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Abstract
Operations of companies have become over-dependent 
on their supporting enterprise software applications. 
This situation has placed a heavy burden onto software 
maintenance teams who are expected to keep these ap-
plications up and running optimally in varying execution 
conditions. However, this high human intervention drives 
up the overall costs of software ownership. In addition, the 
current dynamic nature of enterprise applications consti-
tutes challenges with respect to their architectural design 
and development, and the guarantee of the agreed quality 
requirements at runtime. Efficiently and effectively achiev-
ing the adaptation of enterprise applications requires an 
autonomic solution. In this paper, we present SHIFT, a 
framework that provides (i) facilities and mechanisms for 
managing self-adaptive enterprise applications using an 
autonomic infrastructure, and (ii) automated derivation 
of self-adaptive enterprise applications and their respective 
monitoring infrastructure. Along with the framework, 
our work led us to propose a reference specification and 
architectural design for implementing self-adaptation 
autonomic infrastructures. We developed a reference 
implementation of SHIFT; our contribution includes 
the development of monitoring infrastructures, and 
dynamic adaptation planning and automated derivation 
strategies. SHIFT, along with its autonomic infrastruc-
ture and derived enterprise application, can provide a 
cost-effective mean to fulfill the agreed quality in these 
types of applications.

Keywords 
self-adaptive enterprise applications; software product 
lines; component configurations 

Resumen
Las operaciones de las empresas se han vuelto excesiva-
mente dependientes en sus aplicaciones empresariales. 
Esta situación ha puesto una carga sobre los equipos 
de mantenimiento de software, de quienes se espera que 
mantengan estas aplicaciones disponibles y funcionando 
óptimamente en diferentes condiciones de ejecución. Sin 
embargo, esta alta intervención humana hace subir los 
costos totales de propiedad del software; además, la actual 
naturaleza dinámica de las aplicaciones empresariales 
constituye retos respecto a su diseño arquitectónico y 
su desarrollo, y el cumplimiento en tiempo de ejecución 
de los escenarios de calidad acordados. Para lograr adaptar 
las aplicaciones empresariales con eficiencia y eficacia se 
requiere una solución autonómica. Este artículo presenta 
SHIFT, un marco de trabajo que provee: 1) servicios y 
mecanismos para la gestión de aplicaciones empresariales 
autoadaptativas mediante una infraestructura autonómica, 
y 2) derivación automatizada de aplicaciones empre-
sariales autoadaptativas y su respectiva infraestructura 
de monitoreo. Junto con el marco de trabajo, el trabajo 
lleva a proponer una especificación de referencia y un 
diseño arquitectónico para implementar infraestructuras 
autonómicas para autoadaptación. Se desarrolló una 
implementación de referencia de SHIFT. Se incluye el 
desarrollo de infraestructuras de monitoreo y estrategias de 
planeación dinámica de adaptaciones y derivación automa-
tizada. SHIFT, junto con su infraestructura autonómica y 
aplicaciones empresariales derivadas, puede proporcionar 
un mecanismo costoefectivo para cumplir con la calidad 
acordada en este tipo de aplicaciones.

Palabras clave 
aplicaciones empresariales autoadaptativas; líneas de 
producto de software; configuraciones de componentes



305Development and Instrumentation of  a Framework for the Generation and Management of  Self-Adaptive Enterprise Applications

Ing. Univ. Bogotá (Colombia), 20 (2): 303-333, julio-diciembre de 2016

Introduction
Enterprise Applications (EAs) have become key assets for all modern organi-
zations, holding huge amounts of data and providing concurrent user access 
to such information as well as processing services for it. They live in dynamic 
execution contexts and are no longer isolated but instead interact with other 
systems. With operations of companies increasing the dependency on their 
EAs, any disruption to them translates into severe direct and indirect financial 
losses (e.g., lost transaction revenues, increased labor costs, legal penalties, lost 
business opportunities, brand damage) [1]. Modern EAs are, thus, expected to 
maintain functional and quality agreements despite the fact that their dynamic 
nature implies they are constantly under the influence of external, unforeseeable 
stimuli (i.e. disturbances) from various sources inside or outside the system scope 
that may affect their behavior or the levels at which they satisfy agreed quality. 
Regardless of the intrinsic uncertainty of disturbances and their possible sources, 
EAs still have to fulfill the customers’ quality agreements. This has generated a 
growing interest concerning support of infrastructures for autonomic adaptation, 
as well as flexible architectural designs conceived for allowing recomposition at 
runtime. However, achieving self-adaptation in EAs requires a proper framework 
and tooling to cope with two challenges (i) the fulfillment of the agreed quality 
at runtime, and (ii) the design, development, and evolution of such self-adaptive 
enterprise applications.

