
Ing. Univ. Bogotá (Colombia), 20 (2): 335-354, julio-diciembre de 2016. ISSN 0123-2126

Towards a Domain-Specific Language
to Design Adaptive Software:

the DMLAS Approach1

Hacia un lenguaje específico de dominio para el diseño
de software adaptativo: la aproximación DMLAS2

José Bocanegra García3

Jaime Pavlich-Mariscal4

Angela Carillo-Ramos5

doi:10.11144/Javeriana.iyu20-2.tdsl

How to cite this article:
J. Bocanegra García, J. Pavlich-Mariscal, A. Carrillo-Ramos, “Towards a domain-specific language to design adaptive software:
the DMLAS approach,” Ing. Univ., vol. 20, no. 2, pp. 335-354, 2016. http://dx.doi.org/10.11144/Javeriana.iyu20-2.tdsl

1 Submitted on: November 19th, 2015. Accepted on: March 8th, 2016. This article is derived from an investigation project
named MiDAS: A MDD Approach for Adaptive Systems, code SIAP 00006686, developed by the ISTAR research group at the
Pontificia Universidad Javeriana, Bogotá, Colombia.
2 Fecha de recepción: 19 de marzo de 2015. Fecha de aceptación: 8 de marzo de 2016. Este artículo se deriva de un
proyecto de investigación denominado MiDAS: una aproximación dirigida por modelos para sistemas adaptativos, código
SIAP 00006686, desarrollado por el grupo de investigación ISTAR de la Pontificia Universidad Javeriana, Bogotá, Colombia.
3 Ingeniero de sistemas, Universidad Distrital Francisco José de Caldas, Bogotá, Colombia. DEA en Tecnología e Ingeniería
de Software, Universidad de Sevilla, España. Estudiante del Doctorado en Ingeniería, Pontificia Universidad Javeriana,
Bogotá, Colombia. E-mail: jose_bocanegra@javeriana.edu.co.
4
 Ingeniero Civil en Computación e Informática, Universidad Católica del Norte, Chile. Licenciado en Ciencias de la Ingeniería,

Universidad Católica del Norte. PhD in Computer Science & Engineering, University of Connecticut, USA. Profesor asociado,
Pontificia Universidad Javeriana, Bogotá, Colombia. E-mail: jpavlich@javeriana.edu.co.
5 Ingeniera de sistemas y computación, Universidad de los Andes, Bogotá, Colombia. Maestría en Ingeniería de Sistemas
y Computación, Universidad de los Andes. Doctorat en Informatique, Universite de Grenoble I, Francia. Profesora titular,
Pontificia Universidad Javeriana, Bogotá, Colombia. E-mail: angela.carrillo@javeriana.edu.co

336 José Bocanegra García, Jaime Pavlich-Mariscal, Angela Carillo-Ramos

Ing. Univ. Bogotá (Colombia), 20 (2): 335-354, julio-diciembre de 2016

Abstract
An adaptive software has the ability to modify its own
behavior at runtime due to changes in the users and their
context in the system, requirements, or environment in
which the system is deployed, and thus, give the users a
better experience. However, the development of this kind
of systems is not a simple task. There are two main issues:
(1) there is a lack of languages to specify, unambiguously,
the elements related to the design phase. As a conse-
quence, these systems are often developed in an ad-hoc
manner, without the required formalism, augmenting the
complexity in the process of derivation of design models
to the next phases in the development cycle. (2) Design
decisions and the adaptation model tend to be directly
implemented into the source code and not thoroughly
specified at the design level. Since the adaptation models
become tangled with the code, system evolution becomes
more difficult. To address the above issues, this paper
proposes DMLAS, a Domain-Specific Language (DSL) to
design adaptive systems. As proof of concept, this paper
also provides a functional prototype based on the Sirius
plugin for Eclipse. This prototype is a tool to model, in
several layers of abstraction, the main components of an
adaptive system. The notation used both in the models
and the tool was validated against the nine principles for
designing cognitively effective visual notations presented
by Moody.

Keywords
adaptation; adaptive software; context; design; domain-
specific language; model-driven engineering; notation

