
1

2

3

Sergio Reyes-Sierra4

Julián Plata-Rueda5

Rodrigo Correa-Cely6

Resumen
En este artículo se describe una alterna-
tiva numérica para solucionar sistemas
de ecuaciones no lineales con raíces
reales y/o complejas. Para ello se con-
virtió el problema de solución directa
de tales sistemas en un problema de
optimización, y se resolvió utilizando
el método de enjambre de partículas
apropiadamente modificado para tal
tarea. A título demostrativo se inclu-
yen algunos resultados con sistemas de
dos, cinco y diez ecuaciones, resueltos
en un computador convencional y en
un arreglo de cuatro nodos. Se con-
cluyó que la estrategia es válida para
solucionar este tipo de sistemas. Por
otra parte, no se detectó una mejora
en los tiempos de computación cuando
se utilizó el cluster.

Palabras clave
Optimización mediante enjambre de
partículas, sistemas de ecuaciones
no lineales, metaheurística, cluster.

Abstract
In this article we describe a nume-
rical alternative to sovlve systems of
nonlinear equations with real and/or
complex roots. The problem of solving
directly such systems was transformed
into an optimization one, which was
solved using a specially modified par-
ticle swarm method. As an example,
system of two, five and ten equations
were solved using a conventional per-
sonal computer as well as a cluster of
four nodes. It was concluded that this
strategy is valid for solving this type of
systems of equations. Moreover, using
the cluster no computational time
improvement was detected.

Key words
Particle swarm optimization, nonlinear
system of equations, metaheuristic,
cluster

Resumo
Este artigo descreve uma alternativa
numérica para resolução de sistemas de
equações não lineares com raízes reais e/
ou complexas. Para isso, o problema de
solução direta de tais sistemas virou-
se para um problema de otimização
e resolveu-se utilizando o método de
enxame de partículas devidamente
modificado para esta tarefa. A ma-
neira de demonstração incluem-se
alguns resultados com os sistemas de
dois, cinco e dez equações, resolvidos
em computador convencional e num
arranjo de quatro nós. Concluiu-se que
a estratégia é válida para resolver este
tipo de sistema. Além disso, nenhuma
melhoria foi detectada nos tempos
de computação quando o cluster foi
utilizado.

Palavras-chave
Utilização mediante enxame de par-
tículas, sistemas de equações não
lineares, meta-heurística, cluster.

Introduction
Given the difficulty for representing physical phenomena through one or more
non-linear systems of equations (NSE), it is necessary to have several analytic
and/or numerical methods available for solving them (Grosan and Abraham,
2008; Bianchini et al., 2001; Floudas, 1999; Ortega and Rheinboldt, 1970).
Some of these systems do not have a single root (solution), so finding them
becomes a mathematical and computational challenge, which is, as of today, an
open research topic. In some cases, algebraic approaches can be used to find some
of them. However, most NSE are too difficult to solve in this way, so numerical
approaches are used to obtain approximate solutions, with a given error margin
(Luo et al., 2008). One of the most used methods is multidimensional Newton
Raphson (NR). In spite of its simple algorithm and high convergence speed, its
main weakness is that it is dependent on a user-defined starting point, which
needs to be close to the desired solution, meaning that it requires a previous
knowledge of the solution. When a system with several variables and relatively
complex equations is to be solved, the near-solution starting point becomes
almost impossible to guess. Another traditional approach is the method of the
gradient. This, however, requires that the system complies with a differentiability
condition, which can prove to be difficult to achieve. Through past years, the
so-called evolutionary algorithms have become a powerful choice for numerical
solution (Geng et al., 2009; Hatanaka et al., 2004; Yang et al.,2008). When
the NSE gets bigger, traditional approaches become excessively difficult and non-
practical, increasing the computational cost, thus being necessary to use more
recent methods (Brits et al., 2002; Hui and Zhao, 2008; Grosan and Abraham,
2008; Cui and Cai, 2010).