In this paper, we consider the problem of implementing self-adaptation 
support in EAs. Targeting this we disclose SHIFT [2], a framework that pro-
vides (a) facilities and mechanisms as part of an autonomic infrastructure for 
managing self-adaptive enterprise applications based on the adaptation feedback 
loop of the DYNAMICO reference model [3] and (b) support for automated 
derivation of self-adaptive enterprise applications considering possible quality 
and monitoring variations. A number of proposals have achieved to develop 
autonomic infrastructures for self-adapting applications (e.g., [4]–[7]); however, 
they do not fully address all the concerns related to the first challenge, and, 
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furthermore, they do not approach the second challenge. Our goal is to offer a 
comprehensive proposal.

Our first technical contribution is to provide a low-level, complete and con-
sistent specification and architectural design for building autonomic infrastruc-
tures with a minimum set of functional and non-functional requirements. Our 
requirements come mostly from IBM’s architectural blueprint for autonomic 
computing [8], but we modify some of them, include new ones and specify them 
with the necessary technical details for their straightforward implementation. 
Our second technical contribution is to provide facilities that dynamically and 
non-intrusively measure relevant data from the EAs and their execution contexts. 
Our third technical contribution is to provide automated reasoning at runtime 
regarding context- and system-sensed data to determine and apply necessary 
adaptations to the EA, considering deployment and undeployment tasks. Our 
last technical contribution is to assist software architects and engineers in the 
specification and development of monitoring infrastructures, and the design and 
development of EAs. We contemplate the modeling of functional and quality 
variations, and support the automated derivation of EA components and their 
respective monitoring infrastructures.

We organize the remainder of this paper as follows. Section 1 introduces the 
context of our study and shows related work. Section 2 provides a high-level 
design of the SHIFT framework as well as an overview of its reference imple-
mentation. Section 3 describes the specification and architectural design of 
SHIFT’s autonomic infrastructure, and presents our monitoring infrastructure 
and adaptation planning implementations. Section 4 exposes the mechanisms 
for SHIFT’s assisted derivation of monitoring infrastructures and enterprise 
applications. Last section sets out a summary of our contributions and outlines 
future work.

1. Background and Related Work
Our general context comprises self-adaptive software systems, autonomic in-
frastructures providing self-adaptation support, and automated derivation of 
software systems. Subsection 1.1 presents a short overview of the general respon-
sibilities and comprising elements of autonomic infrastructures. Subsection 1.2 
briefly describes the evolution of generative software development. Subsection 
1.3 discusses related works and contrasts them with our proposed framework 
to qualitatively determine its soundness.
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1.1. Autonomic Infrastructures
An autonomic infrastructure [8] is the infrastructure that allows a managed 
system to be adapted to unforeseen context changes in order to ensure the satis-
faction of agreed quality. Composing this infrastructure are five basic elements: a 
monitor element that continuously senses relevant context data; an analyzer that 
interprets monitoring events reported by the monitor to determine whether the 
SLAs are being fulfilled or predict future shortcomings by correlating current 
measurements with historical data; and the planner and executor elements that 
synthesize and realize (respectively) action plans to alter the system’s behavior, 
either by modifying the system structure or by varying parameters to reach a 
desired system state. These four components share relevant information through 
the knowledge manager element. The autonomic infrastructure interfaces with the 
managed system through a set of touchpoint elements, namely sensors and effectors. 
Sensors collect measurements of variables of interest from the managed system; 
effectors provide the necessary interfaces to modify the resources or artifacts of 
the managed system. The DYNAMICO reference model [3] comprises three au-
tonomic infrastructures characterizing three identified levels for self-adaptation: 
(i) control objectives, (ii) managed system, and (iii) monitoring infrastructure. 
Due to extension limitations, in this paper we do not delve into the details of 
DYNAMICO; for more information refer to [3].

