning that it requires a previous 
knowledge of the solution. When a system with several variables and relatively 
complex equations is to be solved, the near-solution starting point becomes 
almost impossible to guess. Another traditional approach is the method of the 
gradient. This, however, requires that the system complies with a differentiability 
condition, which can prove to be difficult to achieve. Through past years, the 
so-called evolutionary algorithms have become a powerful choice for numerical 
solution (Geng et al., 2009; Hatanaka et al., 2004; Yang et al.,2008). When 
the NSE gets bigger, traditional approaches become excessively difficult and non-
practical, increasing the computational cost, thus being necessary to use more 
recent methods (Brits et al., 2002; Hui and Zhao, 2008; Grosan and Abraham,
2008; Cui and Cai, 2010). 

During the past decades, the metaheuristic optimization approaches (based 
on the imitation of natural, biologic, social or cultural processes) have been suc-
cessfully applied to several optimization problems on engineering. One of these 
techniques is Particle Swarm Optimization (PSO), which has a high ability to 



efficiently explore multidimensional search spaces (Aijia et al., 2009; Rao, 2009; 
Clerc, 2006), and which has been recently applied to the current problem, e.g. 
(Tsoulos et al., 2010; Ouyang et al., 2009). 

This article describes the development of an algorithm that allows solving 
NSE with real and/or complex roots, based on PSO. Striving to lower the com-
putation time and the required memory, a theorem is presented that allows 
the transformation of a finding roots problem into an optimization one, and 
its demonstration is presented later on. Moreover, some results for a couple of 
demonstrative examples, using a traditional computer and a four node cluster, 
are shown.

1. Fundamentals
An NSE with m functions and m unknowns is assumed, as shown by equation 
(1), where Fi(z1

,z
2
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Even though there are several numerical strategies to solve this type of sys-
tems, it was decided to implement the following theorem, to transform it into 
an optimization problem (minimization) (Ortega and Rheinboldt, 1970; Gómez, 
2010). This theorem is also valid for the case where all the solutions are in the 
domain of the real numbers. 

Theorem 1: Let  be the set of complex numbers, X a subset of n  and 
consider the following system of equations:
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Where, for each i, fi is a function whose domain contains X, and its range 
belongs to the complex numbers. Let :f X  be defined as:
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With z = (z
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n
) and where c  represents the magnitude of the com-

plex number c, c is its complex conjugate and 2c cc= . Note that f is properly 
defined, and, besides, the images of the function are non-negative real numbers. 
Thus, it follows that: 

Proposition 1, Suppose that the system (2) has a solution in X, and let  = (
1
, 

2
, …, n) X. Therefore:

 satisfies (2) if, and only if,  minimizes f.
Proof. If  satisfies (2) then fi ( ) = 0 for every i = 1,2,…,m. Therefore f 

( ) = 0 and, since f z X, then  is a minimum for f.
Now, if  minimizes f but does not satisfies (2) then f ( ) must be positive, 

since f (z z X. Since the system has a solution in X, there is a z* X  
such that f (z* . Therefore, f (z*) < f ( ) which violates  being a 
minimum for f. Note the importance on the general consistency condition over 
the system (2) in X, since given a system of equations, it is always possible to 
build f and, if  minimizes it, it does not generally imply that the system has a 
solution. Therefore, the problem of finding an NSE roots in a given set X, can 
be transformed into an optimization problem (minimization for this case), for a 
function f (built as previously shown) in the set X. An algorithm based on the 
previously stated is:

Algorithm 1.
Input: The NSE (2) and the set X
Step 1: Build f
Step 2: Minimize f over X.
Step 3: Let  X be a minimum point for f. If f ( ) = 0 then  satisfies (2). 

Otherwise (2) does not have a solution on X.

It is important to remark that it is not mandatory to use the squared magni-
tudes of each expression on the NSE; the magnitude itself can be used without 
any problem. A brief fundamentals of metaheuristic optimization algorithms 
is presented below. 