Resumen
Un software adaptativo es capaz de modificar su compor-
tamiento en tiempo de ejecución debido a cambios en
el sistema, en los requisitos o en el entorno en el que se
despliega. La importancia del software adaptativo radica
en el hecho de que puede ajustar su propio comporta-
miento a diferentes entornos y contextos, y por lo tanto,
dar a los usuarios una mejor experiencia. Sin embargo, el
desarrollo de sistemas adaptativos no es una tarea sencilla,
por dos inconvenientes: 1) faltan lenguajes para especificar
los elementos relacionados con la fase de diseño. Como
consecuencia, estos sistemas se desarrollan a menudo en
una manera ad-hoc, sin el formalismo requerido, difi-
cultando el proceso de derivación de modelos de diseño
para las siguientes fases del ciclo de desarrollo.2) las
decisiones de diseño y el modelo de adaptación tienden
a ser implementados directamente en el código y no se
especifican a nivel de diseño. Cuando los modelos de
adaptación se acoplan directamente con el código, la
evolución del sistema se vuelve más difícil. Para hacer
frente a los problemas mencionados, este artículo propone
DMLAS, un lenguaje específico de dominio para el diseño
de sistemas adaptativos. Como prueba de concepto, este
artículo proporciona un prototipo funcional basado en el
plugin Sirius para Eclipse. El propototipo desarrollado es
una herramienta que permite modelar, en varios niveles
de abstracción, los principales componentes de un sistema
adaptativo. La notación usada tanto por los modelos como
por la herramienta ha sido validada de acuerdo con los
nueve principios formulados por Moody.

Palabras clave
adaptación; contexto; ingeniería dirigida por modelos;
lenguages específicos de dominio; notación; software
adaptativo

337Towards a Domain-Specific Language to Design Adaptive Software: the DMLAS Approach

Ing. Univ. Bogotá (Colombia), 20 (2): 335-354, julio-diciembre de 2016

Introduction
Adaptive software has the ability to modify its behavior at runtime due to changes
in the system, requirements, or the environment in which it is deployed [1].
Adaptive software plays an important role in several scenarios. One of them is
when there are ever-changing environments with fluctuating network resources
and availability [2]. For example, if a device has a slow connection to the net-
work, an adaptive software could modify its behavior at runtime and change
the format of presentation of information (e.g., from graphical to textual) to
give the user a better experience. Another scenario is when users with different
skills, knowledge, and preferences interact with the software. For example, an
adaptive Learning Management System may adjust the contents presented to
the students considering their cognitive skills or prior knowledge, and thus,
improve the educational process.

Adaptive software tends to share the same essential elements of traditional
software. The software receives a request from the user, performs a process, and
generates a response. However, adaptive systems need to take into account the
context. According to Bauer and Dey, a widely accepted definition to context
is “any information that can be used to characterize the situation of an entity”
[3]. In other words, context involves places or objects that are relevant to the
interaction between users and applications. Context, which also includes users and
applications, can be denoted through profiles. Profiles, often depicted as class
diagrams, are a description of the information of users, applications, and other
context elements.

The main difference between adaptive software and traditional software
is that adaptive software must take into account the context to provide users
with specially-tailored information. In addition, adaptive software should also
be able to alter the way it processes the information to convey to the users. All
of these elements: context, content, presentation format, and process may be
defined as adaptive characteristics.

338

Ing. Univ. Bogotá (Colombia), 20 (2): 335-354, julio-diciembre de 2016

José Bocanegra García, Jaime Pavlich-Mariscal, Angela Carillo-Ramos

Due to the importance of adaptive software, it is necessary to improve the
software development process of these kinds of systems. However, the develop-
ment of adaptive software is a task far from trivial. De Lemos et al. [4] have
identified the main problems of software engineering for the development of
adaptive systems. One of them is related to the design process. In this field, the
main problem is the difficulty for designing an adaptive system based on the specified
requirements. Existing modeling languages do not adequately represent adap-
tation concepts, such as profiles, presentation, navigation, and content models.
Although general-purpose languages, such as Unified Modeling Language (UML)
can be utilized to specify adaptive systems, they lack adaptation-specific concepts.
This is an issue that hinders the design process of adaptive systems. As stated by
Kosar, Bohra, and Mernik [5], a modeling language is more effective if it is
able to seamlessly specify concepts from the domain of the problem. Therefore,
the design process of adaptive systems could be significantly improved if de-
signers could utilize languages that could model adaptation-specific concepts.

To address the above issue, this paper proposes Design Modeling Language for
Adaptive Systems (DMLAS), a domain-specific language to design adaptive sys-
tems. This paper is an extension of a previously published paper [6]. In that previous
paper, the authors propose a preliminary version of DMLAS and a prototype
developed in the Generic Modeling Environment [7]. However, that prototype was
a simple tool utilized to perform an initial proof-of-concepts.

In this extended paper, the authors propose the following new contributions:
(i) a modification to the metamodels that support DMLAS, taking as ref-
erence the concepts provided by Dataflow Programming [8]; and (ii) a new
prototype based on the Sirius framework [9].

The remainder of this paper is structured as follows. Section 1 provides the
related work. Section 2 describes DMLAS. Section 3 illustrates the developed
prototype. Section 4 describes the first steps to validate the metamodel and
the notation of DMLAS. In Section 5, the authors provide a discussion about
the advantages of DMLAS compared to other approaches. This paper ends
with the conclusions and the explanation of the future work.

