
A genomics–based profanity–safe Web forum
Christian Mogollón Pinzón

School of Engineering
Universidad Distrital

Bogotá, Colombia
cgmogollonp@correo.udistrital.edu.co

Sergio Rojas-Galeano
School of Engineering
Universidad Distrital

Bogotá, Colombia
srojas@udistrital.edu.co

Abstract—User–generated text is the primary source of
interaction in virtual communities on Web2.0 applications
such as forums, blogs or social networks. Unfortunately some
users abuse this freedom of speech liberty to disseminate
non–authorised profanity content (foul language, insults,
advertisement, boosting or denigration of a name or a
trademark). Naïve filters based on literal comparisons against
black-lists of forbidden terms, fail to detect variations obtained
by character transliteration or masking (e.g. writing piss as
P!55 or p.i.s.s). Recent approaches to this problem inspired
in sequence alignment methods from comparative genomics in
bioinformatics, have shown promise in preventing overlooking
such variants. Building upon those results we have developed
an experimental Web forum allowing users to generate text
that is screened against transliterated profanity. In this paper
we introduce the software (ForumForte) and describe briefly
the technique and engineering behind it. We anticipate this
kind of tools might prove beneficial for content moderation in
mainstream applications such as newspaper forums and micro–
blogging social networking sites. Our software is open-source
under the New BSD License and is available at:

http://tinyurl.com/ForumForte

FOROS WEB SIN OBSCENIDADES MEDIANTE TÉCNICAS GENÓMICAS
Resumen− La interacción en comunidades virtuales Web2.0

como foros blogs, o redes sociales, ocurre principalmente a
través de intercambio de mensajes de texto entre usuarios.
Lastimosamente algunas personas aprovechan esta posibilidad
para expresar comentarios con contenido obsceno o propaganda
no autorizada. Para evadir los filtros típicos de censura mediante
listas negras de palabras, tales usuarios recurren a translitera-
ciones o enmascaramientos del texto (por ejemplo cambiar mierda
por m1erd@ o m.i.e.r.d.a). Estudios recientes han propuesto
detectar este tipo de variaciones mediante técnicas inspiradas
en la genomica comparativa. Siguiendo esta misma linea, hemos
desarrollado un foro Web experimental donde los mensajes
ingresados por los usuarios son inspeccionados y depurados de
obscenidades transliteradas. Este artículo presenta dicho software
con una descripción breve de su diseño y su uso con datos reales
provenientes de foros de noticias de periodicos y de trinos de una
red social. El software se distribuye con licencia libre y también
está disponible en línea en: http://tinyurl.com/ForumForte.

I. INTRODUCTION

One of the main aspects in Web2.0–based services is the
ability of continual incorporation of user-generated content
from multiple sources and formats, motivating collaboration
and mutual construction of scenarios yielding richer user
experiences [1]. An illustrative example are digital forums

and blogs where content is generated in the shape of written
text, allowing users to express their own or comment on
other’s opinions. Unfortunately this de facto freedom of speech
is sometimes misused with inappropriate purposes such as
insulting or degrading an entity, or the opposite, to boost
unauthorized propaganda (spamming) or simply to commu-
nicate using offensive language to other participants in the
community. For these reasons, usually this kind of digital
services must be moderated by website administrators in order
to guarantee profanity–free user–generated text content.

A naïve moderation tool consists of defining black–lists of
forbidden terms that are filtered by a literal comparison against
the text. However, these filters fail when facing variations of
the original terms due to involuntary typos or misspellings, or
more worryingly, due to deliberate attempts where symbols in
the word are transliterated with the aim of trespassing the filter
while visually carry on the actual meaning of the profanity.
Take for example the vulgar slang term piss transliterated as
P!55 or p-i-s-s or worse still, P-!-5-5. Any of these attacks
would easily defeat a literal comparison filter, but the message
would still be clear for most readers. It is evident that the
number of variants obtainable by transliteration grows combi-
natorial in size; thus, the black–list approach is impractical.