Particle Swarm Optimization (PSO): this stochastic, adaptive optimization 
technique was developed by Eberhart and Kennedy in 1995. It is directly 
related to the ability that have individual members of a group to gain and 
share knowledge of their surroundings. From the analysis of this behavior, a 
simple mathematical model was obtained, which reveal its potential to solve 
optimization problems (Rao, 2009). This algorithm generates a population with 



a given initial speed and position, which relates to a possible solution. For an 
N-dimensional problem, the position and speed are given by M x N matrices, 
as shown by equations (4) and (5).
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Where X and V are the position and speed matrices, respectively. The po-
pulation is given by a set of M particles. Each row in the X matrix represents 
the position of a particle in the search space (Rao, 2009; Clerc, 2006). Each 
iteration, the particles memorize and follow their best position (Pbest), and the 
whole population best position (Gbest), to update the speed matrix. Pbest is 
defined as shown by equation (6).
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Gbest, on the other hand, is the best position of the whole swarm, and is 
defined by equation (7).

Gbest = [gbest
1
   gbest

2
   …   gbestN ] (7)

With these results, the position and speed of the particles can be updated, 
using equations (8) y (9).

1 *iter iter
ij ijV w V+ =

1* ( )*( )iter
i j ijC Rand pbest X  (8)

2* ( )*( )iter
i ijC rand gbest X

 
1 1iter iter iter

ij ij ijX X V+ += +  (9)

Where i = 1,2,…,M and j = 1,2,…,N; iter is the current iteration; w is 
an inertia factor that regulates the effect of previous speeds into the new one; 



C1 is a self-trust factor, while C2 relates to the social trust. Rand( ) and rand 
( ) are functions that return an uniformly distributed random number between 
[0,1], and they weigh in the regulations of the individual and social information 
for each particle. 

In order to apply the algorithm, some steps need to be followed (Rao, 2009, 
Parsopoulos and Vrhatis, 2010):
1. Provide a random value for the initial position and speed of the particles. 
2. Evaluate the objective function, thus obtaining Pbest y Gbest.
3. Update the speed and position of each particle, according to equations (8) 

and (9).
4. Evaluate the objective function.
5. Compare, for each particle, the actual value of the function and that of Pbest; 

if said value is better, then update Pbest. 
6. Select, from the current iteration, the particle with the best value of the 

objective function and compare them with Gbest. In case the former has a 
better value, then update Gbest.

7. Compare the value of the function on Gbest; if it does not comply with the 
stop criteria, then return to 3.

Algorithm modification: In order to calculate complex roots, it was necessary 
to modify the original algorithm, specifically in the update of speeds (8). The 
new equation is given by (10).

1 *iter iter
ij ijV w V+ =

1* ( )* iter
ij ijC rand real pbest X

2* ( )* iter
i ijC Rand real gbest X

1* ( )* iter
ij ijC rand imag pbest X

2* ( )* iter
i ijC Rand imag gbest X  

(10)

Where real(…) is the real part and imag(…) the imaginary one. These par-
ticles allow for movement in the whole complex plane. 

Experiments were carried out in both, a regular computer and a four node 
cluster, with the following specifications: 



1. Regular computer (C1): Dell XPS 16.
a. Processor: Intel Core i5 M430 @2,27 GHz, turbo mode 2,53 GHz; 3 

MB cache.
b. Ram: 4,0 GB DDR3.
c. OS: Windows 7, 64 bits.

2. Cluster (C2):
a. Nodes: 4, each one with 2 GB RAM.
b. Processor: 3,2 GHz Intel Pentium IV each.
c. OS: Rocks.
d. Network Interface: Gigabit Ethernet.
e. Cores by node: 2.

Three repetitions were carried out for each experiment, and a precision of  
1 * 10–8 for the solution was used. 

3. Results and Analysis
Following are some results, related to the solution of a NSE of two, five and 
ten equation, striving to show the method validity. Some other tests were also 
performed, but due to space limitations are not shown. Given these systems 
complexity, no analytical tool foretells how many real and/or complex roots 
they have, in case they even exist. Table 1 shows the real roots for the NSE (11).

F(xa,xb )=xa*sen(xb )+xb*cos(xa )+10
G(xa, xb )=xb*cos(sen(xb ))+xa*xb*cos(xa) – 2 (11)

There, a set of solutions that satisfy the system is shown. The first couple is 
real and the rest is imaginary. For this case, 1000 particles were used, and the 
solution was found in a relative short time. 