During the past decades, the metaheuristic optimization approaches (based
on the imitation of natural, biologic, social or cultural processes) have been suc-
cessfully applied to several optimization problems on engineering. One of these
techniques is Particle Swarm Optimization (PSO), which has a high ability to

efficiently explore multidimensional search spaces (Aijia et al., 2009; Rao, 2009;
Clerc, 2006), and which has been recently applied to the current problem, e.g.
(Tsoulos et al., 2010; Ouyang et al., 2009).

This article describes the development of an algorithm that allows solving
NSE with real and/or complex roots, based on PSO. Striving to lower the com-
putation time and the required memory, a theorem is presented that allows
the transformation of a finding roots problem into an optimization one, and
its demonstration is presented later on. Moreover, some results for a couple of
demonstrative examples, using a traditional computer and a four node cluster,
are shown.

1. Fundamentals
An NSE with m functions and m unknowns is assumed, as shown by equation
(1), where Fi(z1

,z
2
,…,zi), i = 1,2,…,m are the non-linear equations, while zi, i

= 1,2,…,m, are the complex variables.

F
1
(z

1
,z

2
,…,zm)

F
2
(z

1
,z

2
,…,zm) (1)

Fm(z
1
,z

2
,…,zm)

Even though there are several numerical strategies to solve this type of sys-
tems, it was decided to implement the following theorem, to transform it into
an optimization problem (minimization) (Ortega and Rheinboldt, 1970; Gómez,
2010). This theorem is also valid for the case where all the solutions are in the
domain of the real numbers.

Theorem 1: Let be the set of complex numbers, X a subset of n and
consider the following system of equations:

1 2

1() 0
2() 0

 (, ,...,)
() 0

f z
f z

System
with z z z zn

fm z

 (2)

Where, for each i, fi is a function whose domain contains X, and its range
belongs to the complex numbers. Let :f X be defined as:

2
1 1() () () ()m m

i l if z fi z f z fi z (3)

With z = (z
1
,z

2
,…,z

n
) and where c represents the magnitude of the com-

plex number c, c is its complex conjugate and 2c cc= . Note that f is properly
defined, and, besides, the images of the function are non-negative real numbers.
Thus, it follows that:

Proposition 1, Suppose that the system (2) has a solution in X, and let = (
1
,

2
, …, n) X. Therefore:

 satisfies (2) if, and only if, minimizes f.
Proof. If satisfies (2) then fi () = 0 for every i = 1,2,…,m. Therefore f

() = 0 and, since f z X, then is a minimum for f.
Now, if minimizes f but does not satisfies (2) then f () must be positive,

since f (z z X. Since the system has a solution in X, there is a z* X
such that f (z* . Therefore, f (z*) < f () which violates being a
minimum for f. Note the importance on the general consistency condition over
the system (2) in X, since given a system of equations, it is always possible to
build f and, if minimizes it, it does not generally imply that the system has a
solution. Therefore, the problem of finding an NSE roots in a given set X, can
be transformed into an optimization problem (minimization for this case), for a
function f (built as previously shown) in the set X. An algorithm based on the
previously stated is:

Algorithm 1.
Input: The NSE (2) and the set X
Step 1: Build f
Step 2: Minimize f over X.
Step 3: Let X be a minimum point for f. If f () = 0 then satisfies (2).

Otherwise (2) does not have a solution on X.

It is important to remark that it is not mandatory to use the squared magni-
tudes of each expression on the NSE; the magnitude itself can be used without
any problem. A brief fundamentals of metaheuristic optimization algorithms
is presented below.

Particle Swarm Optimization (PSO): this stochastic, adaptive optimization
technique was developed by Eberhart and Kennedy in 1995. It is directly
related to the ability that have individual members of a group to gain and
share knowledge of their surroundings. From the analysis of this behavior, a
simple mathematical model was obtained, which reveal its potential to solve
optimization problems (Rao, 2009). This algorithm generates a population with

a given initial speed and position, which relates to a possible solution. For an
N-dimensional problem, the position and speed are given by M x N matrices,
as shown by equations (4) and (5).