We have identified a lack of a detailed, standard reference specification and 
architectural design for building autonomic infrastructures. In light of this, our 
previous work in [9] gives a first step towards this with the design of a com-
ponent-based architecture for the five basic elements previously introduced. 
However, such a work does not provide a complete reference specification 
that sets out detailed functional scope, restrictions, and quality concerns. It 
is our interest to build on this work and present a reference specification and 
architectural design for the implementation of an autonomic infrastructure, 
including its functional scope, restrictions, and quality concerns, and a refer-
ence implementation for it.

1.2. Automated Derivation
Automated derivation of software seeks to automatically generate software assets 
from given written specifications [10]. The combination of Software Product 
Line Engineering (SPLE) and Model-Driven Engineering (MDE) has attracted 
attention as an important automated derivation approach. On the one hand, 
SPLE [11] aims to derive high-quality software through a (semi-)automatic 
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development process that models families of closely related software systems in 
terms of their shared common features and their variations. Then, it builds their 
implementations by assembling reusable assets promoting the desired features. 
The conceptual problem space captures a family’s functional and non-functional 
requirements in terms of variability models (e.g., feature models, orthogonal 
variability models), which also govern product configuration knowledge. In 
the solution space, SPLE approaches use a variant derivation mechanism to 
transform a product configuration into a concrete product.

On the other hand, MDE’s principle is to use domain specific models 
representing software system specifications as first-class artifacts during the 
whole development process [12]. The development of domain-specific models 
may be guided by: metamodels or domain-specific languages (DSLs) [13]. 
The former involves an abstract representation of domain concepts and their 
relationships. The latter involves a context-free grammar that determines the 
syntax (abstract and concrete) and semantics for a textual language. Gener-
ators transform such models (incrementally or in one step) into source code. 
The generators make use of model-to-model transformations, which take a 
model and transform it into another model with a different representation, 
and model-to-text transformations, which take a model and transform it into 
source code representation.

It is our interest to follow an MD-SPLE approach for the automated derivation 
of component-based enterprise applications, additional deployable enterprise 
application components when an adaptation requires them, and the artifacts 
making up sensor and monitor elements of the autonomic infrastructure.

1.3. Related Work and Conceptual Validation
Current approaches implement dynamic adaptation of service compositions at the 
language level [14]–[16], or using models at runtime [17]–[20]. The first ones 
have specific facilities, tied to the languages themselves, to handle the definition 
of constraints and conditions that regulate the replanning of compositions at 
runtime. Despite these flexibilities, they can be complex and time-consuming, 
and with low-level implementation mechanisms. Model-based approaches for 
dynamic adaptation of service compositions, on the other hand, implement, 
tacit or explicitly, the five basic elements of autonomic infrastructures [8]: (i) a 
Monitor, (ii) an Analyzer, (iii) a Planner, (iv) an Executor, and (v) a Knowledge 
manager. Our work is related to approaches that use models at runtime.
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The recent work of Alférez et al. [21] summarizes good practices implement-
ing autonomic infrastructures and gives implementation details about recon-
figuration mechanisms. They center their attention on service recomposition 
at runtime using (dynamic) product line engineering practices for assembling 
and redeploying complete applications according to context- and system-sensed 
data. However, model-based approaches for dynamic adaptation of service 
compositions (e.g., [17], [21], [22]) do not consider changing requirements 
over Service-Component Architecture (SCA) composites, Enterprise Java Beans 
(EJB), or OSGi models. This triggers new challenges given the complexity of 
deployment at the stage of adapting composites, EJB, and bundle bindings. The 
work of van Hoorn et al. [23] goes in this direction by proposing an adaptation 
framework operating over component-based software systems. Nonetheless, 
their proposal remains at a high level without working with specific component 
models and their framework is centered around component migration and load 
balancing, while our interest is component recomposition over SCA composites, 
EJB components, and OSGi bundles.