1. Related Work
Several authors discuss about the importance and the key elements in the
design of adaptive systems. According to Brun et al. [10], an adaptive system
should be developed according to a conceptual model of adaptation, without
considering technologies and tools for its implementation. However, often the

339

Ing. Univ. Bogotá (Colombia), 20 (2): 335-354, julio-diciembre de 2016

Towards a Domain-Specific Language to Design Adaptive Software: the DMLAS Approach

models for adaptive systems are represented implicitly in the form of domain
knowledge or the engineer’s expertise. This makes the development process of
these systems harder.

According to De Lemos et al. [4], one of the challenges in the development
of adaptive systems is the need to define models at the design space that can
represent a wide range of system properties. The authors explain that there is
a lack of systematic studies of the overall design space for adaptive systems.

Baude, Henrio, and Ruz [11] consider that the process to develop adaptive
systems can be accomplished in two ways: extending existing programming
languages/systems or defining new adaptation languages. Although numerous
research efforts have investigated both solutions and their combination, there is
still a lack of powerful languages, tools, and frameworks that could help realize
adaptation processes in a systematic manner.

In [12], Gamez, Fuentes, and Troya provide the main elements to take into
account in the design of adaptive systems. These elements cover items such as
the context definition, the change in the context, the device heterogeneity, and the
languages issues. However, authors do not detail the particularity of design
specification that covers the mentioned elements.

The literature provides several options to model the design of adaptive sys-
tems. Table 1 presents a comparison of each proposal with the following criteria:
(i) explicit separation of concerns (in several types of adaptation), (ii) design
approaches, (iii) use of a domain-specific language (DSL) and (iv) support for
reusable models.

Table 1. Comparison of proposals

Criteria of
comparison

Work
[13] [14] [15] [16] DMLAS

Separation of
concerns

± - +

Design approach ? MAS Object oriented
Data flow
oriented

Data flow
oriented

Use a DSL + + - +
Models reuse + + + - +

 +: denotes that proposal covers the related item; –: denotes that proposal does not cover the related item. ?: it is not
clear the way the approach addresses a certain criterion; ±: partial support for the criterion.

DSL: domain-specific language
Source: authors’ own elaboration

340

Ing. Univ. Bogotá (Colombia), 20 (2): 335-354, julio-diciembre de 2016

José Bocanegra García, Jaime Pavlich-Mariscal, Angela Carillo-Ramos

Authors such as Berkane, Seinturier, and Boufaida [13] have proposed a
set of adaptation-oriented design patterns that support the development of
adaptive systems. These design patterns provide reusable models that can be
instantiated across different domains, thus facilitating the reuse of adapta-
tion expertise. However, this proposal does provide an explicit classification
of adaptation types, so they cannot adequately separate concerns in an adaptive
application.

Mao et al. [14] model adaptive systems as a multi-agent organization, based
on agent technology and an organizational metaphor. To these authors, an agent
is considered an autonomous entity situated within the environment to satisfy
the design objectives. An adaptive system is modeled as a Multi-Agent System
(MAS) organization, consisting of various roles and agents in the organization
context, that defines their environments. Roles are the abstract classification of
the behavior and environment of the agents in the organization. An agent can
play multiple roles and a role can be played by multiple agents. However, this
approach is tightly related to agent-based design, which makes it difficult to
specify a design utilizing other approaches. In addition, authors do not consider
the concepts of content adaptation, navigation, or presentation, which makes it
harder to adequately separate concerns in an adaptive application.

Authors such as Vogel and Giese [15] have studied the use of a Model-Driven
Engineering approach in adaptive software. These authors propose EUREMA,
a model-driven approach to develop adaptive software. EUREMA provides
models to two levels of abstraction: an architectural view and a behavioral view.
However, EUREMA is only oriented to the specification and execution of ad-
aptation engines, and it does not cover elements of design of adaptive systems.

Gelogo and Kim [16] propose a development process for adaptive ubiquitous
learning systems. Authors suggest three activities for the design stage: the design
of user/admin user interface, the design of the story board, and the design of a
database. However, authors do not provide details about separation of concerns,
reuse of models, or the use of a DSL.

2. The Design Modeling Language for Adaptive Systems
This section describes the essential elements of the Design Modeling Language
for Adaptive Systems (DMLAS). To illustrate DMLAS, this paper uses an ex-
ample of an adaptive system for prenatal care, called Prenat. The goal of Prenat
is to provide pregnant women and their families with specially-tailored infor-
mation about the gestation process and to assist them during the prenatal stage.