409 4 s
Xa= -42.23465262154 F= -5.18435605556e-009

Xb= 0.23802206697 G=-8.20914891619e-009

413 5 s
Xa= -2.1720584896 - 0.3202166466i F=-5.7514686347e-009+6.4543450584e-009

Xb= 1.5166862958 - 2.0403819021i G= -7.5909130093e-009+3.9577201516e-009

450 5 s
Xa=-2.1976619256 + 0.1400807576i F= 6.40819663999e-009-5.15596143557e-009

Xb= 1.7985527695 - 2.1199359146i G=-9.5202339345e-009+2.7501507738e-009



3.1. Five equations system
The NSE (12) was implemented in computer C1; some results are shown in 
tables 2 and 3. Only the complex roots are reported. 

F (xa, xb, xc, xd, xe)  = xa * sen(xb) + xc
xd – 32 * xe G(xa, xb, xc, xd, xe)

 = 3 * xa + 8 * xb + xc

 + xc * cos(xb) – xd + xe – 143 H(xa, xb, xc, xd, xe) = xc * exa + 3 * xb + 6 * xa

 + 100 + 3 * xd + 10 * xe – 9 + x
d
cos(xe) l(xa, xb, xc, xd, xe) = xa + 8 * xb – 3 * xc + xd

 +1 – 67 * cos(xb) + 5 * xa
xd J(xa, xb, xc, xd, xe) = 3xa – 6 * xb + 8 * xc

 – xd * sen(xd) + 1 (12)

2724 1 s

Xa= 0.9010426976 – 2.5549804799i F= -2.4421740186e-008 -6.8860336988e-008i

Xb= 8.0196175228 – 1.1627655589i G= -6.2974656601e-008 -7.1980167604e-008i

Xc= 27.3026436355 -37.3264351887i H= -6.2010384827e-008 +5.1537514700e-008i

Xd= -3.5454658212 – 4.7593944907i I= 3.5227852855e-009 -4.3619332329e-008i

Xe= 0.0677568460 – 0.1315619409i J= 8.3611809032e-008 -1.1836561953e-008i

2526 1 s

Xa= 0.4258045313 – 5.0253757667i F= -3.8404962932e-008 -4.4152377754e-008i

Xb= 7.9215587328 + 1.1316100959i G= 3.4654753733e-008 +9.3554692882e-008i

Xc= 17.7095929914 +31.2190069696i H=-3.0148044061e-009 +6.0320312079e-008i

Xd= -19.4130567504 – 3.2254582879i I= 7.8139658367e-008 +3.1166961403e-008i

Xe= 0.0079927059 – 0.2694261176i J= -7.2678119523e-008 +1.3231897356e-008i

825 6 s

Xa= 2.2449516463 - 3.7341905832i F= -3.8801642343e-008 -6.83399126178e-008i

Xb= 13.0650469980 + 0.4456976578i G= -1.6224888100e-008 -9.6703322239e-008i

Xc= 11.8494402503 + 4.1722507485i H= 8.5727780430e-009 -1.3196537196e-008i

Xd= -7.4348952038 - 2.0739670195i I= -7.4121829817e-008 -2.4495753639e-008i

Xe= 0.0841438792 - 0.0330677414i J= -2.5254713876e-009 -3.3119061271e-008i

819 6 s

Xa= 2.2449516448 + 3.7341905926i F= 5.4868027011e-008 -7.4135003914e-008i

Xb= 13.0650470039 - 0.4456976635i G= 2.9225383003e-008 -7.2263476314e-008i

Xc= 11.8494402425 - 4.1722508546i H= -1.4341372534e-009 -3.0395197470e-010i

Xd= -7.4348951871 + 2.0739670331i I= 6.6720902247e-008 -4.05145164987e-008i

Xe= 0.0841438774 + 0.0330677466i J= -8.3087812186e-009 -7.5232996721e-008i



It was observed that as the number of particles goes up, the number of re-
quired iterations goes down. In a similar fashion, if the particles are too spread 
at the beginning, it will take more iterations than if they were closer. Unlike 
deterministic algorithms (Floudas, 1999), this kind of approaches generates a 
different set of solutions for each run (in case the system has a solution). Should 
a given solution be required to improve, the search space can be tightened. 

3.2. Ten equations system
As in the previous case, NSE (13) was implemented in C1. Table 4 summarizes 
the results for 100 particles. 