The work of Cedillo et al. in [17] is also closely related to ours. They propose 
a middleware for monitoring cloud services defined around a monitoring pro-
cess that uses models at runtime capturing low- and high-level non-functional 
requirements from Service Level Agreements (SLAs). Their middleware only 
provides a partial implementation of an autonomic infrastructure, specifically of 
the monitor and analyzer elements. Their proposal derives the monitoring code 
from the input model at runtime. The monitoring code is used by the middleware 
during the monitoring process. Heinrich et al. [22] also work around monitoring 
cloud applications; however, they are only concerned with triggering change 
events when the observation data model is populated at runtime.

Other approaches do not take into account the design, development, and 
evolution of self-adaptive applications. Our goal is to grant support for the as-
sisted derivation of EA components and their associated monitoring infrastruc-
tures. This is important in order to efficiently provide standard mechanisms to 
control the monitors’ behavior. Assisted derivation of both EA components and 
monitoring infrastructure also guarantees relevance of the complete self-adaptive 
architecture in changing context conditions of system execution [3].

In previous works, we proposed independent approaches and imple-
mentations in the contexts of the engineering of highly dynamic adaptive 
software systems with the DYNAMICO reference model [3] model-based 
product line engineering with the FIESTA approach [24]–[26]; automated 
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reasoning for derivation of product lines [27]; and the recent (unpublished) 
contributions regarding quality variations in the automated derivation 
process of product lines [26]. The SHIFT framework is motivated by the 
required integration of all these efforts as part of the SHIFT research project 
in a move to approach automation and quality awareness along the life cycle 
of enterprise applications.

2. The SHIFT Framework
The SHIFT Framework has two layers: Autonomic Infrastructure and Automated 
Derivation. Figure 1 depicts the high-level architectural view of the SHIFT 
Framework. Subsection 2.1 describes the scope of the Autonomic Infrastructure 
layer. Subsection 2.2 describes the scope of the Automated Derivation layer. Fol-
lowing sections delve into key elements of these two layers.

2.1. Autonomic Infrastructure
The Autonomic Infrastructure layer (see Figure 1 top) provides an implementa-
tion of the adaptation feedback loop of the DYNAMICO reference model [3]. 
As part of this layer, SHIFT deploys a monitoring infrastructure bound to the 
Managed Application. The monitoring infrastructure comprises a set of Sensor 
and Monitor elements for allowing the measurement of actual service executions 
in the Managed Application. Monitoring rules define when a control symptom 
should be reported to the Analyzer element for further analysis. The Analyzer 
element is in charge of deciding when an adaptation is needed to ensure the 
fulfillment of performance SLAs. When the Analyzer element identifies an ad-
aptation symptom, the framework considers the need for dynamically deploying 
and undeploying components in response. Thus, the Planner element provides 
automated reasoning on the dynamic creation of structural solutions. In order 
to obtain the best possible selection of components when configuring an ad-
aptation to a deployed product, we rely on constraint satisfaction to reason on 
the set of constraints defined by reachable quality scenarios configurations and 
their relationships with the component sets implementing them. Interactions 
between quality scenarios may occur, and since different component sets may 
be available, conflicts between component sets may arise. Through automated 
reasoning, the Planner element may cope with this issue by taking into account 
additional information to get the best possible selection of component sets when 
determining an action plan to preserve the fulfillment of performance SLAs, 
when possible.
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Figure 1. High-level architectural view of  the SHIFT components

Source: authors’ own elaboration

Realizing an action plan is the responsibility of the Executor element. This 
task includes, sequentially or concurrently, transporting components from their 
source repository to the corresponding computational resource, undeploying 
previous versions of them, deploying them into the middleware or application 
server, binding their dependencies and services, and executing them. All of these 
while redirecting new requests for the application’s components to the new in-
stances being deployed, and allowing existing requests and sessions to properly 
terminate. The Executor element performs these actions over SCA composites, 
EJB components, and OSGi bundles by means of the introspection capabilities 
in the FraSCAti middleware [28] and the dynamic redeployment in operational en-
vironment features in the GlassFish and Equinox middleware. In addition, The 
Executor element is able to recompile the system’s source code, if necessary, to 
make measurement interfaces available to the monitoring infrastructure. Accord-
ingly, these deployment tasks are applied to the Monitor element to effectively 
ensure dynamic quality awareness.