341

Ing. Univ. Bogotá (Colombia), 20 (2): 335-354, julio-diciembre de 2016

Towards a Domain-Specific Language to Design Adaptive Software: the DMLAS Approach

Prenat offers to users several services. Some of them are the following: pro-
vide a list of hospitals nearest to the current location of the user; provide a list
of maternity clothing stores filtered by user brand preferences; and provide a
list of general and obstetrician practitioners. Prenat uses the information about
profiles and context to adapt the services.

To better explain the rationale behind DMLAS, it is important to understand
the way adaptive software is traditionally modeled. In the context of adaptive
software development, software engineers often divide the adaptation model into
two groups: presentation and navigation. The former adapts the information
and the format in which it will be presented to the user. The latter adapts the
sequence of the interaction between the user and the system, which is usually
reflected in a system’s menu [17].

In contrast, DMLAS separates presentation adaptation into two individual
concepts. The first is content adaptation, to adapt the information to convey to us-
ers, regardless of the format in which the information will be presented to them.
The second is called presentation adaptation, but unlike the type of adaptation
with the same name that is used by other researchers, in DMLAS it refers specifically
to the format in which the information will be presented to users. DMLAS also
addresses navigation adaptation, but separates it into information-related and
presentation-related navigation. The former addresses the options available to
each user at every specific time in the interaction with the system. The latter
addresses the format in which those options will be presented to users.

The above concepts reflect an essential premise behind DMLAS: Adapta-
tion should separate information from presentation as different concerns. We
believe this premise is important, since in practice these two concerns can
often be addressed separately. Separation of concerns in this context has two main
benefits: design simplicity, because software engineers may avoid combining
heterogeneous concepts in a single model; and, maintainability, because poten-
tial changes are located in specific parts of the models. The following are some
concrete examples of the pertinence of separation of concerns.
• Users can utilize access devices with heterogeneous features to access an

adaptive system. For example, a pregnant woman may access to Prenat from a
mobile device with a 3G connection, while another user may access Prenat
through a desktop device with a broadband connection. The former user has
a device with limited screen size and low connection speeds, and may prefer
to receive the information in textual format. The latter user may prefer a
graphical format complemented with other options (i.e., video, audio, etc.).

342

Ing. Univ. Bogotá (Colombia), 20 (2): 335-354, julio-diciembre de 2016

José Bocanegra García, Jaime Pavlich-Mariscal, Angela Carillo-Ramos

Therefore, it is important to adjust the format presented to each device,
regardless of the specific information that is sent to the user.

• Users, according to their likes and preferences, may require that certain pie-
ces of information have more priority than others. For example, a pregnant
woman in her first pregnancy may require more detailed information about
pregnancy advices and delivery preparation than a woman who has had more
than one pregnancy. In another case, if a woman will give birth by C-section,
she may require more detailed information about this surgical procedure
than another woman who will give birth by natural means. The priority given
to pieces of information is largely independent of the format in which the
information is presented.

In addition, the user interface layer is considered one of the key components
of software applications since it connects their end-users to the functionality [18].
For instance, a user with visual disabilities may prefer textual information in a
font with a greater size than a user with normal visual acuity. Since user interface
is a complex and important concern, it might be desirable to separate it from
the information concern.

Based on the above rationale, a DMLAS model comprises the following two
key elements: (i) the profiles model, and (ii) the process model. The remainder
of this section utilizes the Prenat example to explain the main components of
DMLAS.

2.1. Profiles Model
The profiles model represents the profiles utilized to perform the adaptation.
Figure 1 depicts the elements in the profiles metamodel. The main element is
the Profile class which represents the elements surrounding the system (con-
text). In DMLAS the information related to profiles is modeled using a set
of classes. Each Class has a set of attributes. Each attribute has a name and a
type. To model types, DMLAS uses a class named TypeSpecification. That class
covers concepts such as Class and Primitive. The Primitive class represents the
basic types of the language (i.e., integer, string, boolean, and float). DMLAS
also utilizes a ParameterizedType to perform an instantiation of a generic type
with type arguments.

Figure 2 depicts an example of a profiles model in the context of Prenat. The
figure is a top-level diagram in DMLAS that shows three profiles that represents
the User, the Device by which the user accesses to the system, and the Context.

343

Ing. Univ. Bogotá (Colombia), 20 (2): 335-354, julio-diciembre de 2016

Towards a Domain-Specific Language to Design Adaptive Software: the DMLAS Approach

These profiles provide information to the adaptive system. Figure 3 depicts a
low-level diagram of the specific information about the user. In that level,
DMLAS represents profile information as a set of classes with attributes and
types. Table 2 describes the components utilized in the profiles model.