11 12 1

21 22 2

1 2

N

N

M M MN

x x x
x x x

X

x x x

 (4)

11 12 1

21 22 2

1 2

N

N

M M MN

v v v
v v v

V

v v v

(5)

Where X and V are the position and speed matrices, respectively. The po-
pulation is given by a set of M particles. Each row in the X matrix represents
the position of a particle in the search space (Rao, 2009; Clerc, 2006). Each
iteration, the particles memorize and follow their best position (Pbest), and the
whole population best position (Gbest), to update the speed matrix. Pbest is
defined as shown by equation (6).

11 12 1

21 22 112

1 2

N

N

M M MN

pbest pbest pbest
pbest pbest pbest

Pbest

pbest pbest pbest

 (6)

Gbest, on the other hand, is the best position of the whole swarm, and is
defined by equation (7).

Gbest = [gbest
1
 gbest

2
 … gbestN] (7)

With these results, the position and speed of the particles can be updated,
using equations (8) y (9).

1 *iter iter
ij ijV w V+ =

1* ()*()iter
i j ijC Rand pbest X (8)

2* ()*()iter
i ijC rand gbest X

1 1iter iter iter

ij ij ijX X V+ += + (9)

Where i = 1,2,…,M and j = 1,2,…,N; iter is the current iteration; w is
an inertia factor that regulates the effect of previous speeds into the new one;

C1 is a self-trust factor, while C2 relates to the social trust. Rand() and rand
() are functions that return an uniformly distributed random number between
[0,1], and they weigh in the regulations of the individual and social information
for each particle.

In order to apply the algorithm, some steps need to be followed (Rao, 2009,
Parsopoulos and Vrhatis, 2010):
1. Provide a random value for the initial position and speed of the particles.
2. Evaluate the objective function, thus obtaining Pbest y Gbest.
3. Update the speed and position of each particle, according to equations (8)

and (9).
4. Evaluate the objective function.
5. Compare, for each particle, the actual value of the function and that of Pbest;

if said value is better, then update Pbest.
6. Select, from the current iteration, the particle with the best value of the

objective function and compare them with Gbest. In case the former has a
better value, then update Gbest.

7. Compare the value of the function on Gbest; if it does not comply with the
stop criteria, then return to 3.

Algorithm modification: In order to calculate complex roots, it was necessary
to modify the original algorithm, specifically in the update of speeds (8). The
new equation is given by (10).

1 *iter iter
ij ijV w V+ =

1* ()* iter
ij ijC rand real pbest X

2* ()* iter
i ijC Rand real gbest X

1* ()* iter
ij ijC rand imag pbest X

2* ()* iter
i ijC Rand imag gbest X

(10)

Where real(…) is the real part and imag(…) the imaginary one. These par-
ticles allow for movement in the whole complex plane.

Experiments were carried out in both, a regular computer and a four node
cluster, with the following specifications:

1. Regular computer (C1): Dell XPS 16.
a. Processor: Intel Core i5 M430 @2,27 GHz, turbo mode 2,53 GHz; 3

MB cache.
b. Ram: 4,0 GB DDR3.
c. OS: Windows 7, 64 bits.

2. Cluster (C2):
a. Nodes: 4, each one with 2 GB RAM.
b. Processor: 3,2 GHz Intel Pentium IV each.
c. OS: Rocks.
d. Network Interface: Gigabit Ethernet.
e. Cores by node: 2.

Three repetitions were carried out for each experiment, and a precision of
1 * 10–8 for the solution was used.

3. Results and Analysis
Following are some results, related to the solution of a NSE of two, five and
ten equation, striving to show the method validity. Some other tests were also
performed, but due to space limitations are not shown. Given these systems
complexity, no analytical tool foretells how many real and/or complex roots
they have, in case they even exist. Table 1 shows the real roots for the NSE (11).

F(xa,xb)=xa*sen(xb)+xb*cos(xa)+10
G(xa, xb)=xb*cos(sen(xb))+xa*xb*cos(xa) – 2 (11)

There, a set of solutions that satisfy the system is shown. The first couple is
real and the rest is imaginary. For this case, 1000 particles were used, and the
solution was found in a relative short time.