In a similar vein, the described phenomena has been
identified in many digital media platforms [2], [3] and fur-
thermore, has been characterised as a security threat [4].
Recent approaches to tackle this problem taking inspiration on
bioinformatics techniques used to perform sequence alignment
of genomes from different organisms, have shown promising
results [5], [6]. Building upon those results, we have developed
an experimental profanity–safe Web forum (ForumForte).
Our software was conceived as a concrete application of our
previous results on the problems of revealing masked terms
in spam email [5], automatic evaluation of fill-in-the-blank
questionnaires [7] and automatic syntax verification of short
blocks of code in programming languages [8]. The technical
details of the mechanism tailored to the Web forum application
would be reported elsewhere.

The paper focuses on describing the software, its design,
motivation and potential application for content moderation in
mainstream applications such as newspaper forums and micro–
blogging media platforms. ForumForte is available free under
the New BSD License and is available online or for download
at: http://tinyurl.com/ForumForte.

978-1-4673-9461-1/15/$31.00 c© 2015 IEEE

http://tinyurl.com/ForumForte
http://tinyurl.com/ForumForte
http://tinyurl.com/ForumForte

II. MOTIVATION

The transliteration scheme described above has been studied
in computer science as the problem of approximate string
matching [9].These algorithms are intended to compute the
edit character–wise distance between two texts [10], that is,
the number of character corrections (substitutions, deletions
or insertions) that are needed to transform one text into the
other. These techniques were rapidly incorporated into word–
processing applications as basic find & replace and spelling
correction tools. More recently, they have also been widely
used as core technology in search engines and Web crawlers.

Around roughly the same time, researchers in genomics
developed algorithms for comparison and alignment of se-
quences of DNA and protein molecules from the genome
and proteome of living organisms [11], [12]. It turned out
that those sequences correspond to long strings of letters
representing the initials of the molecules (in the DNA case {A,
G, C, T} for (A)denine, (C)ytosine, (G)uanine and (T)hymine.
Different organisms would have different genomes but when
the sequences are aligned, similarities between genome sub–
regions (genes) are found, except for a few places that differ.
The small variations are due to mutations that insert, delete or
substitute one molecule or the other. The mutation may imply
a change on the function of the phenotype that the subsequence
codes for. An example of the sequence alignment comparison
with mutations is shown in Figure 1.

Figure 1: Sequence alignment with mutations highlighted of an
excerpt of the gene coding for vitamin C synthesis in several
species of mammals. Cows, dogs, and rats make their own vitamin
C whereas humans and great apes have to take it from diet. Figure
credit: [13].

The evolutionist assumption that mutations occurred during
millions of generations of descendants from a common ancient
genome have given origin to the different species, can be
depicted as a philogenetic tree where branches grow every time
a variation has happened. In a similar way one can think of the
generation of profanity variants due to transliteration, depicted
as a similarity tree where branches grow as a result of edits
or corrections over the original term (see Figure 2). Instead of
keeping all the possible trees which will grow combinatorially
with all possible edits, the idea behind our profanity detection
mechanism is to trace back the transliterated variant up to its
common ancestor (that is, the canonical version of the for-
bidden vocable) via classical sequence alignment algorithms
[11], [12] adjusted with special–purpose similarity measures
designed to tackle the aforementioned transliteration scheme.
We shall describe such measure in the next section.