Figure 1. Profiles metamodel

Source: authors’ own elaboration

Figure 2. Profiles model: general view

Source: authors’ own elaboration

344

Ing. Univ. Bogotá (Colombia), 20 (2): 335-354, julio-diciembre de 2016

José Bocanegra García, Jaime Pavlich-Mariscal, Angela Carillo-Ramos

Figure 3. Profiles model: detailed view

Personal Information Preferences

dateOfBirdth: Date
homeAdress: Address
jobAddres: Addres

HealthInstitution: String
typeOfDelivery: String
practitioner: Practitioner

Source: authors’ own elaboration

Table 2. Profiles model components

Icon Class Description

AdaptiveSystem Represents the adaptive system in a high level of abstraction

Profile
Represents the information that may be utilized to characterize
the surroundings of an adaptive system

Class Represents specific information about profiles

Source: authors’ own elaboration

2.2. Process Model
The process model shares the same infrastructure to address the design of content,
presentation, and navigation adaptation. The difference between components is
the set of operations for each one. In DMLAS, these operations are represented
as a set of nodes and ports. These concepts are taken from visual programming
languages such as Dataflow Programming [8]. This approach was selected be-
cause adaptive software may be modeled as a set of nodes that receives a set of
inputs through of input ports, performs a process of adaptation, and delivers a
result through of output ports.

The process metamodel is divided in two parts. The first part depicts the
concepts related to nodes and ports, and the second part depicts the concepts
related to expressions. Figure 4 depicts the first part or the process metamodel.
The main concept in this metamodel is the ComputationNode, which is analogous
to a function in traditional programming languages. There are two types of
computation nodes: LocalNode and GlobalNode. A local node is one whose scope
is restricted locally to that section in which is declared. This means that this
node will only be able to be manipulated in that section and may not be referenced
in other contexts. In contrast, a global node is accessible from any section of
the model and its purpose is to define the primitive adaptation operations that
need to be utilized anywhere in the model.

345

Ing. Univ. Bogotá (Colombia), 20 (2): 335-354, julio-diciembre de 2016

Towards a Domain-Specific Language to Design Adaptive Software: the DMLAS Approach

Figure 4. Process Metamodel: Data Flow

Source: authors’ own elaboration

In the same way of several programming languages, in DMLAS there is a
distinction between the definition of a function (or a computational node) and its
invocation. GlobalNode is the definition of a global node, and GlobalNodeCall
is the invocation to that node.

A ComputationNode has a set of ports. These ports are utilized as input or
output of data (similarly as input parameters or return values in a function).
The class Port provides the definition of ports (or formal parameters), while the
PortReference class provides the reference to these ports. The latter is utilized
at the computation node calls to reference the ports of the computation node
being called.

Although content, presentation, and navigation adaptation share the same
metamodel, they differ in the particular computation node instances they utilize
as their primitive operations. These operations are the following:

346

Ing. Univ. Bogotá (Colombia), 20 (2): 335-354, julio-diciembre de 2016

José Bocanegra García, Jaime Pavlich-Mariscal, Angela Carillo-Ramos

Content adaptation operations. (i) TopN: select the n-Th term in a list; (ii)
Sort: sort a list; (iii) Filter: filter a list; (iv) Union: performs a union between two
or more data sources; (v) Intersection: performs an intersection between two or
more data sources; (vi) Split: split a data source into two or more lists; (vii) Data-
Source: represents a source of information to be adapted; and (viii) DataResult:
represents the adapted information as result of a process of adaptation.

Presentation and navigation operations. (i) Audio: turns an information
into audio; (ii) Video: turns an information into video; (iii) Text: turns an infor-
mation into text; (iv) Graph: Turns an information into a graphic; (v) Map: turns
an information into a map; (vi) Lab: Turns an information into a virtual lab; (vii)
Highlight: highlights a set of elements: (viii) Dim: dims a set of elements; (ix) Presen-
tationAdapter: takes the source information to determine the priority of each
element in the web site; (x) DecisionTree: evaluates several alternatives to decide
what kind of adaptation perform over a source of information (e.g., choose a textual
information over a graphical information taking into account the information
provides by profiles); (xi) Widget: represents the information to be presented
in a user interface; and (xii) Menu: the set of options adapted according to the
user and context preferences.

The second part or the adaptation metamodel is related to expressions, which
is depicted in Figure 5. In DMLAS, an expression is a combination of literal
values (StringValue and NumericValue), operators (UnaryOperator and BinaryOperator),
and calls to computation nodes. Figures 6, 7, and 8 depict some examples of
models for content, presentation, and navigation adaptation.