409 4 s
Xa= -42.23465262154 F= -5.18435605556e-009

Xb= 0.23802206697 G=-8.20914891619e-009

413 5 s
Xa= -2.1720584896 - 0.3202166466i F=-5.7514686347e-009+6.4543450584e-009

Xb= 1.5166862958 - 2.0403819021i G= -7.5909130093e-009+3.9577201516e-009

450 5 s
Xa=-2.1976619256 + 0.1400807576i F= 6.40819663999e-009-5.15596143557e-009

Xb= 1.7985527695 - 2.1199359146i G=-9.5202339345e-009+2.7501507738e-009

3.1. Five equations system
The NSE (12) was implemented in computer C1; some results are shown in
tables 2 and 3. Only the complex roots are reported.

F (xa, xb, xc, xd, xe) = xa * sen(xb) + xc
xd – 32 * xe G(xa, xb, xc, xd, xe)

 = 3 * xa + 8 * xb + xc

 + xc * cos(xb) – xd + xe – 143 H(xa, xb, xc, xd, xe) = xc * exa + 3 * xb + 6 * xa

 + 100 + 3 * xd + 10 * xe – 9 + x
d
cos(xe) l(xa, xb, xc, xd, xe) = xa + 8 * xb – 3 * xc + xd

 +1 – 67 * cos(xb) + 5 * xa
xd J(xa, xb, xc, xd, xe) = 3xa – 6 * xb + 8 * xc

 – xd * sen(xd) + 1 (12)

2724 1 s

Xa= 0.9010426976 – 2.5549804799i F= -2.4421740186e-008 -6.8860336988e-008i

Xb= 8.0196175228 – 1.1627655589i G= -6.2974656601e-008 -7.1980167604e-008i

Xc= 27.3026436355 -37.3264351887i H= -6.2010384827e-008 +5.1537514700e-008i

Xd= -3.5454658212 – 4.7593944907i I= 3.5227852855e-009 -4.3619332329e-008i

Xe= 0.0677568460 – 0.1315619409i J= 8.3611809032e-008 -1.1836561953e-008i

2526 1 s

Xa= 0.4258045313 – 5.0253757667i F= -3.8404962932e-008 -4.4152377754e-008i

Xb= 7.9215587328 + 1.1316100959i G= 3.4654753733e-008 +9.3554692882e-008i

Xc= 17.7095929914 +31.2190069696i H=-3.0148044061e-009 +6.0320312079e-008i

Xd= -19.4130567504 – 3.2254582879i I= 7.8139658367e-008 +3.1166961403e-008i

Xe= 0.0079927059 – 0.2694261176i J= -7.2678119523e-008 +1.3231897356e-008i

825 6 s

Xa= 2.2449516463 - 3.7341905832i F= -3.8801642343e-008 -6.83399126178e-008i

Xb= 13.0650469980 + 0.4456976578i G= -1.6224888100e-008 -9.6703322239e-008i

Xc= 11.8494402503 + 4.1722507485i H= 8.5727780430e-009 -1.3196537196e-008i

Xd= -7.4348952038 - 2.0739670195i I= -7.4121829817e-008 -2.4495753639e-008i

Xe= 0.0841438792 - 0.0330677414i J= -2.5254713876e-009 -3.3119061271e-008i

819 6 s

Xa= 2.2449516448 + 3.7341905926i F= 5.4868027011e-008 -7.4135003914e-008i

Xb= 13.0650470039 - 0.4456976635i G= 2.9225383003e-008 -7.2263476314e-008i

Xc= 11.8494402425 - 4.1722508546i H= -1.4341372534e-009 -3.0395197470e-010i

Xd= -7.4348951871 + 2.0739670331i I= 6.6720902247e-008 -4.05145164987e-008i

Xe= 0.0841438774 + 0.0330677466i J= -8.3087812186e-009 -7.5232996721e-008i

It was observed that as the number of particles goes up, the number of re-
quired iterations goes down. In a similar fashion, if the particles are too spread
at the beginning, it will take more iterations than if they were closer. Unlike
deterministic algorithms (Floudas, 1999), this kind of approaches generates a
different set of solutions for each run (in case the system has a solution). Should
a given solution be required to improve, the search space can be tightened.

3.2. Ten equations system
As in the previous case, NSE (13) was implemented in C1. Table 4 summarizes
the results for 100 particles.