F (xa, xb, xc, xd, xe, xf, xg, xh, xi, xj) = xa * sen(xb) 
 + xc

xd – xe * tan(xf) + 54 * xg – 35 * xn

 + xi – 16 * xj + 32
G (xa, xb, xc, xd, xe, xf, xg, xh, xi, xj) = 3 * xa + 8 * xb 
 +xc – xd + xe – xf + 7 * xg – 8 * xn + xi

 + xj – 89 + xc * cos(xb) – 54
H (xa, xb, xc, xd, xe, xf, xg, xh, xi, xj) = xc * exa + 3 * xb 
 + 6 * xa + 91 + 3 * xd + 10 * xe + 3 * xf – xj

 + xd
cos(xe)

l (xa, xb, xc, xd, xe, xf, xg, xh, xi, xj) = xa + 8 * xb

 –3 * xc + xd + 1 + xg – xi + 8 * xj

 –67 * cos(xb) + 5 * xa
xd

J (xa, xb, xc, xd, xe, xf, xg, xh, xi, xj) = xf + 3 * xa

 – 6 * xb + 8 * xc – 3 * xi

 –xd * sen(xd) + xg + 1
K (xa, xb, xc, xd, xe, xf, xg, xh, xi, xj) = xg + xa

 + 3 * xb – 8 * xi + xc * tan xh
xf  + 54

 +3 * xb – 8 * xi + xc * tan xh
xf  + 54

L (xa, xb, xc, xd, xe, xf, xg, xh, xi, xj) = xh + 3 * xj – 6 * xe

 + xd – xa + 
i

b

x
x
jx   + xd – xa + 

i

b

x
x
ex

 

M (xa, xb, xc, xd, xe, xf, xg, xh, xi, xj) = xi + 3 * xb 
 +8 + xc – xj + xi + sen(xa – xe) – 98
N (xa, xb, xc, xd, xe, xf, xg, xh, xi, xj) = 4 * xj – 8 * xi 

 +32 * xa – xb + xc * 
i

b

x
x
ex   +32 * xa – xb + xc * 

i

b

x
x
ex

O (xa, xb, xc, xd, xe, xf, xg, xh, xi, xj) = xd + xc      –10 * xf – xg – xc      (13)



24448
1min 
52s

Xa= -0.5277680826 - 1.5283098689i F= -4.5448445007e-010 -2.8121434070e-009i

Xb= 7.7962005980 - 1.4231054183i G= 2.5054021080e-009 +1.1053923998e-008i

Xc= 14.4156920826 - 6.3345255965i H=-6.6833618639e-009 -6.0228955156e-010i

Xd= -8.9800859158 - 2.3314054570i I=-4.9275434164e-009 +1.2331246207e-008i

Xe= -2.4629686688 + 3.2381025794i J= -2.1878285850e-009 -2.5049473606e-010i

Xf= -17.2730895444 - 0.0029571587i K= -9.1274046099e-009 +1.1580755910e-008i

Xg= -8.2930036068 + 2.3284482007i L= -1.9023227438e-009 -5.3774200648e-009i

Xh= -16.8858945561 + 5.2451585585i M= -1.5188561520e-010 +2.8231426086e-009i

Xi= 3.8674931214 - 2.7606840329i N=-4.2459404881e-009 -4.1239260895e-009i

Xj= 2.4340896095 + 4.8108047237i O= 2.1884927648e-008 -9.7565134638e-008i

19758
1min 
29s

Xa= -0.4899906343 - 1.4390721752i F= 1.2253373427e-008 -1.1770282526e-009i

Xb= 1.2105178720 - 2.4443423591i G= -2.9848820304e-008 -3.3414693234e-010i

Xc= -0.5709205322 -17.0521974483i H= 1.46152956404e-009 +1.3261432841e-008i

Xd= -3.8941329032 - 3.8089631076i I= -1.4613814202e-008 -2.7360129613e-008i

Xe= -2.4547751166 + 3.8140058133i J= 9.7342578442e-011 -1.4803077874e-008i

Xf= 7.6648459103 - 3.1160236655i K= 2.8504723914e-008 +4.5085045918e-008i

Xg= 11.5589788969 + 0.6929393892i L= 5.0908277593e-008 -1.9243771021e-009i

Xh= 2.4422089736 - 4.5840164960i M= -5.2479123269e-009 +1.2282612261e-008i

Xi= 1.4352243372 - 1.8927927261i N= -3.9155239051e-009 -2.2080389073e-008i

Xj= -3.8122143647 + 8.5176659594i O= 8.3430992670e-008 -5.2982098708e-008i

It is observed that by increasing the size of the NSE, as well as the number 
of particles, the required computer resources increase almost exponentially. For 
every case, the number of iterations was in the same range, even though they 
are inversely proportional to the number of particles. Therefore, the following 
experiments were performed on C2.