III. MECHANISM

The essence of the filtering mechanism is the dynamic–
programming approximate sequence matching algorithm (see

CACCCGAGGG

CACCCGCGGG

CACTCGCGGG

CACCCG−GGG

CACCCA−GAG CACCCT−GAG

(a)

BASTARD

BAST4RD

BAST4RRRD

BAST@RD

B4ST@RD B∗A∗S∗T∗@∗ R©∗D

(b)
Figure 2: Sequence similarities trees. (a) Phylogenetic tree of the
last exon of the gene coding for vitamin C synthesis of Figure 1.
Mutations shown in red. (b) Similarity tree of transliterated
variants of the offensive word BASTARD. Edits shown in red.

e.g. [9], [11], [12]) that performs a pairwise comparison of the
symbols in the two sequences (the user–generated text and the
canonical profanity vocable), while progressively computing
the edit distance [10], or broadly speaking, the number of edits
(insertions, deletions or substitutions) needed to transform one
sequence into the other. The key insight in the transliteration
detection problem is to carefully account for the substitution of
visually “twin” symbols (e.g. substituting ‘o’ by any of {0, o,
ó, ò, ö, ô, Ø, Θ, O}, see Figure 3) as well as the insertion
of bogus masking characters such as {·, ∗,∼, |,−, _, :, ; }.
These couple of edits should add no value to the distance
(or difference) between any two symbols, whereas edits such
as deletion, insertion or any other substitution should count.
Hence the definition of the edit distance between two symbols
in their respective sequences (as originally introduced in [5])
is outlined in Figure 4.

Figure 3: An excerpt of the lists of twins substitutions.

The cost of filtering one instance of an user-generated text
is an important question to address. The classical sequence
matching algorithm has a cost in O(nmc) for an input text
with length n compared to a profanity vocable of length
m and a cost c for the edit distance computation. The
profanity vocables are usually short (m ≤ 10), thus we will
assume the cost is O(nc). With respect to the cost c, there
are two basic strategies to implement the membership tests
needed in the isBogusSegmentator, notBogusSegmentator

function d = edit-distance(a, b)
if isNull(b) then

d = 1; /* deletion */

else if isNull(a) and notBogusSegmentator(b) then
d = 1; /* insertion */

else if isNull(a) and isBogusSegmentator(b) then
d = 0; /* void insertion */

else if isValidSubstitute(b, a) then
d = 0; /* twin substitution */

else
d = 1; /* any other substitution */

Figure 4: Edit distance function used in the filter mechanism.

and isValidSubstitute predicates of the edit distance function.
One can either use lists of variable length for each substitution
set in Figure 3 and traverse the lists until the symbols is
found; this operation has O(k`) time and memory worst–case
complexity for a symbol alphabet of size k and maximum
substitution list size of ` (typically `� k). On the other hand
one can define a binary comparison matrix (M)ij ∈ {0, 1}
defining if symbol i is substitute of symbol j and vice
versa; this strategy has memory O(k2) complexity and O(1)
access time. We chose the matrix–based option since for an
ASCII–based symbol table, k = 127 yielding a not much
expensive memory space yet favouring the constant access
cost. Therefore, assuming a profanity dictionary size of t
vocables, the matrix implementation yields a total cost per
filtering of O(tn) and linear memory (O(n+ 1272)).

IV. IMPLEMENTATION

The development of the Web forum ForumForte was aimed
at implementing the filter mechanism described above in an
open anonymous setting where users can simply comment on
particular topic; no censorship is carried on, nor personal or
usage information is collected. Simply put, ForumForte is
a forum that screens comments against profanity and posts
them in a wall with fragments overwritten with an asterisks
mask if any (plain or transliterated profanity) is detected. Its
main purpose is to provide a test-bed for users to verify the
robustness of the filter towards transliterations attacks.
ForumForte was designed as a Web application based on

the software architectural MVC pattern [14] and the Java EE
platform [15]. In the following, we shall describe the most re-
presentative design artefacts obtained during its development.

Figure 5 summarises the use–case scenarios for the soft-
ware. There are two kind of forum users: visitors and admin-
istrator. A visitor can inspect the fora pages and comments
within; he himself can also post a comment, in which case the
filter mechanism is activated and detection statistics would be
collected. Finally he can download files for installation.

On the other hand, there is the administrator user. This
user has a password–protected account which allows him to
carry out basic maintenance tasks such as forum and subject

Figure 5: ForumForte use-case diagram.