F (xa, xb, xc, xd, xe, xf, xg, xh, xi, xj) = xa * sen(xb)
 + xc

xd – xe * tan(xf) + 54 * xg – 35 * xn

 + xi – 16 * xj + 32
G (xa, xb, xc, xd, xe, xf, xg, xh, xi, xj) = 3 * xa + 8 * xb
 +xc – xd + xe – xf + 7 * xg – 8 * xn + xi

 + xj – 89 + xc * cos(xb) – 54
H (xa, xb, xc, xd, xe, xf, xg, xh, xi, xj) = xc * exa + 3 * xb
 + 6 * xa + 91 + 3 * xd + 10 * xe + 3 * xf – xj

 + xd
cos(xe)

l (xa, xb, xc, xd, xe, xf, xg, xh, xi, xj) = xa + 8 * xb

 –3 * xc + xd + 1 + xg – xi + 8 * xj

 –67 * cos(xb) + 5 * xa
xd

J (xa, xb, xc, xd, xe, xf, xg, xh, xi, xj) = xf + 3 * xa

 – 6 * xb + 8 * xc – 3 * xi

 –xd * sen(xd) + xg + 1
K (xa, xb, xc, xd, xe, xf, xg, xh, xi, xj) = xg + xa

 + 3 * xb – 8 * xi + xc * tan xh
xf + 54

 +3 * xb – 8 * xi + xc * tan xh
xf + 54

L (xa, xb, xc, xd, xe, xf, xg, xh, xi, xj) = xh + 3 * xj – 6 * xe

 + xd – xa +
i

b

x
x
jx + xd – xa +

i

b

x
x
ex

M (xa, xb, xc, xd, xe, xf, xg, xh, xi, xj) = xi + 3 * xb
 +8 + xc – xj + xi + sen(xa – xe) – 98
N (xa, xb, xc, xd, xe, xf, xg, xh, xi, xj) = 4 * xj – 8 * xi

 +32 * xa – xb + xc *
i

b

x
x
ex +32 * xa – xb + xc *

i

b

x
x
ex

O (xa, xb, xc, xd, xe, xf, xg, xh, xi, xj) = xd + xc –10 * xf – xg – xc (13)