Some conceptual constraints, nonetheless, will limit the reach of the framework 
in the Autonomic Infrastructure layer. For instance, the measurement of quality 
attributes is a challenging field and many of them are particularly difficult to 
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measure (e.g., the security quality attribute). Additionally, the Autonomic Infrastruc-
ture elements are inherently tied to the Managed Application at different extents, 
particularly the Analyzer, the Planner, and the Executor elements are closely related 
to it. We are currently focused on the performance quality attribute and, thus, 
automated measurement support is bound to the provided performance sensors, 
any other measurement will require the manual development of the correspond-
ing sensor. For the Planner element, with the use of the principles of constraint 
satisfaction we have detached the concerns related to the managed application 
into a model representation called PISCIS [29] derived, and stored in a repository 
managed by the Knowledge Manager element.

2.2. Automated Derivation
As for the Automated Derivation layer (see Figure 1 bottom left), SHIFT is con-
cerned about provisioning, through automated derivation, (i) component-based 
self-adaptive enterprise applications and their respective monitoring infrastruc-
tures, and (ii) artifacts (i.e. models and deployable enterprise application com-
ponents) that are input of the adaptation processes initiated by the autonomic 
infrastructure.

In this layer SHIFT uses two interrelated models. On the one hand, the 
Monitoring Infrastructure model captures the monitoring infrastructure scope, 
i.e. Sensor elements that will be attached to the Managed Application through a 
non-intrusive strategy based on aspect-oriented programming, and event-based 
Monitor elements that collect context data. On the other hand, the Managed 
Application model captures the functional, quality, and architectural scopes of the 
EAs. Generated component sets and quality decision models, relating component 
sets with quality scenarios, are stored in the Components and Quality Repository, 
which is managed by the Knowledge Manager element. Although the process of 
generating EA components is automated, binding the functional, quality, and 
architectural scopes of an EA requires the intervention of a software architect 
since complex interactions may arise.

3. Autonomic Infrastructure
Pertaining the Autonomic Infrastructure layer in Figure 1 (top), SHIFT contains a 
reference implementation for the autonomic infrastructure necessary to realize 
the adaptation feedback loop of the DYNAMICO reference model. Subsection 
3.1 presents the proposed reference specification for building autonomic infra-
structures for self-adaptation and from which SHIFT was built. Subsection 3.2 
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describes in detail the monitoring infrastructure. Subsection 3.3 exposes our 
dynamic adaptation planning strategy for the Planner element.

3.1. Reference Specification
We build from the design proposed in [9] and present a reference specification 
and architectural design for the implementation of an autonomic infrastructure, 
including its functional scope and quality considerations, and structural and 
behavioral architectural designs. 

3.1.1. Functional Scope

An autonomic infrastructure is required to implement the following set of 
functional requirements, based on IBM’s architectural blueprint for autonomic 
computing in [8].

Sensor requirements:

S-1 A Sensor element must collect measurements of variables of interest 
(from now on referred to as sensed data) (e.g., quality attributes spec-
ified in the series of standards ISO 25000 [30] like performance of a 
service, availability of resources, topology information, configuration 
properties) in the context in which it is located, i.e. its execution context 
or the context of the domain to which it belongs.

S-2 A Sensor element must temporarily store sensed data.
Rationale. The Monitor elements’ responsiveness relies on the timely 
availability of the sensed data. This availability can be achieved by 
supporting temporary storage, which would allow Monitor elements 
to gather data at any moment. Nonetheless, Sensor elements can use 
up memory space assigned to the Managed Application, thus, other 
storage options should be taken into consideration.

S-3 A Sensor element must expose a subset of the sensed data to the set of 
Monitor elements, whether both Monitor and Sensor elements have 
been deployed jointly or independently.

S-4 A Sensor element must remove a subset of the sensed data being stored 
temporarily when instructed by a Monitor element.