Figure 6: ForumForte class diagram.

creation, elimination, cleaning, password update, etc. His
other usages are related to the filter mechanism: updating the
profanity dictionary, assign edit–distance tolerance, and look
at the performance statistics per forum or profanity vocable.
The tolerance refers to the maximum edit distance allowed
to consider two text sequences as equivalent (a value τ ∈
{0, 1, 2, 3}). The dynamical models (activity and sequencing
diagrams) for each use case are available on request.

The structural model of the software was designed as
an MVC-based class diagram organised in three packages,
namely business, model, and controller. (see Figure 6). The
business package include classes Forum, Admin, Filter

and Bean; these classes implement the logics of the func-
tionalities previously described. On the other hand, the model
package encapsulates the ForumBoard, Subject, Threshold,
Transliteration, Profanity; these classes are responsible
of managing the visualisation of forum comments and user
interface. Finally, the controller package consists of classes
Controller, Login, Log4j and AdminControl; these classes
control interaction with both kind of users. Detailed views of
this general model are also available.

Next we discuss briefly the persistence model of the
software, which was implemented as a relational database
using the Java Persistence API framework that carries out
the mapping from the structural model. As a result, Figure 7
shows the ER diagram of the application, consisting of tables

Figure 7: ForumForte persistence model.

Figure 8: ForumForte deployment diagram.

forum, subject, comment, filteredComment, profanity,
and tolerance. The latter were included because the admin-
istrator may fine–tune the edit-distance tolerance per profanity
term, and therefore distinct detection statistics are collected.

Finally, the deployment diagram of Figure 8 shows the sub-
systems used to run the software as a Website application. It
can be seen there, that the Catalina Server 2.4 provides the
execution environment for the components Administration

and WebForum included in the ForumForte.war pack-
age. System configuration is defined in the corresponding
properties and XML files. This environment runs on a
Apache Tomcat 7.0.42 server within a Red Hat v6 Linux

OS. Data persistence is achieved through a socket connection
to a MySQL 5.5 server within a ForumForte database session.

V. DEPLOYMENT

A. Online release and installation

ForumForte is installed an available online in http://tinyurl.
com/ForumForte (last visit: September 14th, 2015). The Web
application can be utilised with any Web browser (Firefox,
Chrome, Explorer and Safari). Alternatively, interested users
can download and install the software in their own servers
(user and installation guide also available from the same URL).

B. Forum usage

A visitor may browse the available fora by clicking the
Foros option in the menu bar, which redirects to the page
shown in Figure 9. Any choice here would display the list of
subjects previously defined by the administrator in each forum.
Then, by choosing one of the subjects, the visitor would be
taken to the actual forum page, where comments made by
other visitors would be shown (see Figure 10). We remark
that interaction with the forum is anonymous and no private
or network access information is collected by the system.

Figure 9: List of available fora in ForumForte.

Figure 10: The appearance of an actual forum in ForumForte.

The layout of an actual forum is very intuitive and easy to
use. There is basically a text box on the top of the page for
the visitor to write his or her comment. The visitor can choose
to either clean the current content of the text box, or to post
the comment in which case, it would be submitted to the filter

http://tinyurl.com/ForumForte
http://tinyurl.com/ForumForte

engine. Once the text is processed, the original and filtered text
would be posted to the forum wall as the most recent entry
(the one just below the text box). Each entry consists of the
filtered text sequence aligned over the original text. If one or
many profanity transliteration attacks are detected they would
be overwritten with a “∗∗∗ . . .∗∗” mask on the top line of the
entry. Comments are kept in the wall in chronological order,
most recent first. Finally, the visitor may choose to display all
comments in the forum, only profanity–marked comments, or
only profanity–free comments (see Figure 11).

Figure 11: Display options of forum comments.