24448
1min
52s

Xa= -0.5277680826 - 1.5283098689i F= -4.5448445007e-010 -2.8121434070e-009i

Xb= 7.7962005980 - 1.4231054183i G= 2.5054021080e-009 +1.1053923998e-008i

Xc= 14.4156920826 - 6.3345255965i H=-6.6833618639e-009 -6.0228955156e-010i

Xd= -8.9800859158 - 2.3314054570i I=-4.9275434164e-009 +1.2331246207e-008i

Xe= -2.4629686688 + 3.2381025794i J= -2.1878285850e-009 -2.5049473606e-010i

Xf= -17.2730895444 - 0.0029571587i K= -9.1274046099e-009 +1.1580755910e-008i

Xg= -8.2930036068 + 2.3284482007i L= -1.9023227438e-009 -5.3774200648e-009i

Xh= -16.8858945561 + 5.2451585585i M= -1.5188561520e-010 +2.8231426086e-009i

Xi= 3.8674931214 - 2.7606840329i N=-4.2459404881e-009 -4.1239260895e-009i

Xj= 2.4340896095 + 4.8108047237i O= 2.1884927648e-008 -9.7565134638e-008i

19758
1min
29s

Xa= -0.4899906343 - 1.4390721752i F= 1.2253373427e-008 -1.1770282526e-009i

Xb= 1.2105178720 - 2.4443423591i G= -2.9848820304e-008 -3.3414693234e-010i

Xc= -0.5709205322 -17.0521974483i H= 1.46152956404e-009 +1.3261432841e-008i

Xd= -3.8941329032 - 3.8089631076i I= -1.4613814202e-008 -2.7360129613e-008i

Xe= -2.4547751166 + 3.8140058133i J= 9.7342578442e-011 -1.4803077874e-008i

Xf= 7.6648459103 - 3.1160236655i K= 2.8504723914e-008 +4.5085045918e-008i

Xg= 11.5589788969 + 0.6929393892i L= 5.0908277593e-008 -1.9243771021e-009i

Xh= 2.4422089736 - 4.5840164960i M= -5.2479123269e-009 +1.2282612261e-008i

Xi= 1.4352243372 - 1.8927927261i N= -3.9155239051e-009 -2.2080389073e-008i

Xj= -3.8122143647 + 8.5176659594i O= 8.3430992670e-008 -5.2982098708e-008i

It is observed that by increasing the size of the NSE, as well as the number
of particles, the required computer resources increase almost exponentially. For
every case, the number of iterations was in the same range, even though they
are inversely proportional to the number of particles. Therefore, the following
experiments were performed on C2.

3.3. System of five equations in the cluster
NSE (12) was implemented in C2 and the results are summarized in tables 5
and 6.

3400 3 s

Xa= 0.3838079634 + 6.1948786017i F= -5.7142762716e-008 -5.9558418641e-008i

Xb= 7.9225469908 - 1.0489956145i G= -2.5578124507e-008 -9.6165717167e-008i

Xc= 13.4409372199 -27.7778222274i H= 3.3855009463e-008 +6.7293625783e-008i

Xd= -31.797461044 + 2.5669947032i I= 8.0641592959e-008 -4.0193143036e-008i

Xe= 0.0025668988 + 0.3105349073i J= 6.6515632113e-008 +1.6892528265e-008i

2053 2 s

Xa= 0.9383674408 + 2.1299016662i F= 1.4610113119e-008 +9.5705505743e-008i

Xb= 4.6842604783 - 1.4636484313i G= 7.8593998865e-008 +2.5040030494e-008i

Xc= 15.0954367479 +44.1193856691i H= 5.2103377168e-008 +8.3392221129e-008i

Xd= 1.5293410296 + 4.9835891637i I= 6.3720266154e-008 -3.2842034019e-008i

Xe= -0.0839990018 - 0.1311891326i J= -6.3679550522e-009 +9.0587263912e-008i

It can be seen that by increasing the amount of nodes, the run times are
almost identical. Generally, it was observed that by using more particles, the
average solution time also increased, while the number of iterations decreased.
In most cases, this numerical approximation has a high convergence speed and
provides satisfactory solutions.

647 39 s

Xa= 2.2449516499 + 3.7341905866i F= -2.8481523806e-008 +5.7738451131e-008i

Xb= 13.0650469983 - 0.4456976616i G= -8.9964004246e-008 +2.7700457261e-008i

Xc= 11.8494401963 - 4.1722507786i H= 3.3100064911e-008 +3.7518764096e-008i

Xd= -7.4348951904 + 2.0739670173i I= 1.7868227434e-008 -5.7812462741e-008i

Xe= 0.0841438795 + 0.0330677417i J= -6.5719174103e-008 +6.0693988502e-008i

626 37 s

Xa= 2.2449516499 + 3.7341905857i F= -6.2151654490e-008 +4.3906756453e-008i

Xb= 13.0650469968 - 0.4456976615i G= -6.8321966751e-008 +3.6126424963e-008i

Xc= 11.8494402091 - 4.1722507714i H= -5.4405157712e-008 -2.3531416815e-009i

Xd= -7.4348951939 + 2.0739670128i I= -8.8861543487e-008 -3.9075453669e-008i

Xe= 0.0841438805 + 0.0330677419i J= 6.0724950401e-008 -6.2071759288e-008i

It is evident that it is of great help to transform a problem of solution of a NSE
into an optimization one, especially for finding its real and complex roots. Even
though this strategy is well known in literature, a mathematical demonstration

is provided here. The modified PSO used during this research, is an efficient
optimization method that can be easily implemented to find the solution of
these systems.

For the cases studied here, the fact of increasing the amount of particles,
increased the run time, but a general correlation was not found. Moreover, and
because it is a stochastic method, results are not expected to be fully repeatable.
However, the solutions found by this algorithm could be feed to traditional
deterministic ones.