314

Ing. Univ. Bogotá (Colombia), 20 (2): 303-333, julio-diciembre de 2016

Hugo Arboleda, Andrés Paz, Miguel Jiménez, Gabriel Tamura

S-5 A Sensor element must perform primitive operations (e.g., count rep-
etitions of a measurement in a given time interval) on a subset of the 
sensed data.
Rationale. The ongoing transmission of sensed data from Sensor ele-
ments to Monitor elements can overuse network resources, thereby 
hindering the Managed Application’s regular operation. Placing 
primitive operations in Sensor elements can considerably reduce the 
amount of data transmitted through the network when Monitor ele-
ments do not require the entire collection of sensed data but, instead, 
calculations over it.

Monitor requirements:

M-1 A Monitor element must obtain the sensed data from one or more 
Sensor elements where it has been captured through the required access 
modes, i.e. by request (pull) or per occurrence (push).

M-2 A Monitor element must calculate metrics (based on sensed data) 
related to the variables of interest to characterize the current state of 
the Managed Application. Said calculation can be made periodically or 
whenever a new measurement happens, which would produce average 
or instant calculations, respectively. This calculation can also involve 
the composition or correlation of metrics calculated by other Monitor 
elements.

M-3 A Monitor element must make the calculated metrics available, 
through the Knowledge Manager element, to other Monitor elements 
so they can compose their own calculations.

M-4 A Monitor element must filter the calculated metrics before being 
reported to the Analyzer element. The filter must be done through 
the application of a set of domain-dependent monitoring rules over 
the calculated metrics.

M-5 A Monitor element must report to the Analyzer element control symp-
toms, i.e. the metrics (simple or compound) that meet the conditions 
set by the monitoring rules.

M-6 A Monitor element must allow changing the periodicity in which it 
calculates its metrics.
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M-7 A Monitor element must allow to update the set of monitoring rules it 
applies to perform the filter of metrics. Such update may be triggered 
by, for example, a structural change of the Managed Application, or a 
change in the quality scenarios.
Rationale. Business and system’s operation can make a variable of 
interest gain or lose relevance, thereby requiring flexibility against such 
behavior at runtime. Furthermore, providing elements with operations 
to control their internal behavior help support such flexibility.

Analyzer requirements:

A-1 An Analyzer element must evaluate reported control symptoms 
against reference values previously established (corrective behavior). 
Reference values must be recovered using the Knowledge Manager 
element. The evaluation should identify violations that occur with 
respect to these reference values. A violation indicates an adaptation 
symptom.

A-2 An Analyzer element must store a record of trends and violations 
through the Knowledge Manager.

A-3 An Analyzer element must reason about the reported control symptoms 
taking into account the historical records of trends and violations (re-
covered using the Knowledge Manager element) to identify observable 
degradation trends with respect to the reference values (also recovered 
using the Knowledge Manager element) to avoid future violations 
(predictive behavior). The evaluation can employ time-series forecast-
ing and queuing models. An observable degradation trend indicates 
an adaptation symptom.

A-4 An Analyzer must create and send one or more change requests to the 
Planner element if adaptation symptoms are detected. Such request 
must include which variable of interest is at risk of being (predictive 
behavior) or has already been (corrective behavior) violated, the vari-
able’s corresponding value, the motive for the request (e.g., violation, 
risk of violation), and the set of artifacts under the scope of the variable 
of interest (i.e. affected artifacts).
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Planner requirements:

P-1 A Planner element must reason about the variable of interest, the 
degree of the violation, and the set of affected artifacts to identify a 
reachable, optimum resolution. For this reasoning, the Planner element 
must take into account the quality, quality configuration, and artifact 
applicability models. This information must be recovered using the 
Knowledge Manager.

P-2 A Planner element must perform a gap analysis to determine the 
necessary, high-level actions (e.g., deploy new artifacts, redeploy ex-
isting artifacts, replace existing artifacts with alternate ones, remove 
existing artifacts, update configuration setting) to reach the identified 
resolution.

P-3 A Planner element must create and send an action plan to the Ex-
ecutor element. Such action plan must include the set of high-level 
control actions determined with the gap analysis that will modify the 
Managed Application.

P-4 A Planner element must store a record of optimum resolutions and 
their corresponding action plans through the Knowledge Manager.