Figure 6 depicts the process to adapt a list of practitioners. The content model
utilizes five operations: DataSource, Filter, TopN, Sort, and DataResult. The operation
DataSource takes as input the required source of information to retrieve the data
to be adapted. In this example, the DataSource retrieves the information of a table,
called Practitioners, which is stored in a data base. That criterion is provided to
the respective port by an expression. The criterion expression is specified in
the properties view of the developed tool (as depicted at the bottom part of the
Figure 9). The output of that operation is a list of practitioners.

The operation Filter takes as input the list of practitioners, and the criteria
to perform the filter, in this case, practitioners with female gender. The filtered
list is taken as input in the operation Sort. That operation has two additional
input parameters: the order criteria (ascendant or descendent), and the field to
perform the order (for example, the name of the practitioner). The output of
that operation is a sorted list.

347

Ing. Univ. Bogotá (Colombia), 20 (2): 335-354, julio-diciembre de 2016

Towards a Domain-Specific Language to Design Adaptive Software: the DMLAS Approach

Figure 5. Process metamodel: expressions

Source: authors’ own elaboration

Figure 6. Process model (for content adaptation)

Source: authors’ own elaboration

The TopN operation takes as input the sorted list, and the N value to limit
the list. The output of the Sort operation is a list of N practitioners. Figure 7
is a presentation model for Prenat. A presentation model has several levels
of abstraction. For space considerations, this example only provides one level of
abstraction. The figure shows an element called PresentationAdapter. This el-
ement takes as input the adapted list of practitioners (which are the output of
information model presented in Figure 6). The output of this model is a Widget
that represents the information to be presented in a user interface.

In a PresentationAdapter, the software engineers may use operations such as a
DecisionTree to determine the priority of the formats to be used to represent the in-
formation. For example, if the user accesses to Prenat through a mobile device
the system will present the information in a textual format. Otherwise, if the user
accesses to Prenat through a PC, the system will present the information in a
graphical format. The DecisionTree also may be utilized to determine the elements

348

Ing. Univ. Bogotá (Colombia), 20 (2): 335-354, julio-diciembre de 2016

José Bocanegra García, Jaime Pavlich-Mariscal, Angela Carillo-Ramos

that may be “highlighted” (shown more prominently) or “dimmed” (shown less
prominently) in the user interface.

Figure 7. Process model (for presentation adaptation)

Source: authors’ own elaboration

Figure 8 depicts a navigation adaptation for Prenat. The model represents
a reference to the three services provided by Prenat. The node Union combines
the three lists of data (practitioners, hospitals, and stores). The result of this type
of adaptation is an adapted menu. It is important to note that this menu is
“abstract” in the sense that, at this point, the system has not yet decided the
way to represent that menu to the user (presentation). The symbols utilized
for content, presentation, and navigation adaptation are depicted in Table 3.

3. Prototype
To validate the language, we developed a prototype based on the Sirius [9] plugin
for Eclipse IDE. Figure 9 depicts a screenshot of the prototype made in Sirius.
On the left side of the screen is the Model Explorer that provides a tree view of
the models. The center contains the canvas that depicts the models. The right
part of the screen contains the tools palette utilized to create the elements of the
model. At the bottom of the screen is the properties view, utilized to graphically
edit the properties of the elements in the model.

4. Validation of the Language
To validate the notation utilized in DMLAS this paper takes into account the
9 principles for designing cognitively effective visual notations presented by
Moody in [19]. Principles 1 to 5 are fully addressed, while principles 6 to 9 are
covered partially. Future work derived from this proposal is to assure the entire
completion of those principles.

Complexity management: the ability of a visual notation to represent informa-
tion without overloading the human mind. DMLAS uses models distributed

349

Ing. Univ. Bogotá (Colombia), 20 (2): 335-354, julio-diciembre de 2016

Towards a Domain-Specific Language to Design Adaptive Software: the DMLAS Approach

across hierarchical levels of abstraction, which avoids the overload of elements
in a single model.

Figure 8. Process model (for navigation adaptation)

Source: authors’ own elaboration.

Table 3. Process Model Components

Icon Class Description

GlobalNodeCall Represents the call to a global node

PortReference (inputValues) Represents the reference to an input port

PortReference (outputValues) Represents the reference to an output port

Source: authors’ own elaboration

350

Ing. Univ. Bogotá (Colombia), 20 (2): 335-354, julio-diciembre de 2016

José Bocanegra García, Jaime Pavlich-Mariscal, Angela Carillo-Ramos

Figure 9. Case tool: prototype in Eclipse Sirius

Source: authors’ own elaboration

Cognitive integration: applies when multiple diagrams are used to represent a
system. DMLAS uses mechanisms to simplify navigation and transitions between
diagrams and help the reader to assemble information from separate diagrams
into a coherent mental representation of the system.