A proper choice of the amount of particles, as well as their initial position,
provided an increased convergence speed. Regarding the cluster, it is not
enough to simply have the hardware, storage and networking resources, but the
algorithm has to be parallelizable, which could not be done here. It was found
too that the convergence speed depends on both, the size of the NSE and
the complexity of its equations. A ten equation system was tried to solve in
the cluster, but due to the high RAM requirements, the program did not run.

AIJIA, O.; YONGQUAN, Z. and QIFANG, L. Hybrid particle swarm optimization algorithm for
solving systems of nonlinear equations. Nanning, China: Guangxi University for Nationali-
ties, Granular Computing, 2009, GRC ‘09.

BIANCHINI, M.; FANELLI, S. and GORI, M. Optimal algorithms for well-conditioned non-
linear systems of equations. IEEE Trans On Computers. 2001, vol. 50, no. 7, pp. 689-698.

BRITS, R.; ENEGELBRECHT, A. and VAN DEN BERGH, F. Solving systems of unconstrained
equations using particle swarm optimization. Pretoria, South Africa: Department of Computer
Science, University of Pretoria, 2002.

CLERC, M. Particle swarm optimization. 1st Edition. ISTE, 2006. Chap. 3
CUI, Z. and CAI, X. Using social cognitive optimization algorithm to solve nonlinear equations.

Shanxi, China, 2010. Proc. 9th IEEE Int. Conf. On Cognitive Informatics, June 2005.
pp. 199-203.

FLOUDAS, C. Deterministic global optimization. Kluwer Academic Publisher, 1999. Chap. 12.
GENG H. T.; SUN Y. J.; SONG Q. X. et al. Research of ranking method in evolution strategy

for solving nonlinear system of equations. The 1st International Conference on Infor-
mation Science and Engineering (ICISE2009), IEEE Computer Society, pp. 348-351.

GÓMEZ, L. Propuesta de demostración del teorema sobre la relación entre sistemas de ecuaciones y el
problema de optimización (Comunicación interna UIS. Nov 11, 2010).

GROSAN, C. and ABRAHAM, A. A new approach for solving nonlinear equations systems.
IEEE Trans. On Systems and Cybernetics-Part A: Systems and Humans. 2008, vol. 38, no. 3,
pp. 698-713.

GROSAN, C. and ABRAHAM, A. Multiple solutions for a system of nonlinear equations.
International J. of Innovative Computing. Information and Control, ICIC. 2008, pp. 76-82.

HATANAKA, T; UOSAKI, K. and KOGA, M. Evolutionary computation approach to block oriented
nonlinear model. Control Conference. 2004. 5th Asian, pp. 90-96.

HUI, W. and ZHAO, Z. A neural network algorithm for solving systems of nonlinear equations.
Changsha, Hunan, China: College of Electrical & Information Engineering, University
of Science & Technology, 2008.

LUO, Y. Z.; TANG, G. J. and ZHOU, L. N. Hybrid approach for solving systems of nonlinear
equations using chaos optimization and quasi-Newton method. Applied Soft Computing.
2008, 8, pp. 1068-1073.

ORTEGA, J. and RHEINBOLDT, W. Iterative solution of nonlinear equations in several variables.
New York: Academic Press, 1970.

OUYANG, A.; ZHOU, Y. and LUO, Q. Hybrid particle swarm optimization algorithm for solving
systems of nonlinear equations. Granular Computing, 2009, GRC ‘09. pp.46-465.

PARSOPOULOS, K. and VRHATIS, M. Particle swarm optimization and intelligence: advances and
applications. Ed. Information Science Reference, 2010, Chaps 1-4.

RAO, S. Engineering optimization, theory and practice. 4th edition. Ed. John Wiley & Sons, 2009.
Chap. 2-13.

TSOULOS, I. and STAVRAKOUDIS, A. On locating all roots of systems of nonlinear equa-
tions inside bounded domain using global optimization methods. Nonlinear Analysis:
Real World Applications. 2010, vol. 11, no. 4, pp 2465-2471.

YANG, B.; ZHANG, Z. and SUN Z. Computing nonlinear lst estimator based on a random
differential evolution strategy. Tsinghua Science and Technology. 2008, vol. 13, no.1,
pp.1007-0214.