P-5 A Planner element must recover a previous action plan through the 
Knowledge Manager if the reachable optimum resolution identified 
matches to one of the action plans stored.

Executor requirements:

E-1 An Executor element must perform the realization of the action plan 
given by the Planner element through the scripting of executable com-
mands (e.g., compile, deploy, redeploy) by the corresponding Effector 
elements.

E-2 An Executor element must use the corresponding Effector element to 
run commands over the Managed Application.
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Effector requirements:

Ef-1 An Effector element must allow managing a resource or set of re-
sources (e.g., manage a middleware to deploy, redeploy, and undeploy 
components).

Knowledge manager requirements:

K-1 A Knowledge Manager element must perform create, retrieve, update, 
and delete operations over the repositories where the information of 
interest to the other elements of the autonomic infrastructure is stored.

K-2 A Knowledge Manager element must provide support operations for 
the analysis of the information managed by it.

3.1.2. Quality considerations

An autonomic infrastructure must satisfy a set of quality concerns impacting its 
functioning. As Sensor elements are placed inside of the Managed Application, 
the application’s regular operation is subject to be impacted as well. In addition 
to the previous functional requirements and their supporting quality rationale, 
we identified the quality scenarios in Tables 1 and 2... describing concerns re-
garding the development of autonomic infrastructures.

Table 1. Quality scenario for Accountability and Analyzability of  adaptation symptoms

Quality Scenario 1. Traceability of adaptation symptoms

Quality attribute Security – Accountability; Maintainability – Analyzability

Justification The lack of information in an adaptation symptom can obscure its root 
cause.

Stimulus A new change request is sent to the Planner element

Source of  stimulus Analyzer element

Environment The Managed Application is not in a desired state; an adaptation is under way.

Artifact Planner element

Response
The change request contains all the necessary information such that all 
adaptation symptoms can be traced back to the originating sources, in 
order for the Planner element to know what artifacts from the Managed 
Application to consider in the adaptation.

Source: authors’ own elaboration
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Table 2. Quality scenario for Co-existence, Interoperability, and Modularity of  Sensor elements

Quality Scenario 2. Introduction of Sensor elements

Quality Attribute Compatibility – Co-existence and Interoperability; Maintainability – Modularity

Justification Sensor elements can be entangled with the Managed Application, thereby 
increasing the complexity of the Managed Application’s maintainability.

Stimulus A new Sensor element is introduced into the Managed Application

Source of  Stimulus A change in an existing quality scenario or the occurrence of a new scenario.

Environment Managed Application and Autonomic Infrastructure are under operation.

Artifact The intended component to be sensed in the Managed Application.

Response The Sensor element is introduced into the Managed Application in a non-
intrusive way.

Source: authors’ own elaboration

3.1.3. Architectural Design

The architectural design of the autonomic infrastructure satisfies the previous 
requirements specification and follows a component-based model. The compo-
nent diagram in Figure 2 presents the structural view of the autonomic infra-
structure’s components. Due to space restrictions, communication interfaces 
are only named in Figure 2; Figure 3 presents the definition of such interfaces 
in a class diagram representation.

Figure 2. Component diagram for the reference architecture of  an autonomic infrastructure

Source: authors’ own elaboration
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Figure 3. Class diagram for the communication interfaces in Figure 2

Source: authors’ own elaboration

The autonomic infrastructure components are arranged in a ‘pipes and filters’ 
architectural style, where each component performs subsequently the specific 
functions of the corresponding autonomic element in the autonomic infrastruc-
ture. Each component, thus, exposes a very simple interface to receive an inbound 
message, process it and forward the result to the next component. The Analyzer, 
Planner, and Executor elements are implemented by one component. Generally, 
one would expect to have multiple Sensor and Monitor components depending 
on the variables of interest. The Effector component is usually provided by the 
middleware supporting the Managed Application, although one would have to 
be built if the middleware does not provide one. If the Managed Application is 
distributed among different middleware, an Effector component is required for 
each middleware. The adaptation processing behavior exhibited by the auto-
nomic infrastructure is specified step by step in the collaboration diagram in 
Figure 4. The internal designs of the components’ structure and behavior are 
not detailed in this paper (except for the Planner, which is shown in Subsection 
3.3); these will be part of future publications.
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3.2. Monitoring Infrastructure
The monitoring infrastructure is supported at runtime by the PASCANI library, 
a collection of classes that allows implementing the monitoring elements of the 
reference architecture, namely Sensors and Monitors. Sensors are introduced into 
the system, their services bound dynamically and then started, therefore allow-
ing to measure actual service executions. Monitors contain the necessary logic to 
abstract single context events (i.e. events arising from Sensors) into complex and 
relevant monitoring data to be analyzed by the Analyzer and other components 
(e.g., log components and monitoring dashboards).