3.3. System of five equations in the cluster
NSE (12) was implemented in C2 and the results are summarized in tables 5 
and 6.



3400 3 s

Xa= 0.3838079634 + 6.1948786017i F= -5.7142762716e-008 -5.9558418641e-008i

Xb= 7.9225469908 - 1.0489956145i G= -2.5578124507e-008 -9.6165717167e-008i

Xc= 13.4409372199 -27.7778222274i H= 3.3855009463e-008 +6.7293625783e-008i

Xd= -31.797461044 + 2.5669947032i I= 8.0641592959e-008 -4.0193143036e-008i

Xe= 0.0025668988 + 0.3105349073i J= 6.6515632113e-008 +1.6892528265e-008i

2053 2 s

Xa= 0.9383674408 + 2.1299016662i F= 1.4610113119e-008 +9.5705505743e-008i

Xb= 4.6842604783 - 1.4636484313i G= 7.8593998865e-008 +2.5040030494e-008i

Xc= 15.0954367479 +44.1193856691i H= 5.2103377168e-008 +8.3392221129e-008i

Xd= 1.5293410296 + 4.9835891637i I= 6.3720266154e-008 -3.2842034019e-008i

Xe= -0.0839990018 - 0.1311891326i J= -6.3679550522e-009 +9.0587263912e-008i

It can be seen that by increasing the amount of nodes, the run times are 
almost identical. Generally, it was observed that by using more particles, the 
average solution time also increased, while the number of iterations decreased. 
In most cases, this numerical approximation has a high convergence speed and 
provides satisfactory solutions. 

647 39 s

Xa= 2.2449516499 + 3.7341905866i F= -2.8481523806e-008 +5.7738451131e-008i

Xb= 13.0650469983 - 0.4456976616i G= -8.9964004246e-008 +2.7700457261e-008i

Xc= 11.8494401963 - 4.1722507786i H= 3.3100064911e-008 +3.7518764096e-008i

Xd= -7.4348951904 + 2.0739670173i I= 1.7868227434e-008 -5.7812462741e-008i

Xe= 0.0841438795 + 0.0330677417i J= -6.5719174103e-008 +6.0693988502e-008i

626 37 s

Xa= 2.2449516499 + 3.7341905857i F= -6.2151654490e-008 +4.3906756453e-008i

Xb= 13.0650469968 - 0.4456976615i G= -6.8321966751e-008 +3.6126424963e-008i

Xc= 11.8494402091 - 4.1722507714i H= -5.4405157712e-008 -2.3531416815e-009i

Xd= -7.4348951939 + 2.0739670128i I= -8.8861543487e-008 -3.9075453669e-008i

Xe= 0.0841438805 + 0.0330677419i J= 6.0724950401e-008 -6.2071759288e-008i

It is evident that it is of great help to transform a problem of solution of a NSE 
into an optimization one, especially for finding its real and complex roots. Even 
though this strategy is well known in literature, a mathematical demonstration 



is provided here. The modified PSO used during this research, is an efficient 
optimization method that can be easily implemented to find the solution of 
these systems.

For the cases studied here, the fact of increasing the amount of particles, 
increased the run time, but a general correlation was not found. Moreover, and 
because it is a stochastic method, results are not expected to be fully repeatable. 
However, the solutions found by this algorithm could be feed to traditional 
deterministic ones.

A proper choice of the amount of particles, as well as their initial position, 
provided an increased convergence speed. Regarding the cluster, it is not 
enough to simply have the hardware, storage and networking resources, but the 
algorithm has to be parallelizable, which could not be done here. It was found 
too that the convergence speed depends on both, the size of the NSE and 
the complexity of its equations. A ten equation system was tried to solve in 
the cluster, but due to the high RAM requirements, the program did not run.
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