C. Forum administration

An administrator user can access the dash board of
Figure 12 to carry out typical maintenance operations in
forums, subjects, profanity dictionary and performance reports.
For this purpose, the user should choose the Administración
option in the menu bar, and confirm his identity with a valid
password. The software supports a unique administrator whose
username and password can be updated at convenience using
the Login choice. The remainder options in the board are fora,
subjects, profanity dictionary and statistics, which redirect to
Web pages where the administrator can create, eliminate or
clean contents of the corresponding item.

For the sake of illustration, a sample subject administration
page is shown in Figure 13 where the clean up and remove

commands are visible. The administrator can navigate
to the actual forums pages and visualise the comments or
participate in the discussion, by clicking over the forum name.
Similarly, the profanity dictionary module allows to create,
remove or tune the transliteration tolerance of non-admitted
vocables in the forum pages.

In addition, the statistics module (see Figure 14) reports
detection rates discriminated by forum or by profanity voca-
ble. The latter are furthermore broken down into individual
rates per tolerance parameter, providing valuable information
for tuning purposes with respect to particular vocables and
transliteration attack patterns. Notice that forum statistics are
computed instantly with its current comment contents whereas
profanity statistics are historical beginning at the moment
they were created or assigned a different tolerance parameter.
Statistics are lost when the associated item is removed.

VI. FILTERING EXTERNAL USER–GENERATED TEXT

ForumForte features an interesting interface to apply its
filtering mechanism to external sources of user–generated
text. This feature takes advantage of the JSON format for
content extraction and storing provided by the Twitter R© social
network trough its publicly–available API. This digital media
platform is essentially a world–wide community forum for free

Figure 12: The administrator dash board in ForumForte.

Figure 13: A sample subject administrator page in ForumForte.

short text messaging (comments no longer than 140 characters,
known as tweets) with no moderation, and therefore a real–
world scenario of the ideas motivating our development.

Prior to try this feature, the user should prepare an input
file with a JSON format. Such file can be obtained by logging
in into the Twitter API console with a valid user account1 and
then extracting tweets for a chosen user profile or trend topic.
The file can then be processed in ForumForte entering the
special–designed forum found in the path Foros→ Filtrado de
trinos. This page, in contrast with the typical forum template,
includes additional options to load and submit the file to the
filtering engine (see Figure 15), which would process each
tweet in the file and post it to the forum as if it was originally
typed in by a visitor.

We highlight that by adhering to the Twitter JSON format,
it is possible to filter user–generated text from other sources.

1The API Twitter is available at: https://dev.twitter.com/rest/tools/
console (last visit: September 14, 2015)

https://dev.twitter.com/rest/tools/console
https://dev.twitter.com/rest/tools/console

Figure 14: The performance statistics module in ForumForte.

Figure 15: External JSON file processing commands in
ForumForte.

To illustrate this point, we have setup a JSON file with
300 profanity messages taken from the user comments of
news forums in a countrywide circulation newspaper from
Colombia. We curated the messages in advanced and labeled
them according to a profanity list of colombian obscenities.
The detection rates of the filtering mechanism are reported
in Table I, which demonstrate the feasibility and promise of
the method in real–world scenarios. The JSON example files
described earlier are available on request.

Obscenity Ground Detections per tolerance parameter
length (m) truth τ = 0 τ = 1 τ = 2 τ = 3

2 28 33 2652 720 720
3 33 25 2085 5774 1053
4 205 186 1920 12277 21449
5 136 115 281 2517 9502
6 33 32 60 461 4688
7 33 28 29 85 647
8 26 19 25 34 94
9 43 33 36 53 92

Table I: Detection rates in the real-life dataset. Greyed values
denote detection rates closest to the ground truth. Higher values
indicate occurrence of false positives. In shorter obscenities (m ≤
6) a tolerance τ = 0 is more effective, whereas medium size or
larger obscenities (m ≥ 7), require higher tolerances τ = 1, 2.