Graphic economy: the number of graphical symbols in a notation. DMLAS uses
a maximum of 12 graphical symbols for each diagram. This is a small number
compared to UML Class Diagrams that have a graphic complexity of over 40.

Dual coding: using text and graphics together to convey information is more
effective than using either on their own. Each element in DMLAS has its cor-
responding legend in text below the graphical representation.

Semiotic clarity: there must be a one-to-one correspondence between symbols
and their referent concepts. As shown in Table 1 and Table 2, each symbol has a
one-to-one correspondence with a metamodel concept; none of the concepts is
represented by multiple graphical symbols; there are no graphical symbols that do
not correspond to any semantic construct; and there are no semantic constructs
that are not represented by any graphical symbol. Although there is some over-
load in some symbols (for example, some elements may be depicted as nodes

351

Ing. Univ. Bogotá (Colombia), 20 (2): 335-354, julio-diciembre de 2016

Towards a Domain-Specific Language to Design Adaptive Software: the DMLAS Approach

in a diagram or as ports of other nodes), this overload is required to depict the
model at several levels of abstraction.

Perceptual discriminability: the ease and accuracy with which graphical
symbols can be differentiated from each other. In DMLAS each symbol uses
its own graphical representation and they are distinguishable from others.
However the degree of clarity and simplicity it is not fully demonstrated,
because it requires an experimental validation. This validation is also part of
the future work.

Semantic transparency: the extent to which the meaning of a symbol can be
inferred from its appearance. In DMLAS the visual metaphors applied to each
of the elements are representative, and its semantic is the closest possible to its
intended meaning. However, validating this principle also requires an experi-
mental study.

Visual expressiveness: the number of visual variables used in a notation. Some
diagrams in DLMAS contain more than 12 visual elements. This means that
the notation may be classified as visually saturated. In addition, DMLAS uses
only one visual variable (the shape) to distinguish the elements in the diagram.
Future work includes supporting more visual variables (e.g., color, size, bright-
ness, orientation, texture, and position).

Cognitive fit: use different visual dialects for different tasks and audiences. In
the current specification of DMLAS, the designer may change the icons that
represent each element. This can be utilized to address different kinds of users.
The use of dual coding (text and graphics) also supports the representation of
information for different tasks and audiences. Nevertheless, this principle also
requires further experimental validation.

5. Discussion
The main contributions of this paper, compared to other related works are:
• The use of a new refined metamodel. This metamodel covers the main ele-

ments in adaptive systems: content, presentation, and navigation. The main
characteristics of this metamodel compared with another approaches are the
following: (i) the use of a paradigm inspired in dataflow programming. In
this paradigm, the components of an adaptive system may be modeled as
a set of nodes, connections, and data flows; (ii) an extensive representation of
profiles model with complementary elements such as type specifications
and parameterized types, and (iii) a set of elements to model expressions (e.g.,
logical, arithmetical). Those features provide to DMLAS with a greater de-
gree of expressiveness and easeness of use due to its graphical representation.

352

Ing. Univ. Bogotá (Colombia), 20 (2): 335-354, julio-diciembre de 2016

José Bocanegra García, Jaime Pavlich-Mariscal, Angela Carillo-Ramos

• The development of an updated prototype using the Sirius plugin for the
Eclipse IDE. The main advantage of this prototype is that the models designed
with the tool may be used in the next activities in the development process.
For example, models may be transformed into other models using transfor-
mation languages, or may be transformed to code using code generators.

• The partial validation of the language against the Moody’s principles for
graphical notations. As visual notations are an integral part of the languages
in software engineering, the validation of notation ensures that the graphical
representation of the models facilitates the communication of ideas between
practitioners and helps convey information more effectively to nontechnical
people.

An area in which is necessary to complement the developed work is the one
related to validation. It is important to develop a more extensive bank of tests
in several scenarios to probe the expressiveness of the proposed language. In
addition, it is necessary to cover completely the principles provided by Moody
to assure the effectiveness of the visual notation used in DMLAS.

Conclusions and Future Work
This paper presented DMLAS, a DSL to visually specify the design of adaptive
systems. DMLAS focuses on separating different adaptation concerns: informa-
tion, navigation, and presentation, and it provides a hierarchical representation
of interrelated models, which should simplify the understanding and evolution of
such design.

Future work is related to two main activities: (i) the creation of a textual
language for DMLAS, and (ii) the development of transformations between
models, using a transformation language that automates the transition from
design models to code. That future work has the following advantages. First,
a textual language for DMLAS addresses the specification, in a simple way, of
components such as expressions, which are more complex to specify in a visual
language. Second, a proper automation can accelerate the implementation of
most software systems, ensuring that their code follows good development
practices, and reduces the chance of programming errors.

References
[1] K. Geihs and C. Evers, “User intervention in self-adaptive context-aware applications,”

in Proc. Australasian Computer Science Week Multiconference, 2016.

353

Ing. Univ. Bogotá (Colombia), 20 (2): 335-354, julio-diciembre de 2016

Towards a Domain-Specific Language to Design Adaptive Software: the DMLAS Approach

[2] C. Krupitzer, G. Schiele, S. VanSyckel, F. M. Roth. and C. Becker, “A survey on engineering
approaches for self-adaptive systems,” Pervasive Mob. Comput., vol. 17, pp. 184-206, 2015.

[3] C. Bauer and A. K. Dey, “Considering context in the design of intelligent systems: Current
practices and suggestions for improvement,” J. Syst Soft., vol. 112, pp. 26-47, 2016.

[4] R. de Lemos, H. Giese, H. A. Müller, M. Shaw, J. Andersson, M. Litoiu, B. Schmerl, G.
Tamura, N. M. Villegas, T. Vogel, and others, “Software engineering for self-adaptive
systems: A second research roadmap,” in Software Engineering for Self-Adaptive Systems II.
Berlin: Springer, 2013, pp. 1-32.

[5] T. Kosar, S. Bohram and M. Mernik, “Domain-Specific Languages: A systematic mapping
study,” Inform Software Tech., vol. 71, pp. 77-91, 2016.

[6] J. Bocanegra, J. Pavlich-Mariscal, and A. Carrillo-Ramos, “DMLAS: A domain-specific
language to specify the design of adaptive systems,” in 10CCC, 2015.

[7] Institute for Software Integrated Systems (ISIS), “Generic Modeling Environment – GME,”
[Online]. Available: http://www.isis.vanderbilt.edu/projects/gme/. [Accessed March 2016].

[8] H. Wei, S. Zuckerman, X. Li and G. Gao, “A dataflow programming language and its
compiler for streaming systems,” in Inte. Conf. Computational Sci., vol. 29, pp. 1289-1298,
2014.

[9] Eclipse Foundation, “Sirius,” [Online]. Available: https://eclipse.org/sirius/. [Accessed
March 2016].

[10] Y. Brun, R. Desmarais, K. Geihs, M. Litoiu, A. Lopes, M. Shaw, and M. Smit, “A design
space for self-adaptive systems,” in Software Engineering for Self-Adaptive Systems. Berlin:
Springer, 2013, pp. 33-50.

[11] F. Baude, L. Henrio, and C. Ruz, “A component-based programming model for autonomic
applications,” Programming Distributed and Adaptable Autonomous Components—the GCM/
ProActive Framework, vol. 45, no. 9, pp. 1189-1227, 2015.

[12] N. Gamez, L. Fuentes, and J. M. Troya, “Creating self-adapting mobile systems with
dynamic software product lines,” IEEE Software, vol. 32, no. 2, pp. 105-112, 2015.

[13] M. Berkane, L. Seinturier and M. Boufaida, “Using variability modelling and design
patterns for self-adaptive system engineering: Application to smart-home,” Int. J. Web
Eng. Technol., vol. 10, no. 1, pp. 65-93, 2015.

[14] X. Mao, M. Dong, L. Liu, and H. Wang, “An integrated approach to developing self-adap-
tive software,” J. Inform. Sci. Eng., vol. 30, no. 4, pp. 1071-1085, 2014.

[15] T. Vogel and H. Giese, “Model-driven engineering of self-adaptive software with eurema,”
ACM TAAS, vol. 8, no. 4, p. 18, 2014.

[16] Y. E. Gelogo and H. Kim, “LotG: A Design of Adaptive u-learning System,” Asia-pacific
Journal of. Multimedia Services Convergent with Art, Humanities, and Sociology, vol. 5, no. 3,
pp. 239-249, 2014.

354

Ing. Univ. Bogotá (Colombia), 20 (2): 335-354, julio-diciembre de 2016

José Bocanegra García, Jaime Pavlich-Mariscal, Angela Carillo-Ramos

[17] P. J. Muñoz-Merino, C. D. Kloos, M. Muñoz-Organero, and A. Pardo, “A software engi-
neering model for the development of adaptation rules and its application in a hinting
adaptive e-learning system,” Comput. Sci. Inform. Syst., vol. 12, no. 1, pp. 203-231, 2015.

[18] P. A. Akiki, A. K. Bandara, and Y. Yu, “Adaptive model-driven user interface development
systems,” ACM Comput. Surveys, vol. 47, no. 1, 2015.

[19] D. L. Moody, “The ‘physics’ of notations: toward a scientific basis for constructing visual
notations in software engineering,” IEEE Trans. Softw. Eng., , vol. 35, no. 6, pp. 756-779,

2009.