VII. CONCLUSION

The transliteration attack in user–generated text exploits the
visual ability of the human mind to interpret the semantics
of a message overwritten with substitutions of twins symbols
or insertion of bogus segmentations. Blacklist–based com-
puter filters, on the contrary, have limited ability to detect
such variants. Taken inspiration on algorithms for sequence
alignment widely–used in bioinformatics, we have built an
academic software tool to counter fight such anomaly, showing
promising results. We anticipate this technology may have
interesting applications for content moderation in Web2.0
digital services such as forums, blogs and social networks.
It is worth to note that although the case study showed in
this paper was targeted at Spanish obscenities, the mechanism
is language–independent and requires no training before use
other than setting up a base–list of canonical forbidden terms.

A critical task during the operation of the mechanism would
be related to fine–tuning the canonical versions in the base–
list along with their tolerance parameters for particular purpose
or language, while tracking the behaviour of malicious users
in coming up with new transliteration strategies. Performing
automatic tuning is an interesting topic of further research.
Another potential avenue is to study speed and concurrency
issues on high–volume content–generation environments.

REFERENCES

[1] T. O’reilly, “What is Web 2.0: Design patterns and business models for
the next generation of software,” Communications & strategies, no. 1,
p. 17, 2007.

[2] S. Sood, J. Antin, and E. Churchill, “Profanity use in online communi-
ties,” in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. ACM, 2012, pp. 1481–1490.

[3] W. Wang, L. Chen, K. Thirunarayan, and A. P. Sheth, “Cursing in
English on Twitter,” in Proceedings of the 17th ACM conference on
computer supported cooperative work & social computing, 2014.

[4] M.-E. Maurer and L. Höfer, “Sophisticated phishers make more spelling
mistakes: using URL similarity against phishing,” in Cyberspace Safety
and Security. Springer, 2012, pp. 414–426.

[5] S. A. Rojas-Galeano, “Revealing non-alphabetical guises of spam-trigger
vocables,” DYNA, vol. 80, pp. 15 – 24, 2013.

[6] X. Zhong, “Deobfuscation based on edit distance algorithm for spam
filitering,” in Machine Learning and Cybernetics (ICMLC), 2014 Inter-
national Conference on, vol. 1. IEEE, 2014, pp. 109–114.

[7] V. P. Cardona-Zea and S. A. Rojas-Galeano, “Recognising irregular an-
swers in automatic assessment of fill-in-the-blank tests,” in Engineering
Applications (WEA), 2012 Workshop on. IEEE, 2012, pp. 1–4.

[8] S. A. Rojas-Galeano, “Towards automatic recognition of irregular, short-
open answers in Fill-in-the-blank tests,” Tecnura, vol. 18, 2014.

[9] R. A. Wagner and M. J. Fischer, “The string-to-string correction prob-
lem,” Journal of the ACM, vol. 21, pp. 168–173, 1974.

[10] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” Soviet Physics Doklady, vol. 10, no. 8, 1966.

[11] S. B. Needleman and C. D. Wunsch, “A general method applicable to
the search for similarities in the amino acid sequence of two proteins,”
Journal of Molecular Biology, vol. 48, no. 3, pp. 443 – 453, 1970.

[12] T. F. Smith and M. S. Waterman, “Identification of common molecular
subsequences,” Journal of Molecular Biology, vol. 147, no. 1, 1981.

[13] D. Venema. (2013, June 28) Evolution basics: Genomes as ancient
texts. The BioLogos Forum. Last visited: September 14th, 2015.
[Online]. Available: http://biologos.org/

[14] A. Leff and J. T. Rayfield, “Web-application development using the
model/view/controller design pattern,” in Enterprise Distributed Object
Computing Conference, Proceedings. Fifth IEEE International, 2001.

[15] D. Alur, D. Malks, J. Crupi, G. Booch, and M. Fowler, Core J2EE
Patterns (Core Design Series): Best Practices and Design Strategies.
Sun Microsystems, Inc., 2003.

http://biologos.org/