Both Sensors and Monitors are supplied with standard traceability and control-
lability mechanisms to (i) prevent the monitoring infrastructure from introducing 
considerable overhead in the system’s regular operations, and (ii) feed knowledge 
sources with relevant monitoring data. Controlling the produced executable mon-
itoring components is important when the Managed Application reaches critical 
quality levels, given that it can end up breaching quality agreements or overusing 
system resources. This is also important in order to keep the monitoring data rel-
evant through time, as new variables of interest can emerge as product of system 
and business evolution. Adding support for monitoring new variables at runtime 
requires introducing new Sensors into the Managed Application and monitoring rules 
into the monitoring infrastructure. The interaction between Sensors and Monitors 
is event-based, and is specified in a single source file.

Besides Sensors and Monitors, PASCANI includes a shared variable model con-
taining relevant monitoring variables holding both reference values (e.g., Service 
Level Indicators contracted in SLAs) and values describing the current state of 
the system (e.g., current system throughput). Monitors and other components 
can read and update these values; additionally, they can observe changes in 
them, by defining events in the monitoring specifications (see Subsection 4.1).

3.3. Dynamic Adaptation Planning
The Planner element of the Autonomic Infrastructure layer in Figure 1 (top) is a key 
factor in the SHIFT Framework. SHIFT’s Planner element takes advantage of PI-
SCIS, a formal model based on constraint satisfaction for adaptation planning we 
presented in [29]. The Planner element includes automated reasoning facilities that 
help design solutions that alter the system’s behavior by modifying its structure or 
by varying parameters to reach a desired system state. In order to obtain the best 
possible selection of components to alter the system’s behavior we use the PISCIS 
model, which relies on the principles of constraint satisfaction to (i) capture the set 
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of constraints that define reachable architectural adaptations, and (ii) provide infor-
mation to reason over the best possible solution. We have adapted and extended 
the definitions presented in [27] for the PISCIS model. Figure 5 provides a look 
at the internal behavior of the Planner element in the SHIFT Framework.

Figure 4. Component collaboration for the autonomic infrastructure in Figure 2

Source: authors’ own elaboration
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The process of planning an adaptation initiates with a change request re-
ceived from the Analyzer element. The Planner then retrieves the EA’s quality 
configuration and applicability model, inputs to the PISCIS model. A quality 
configuration consists of a finite set of quality scenarios classified as unselected (i.e. 
with a state of 1) or selected (i.e. with a state of 2). We relate on applicability models 
the information of applicable component sets promoting such quality scenarios in 
order to define the necessary actions to derive adaptation plans in accordance 
with a quality configuration. Implementing a quality scenario in an application 
may often require several composed components, thus, we refer as a component 
set to the set of composed components implementing a quality scenario. An 
applicability model is a finite set of weighted application relationships between 
one component set and one quality scenario. The application relationship may be 0 
if the quality scenario does not constraint the application or deployment of the 
component set, 1 if the component set requires the quality scenario to be unselected, 
and 2 if the component set requires the quality scenario to be selected.

Figure 5. Activity diagram for the Planner element

Source: authors’ own elaboration

With these models, the Planner builds a PISCIS model, i.e. a constraint satis-
faction problem (CSP) representation, to evaluate the set of constraints defined 
by reachable quality configurations and their relationships with component sets. 
A resolution model is an applicability model instance (i.e. a solution to the CSP), 
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which binds variability and defines the system’s future structure, i.e. the resulting 
adaptation plan. A resolution model, or adaptation plan, is a finite set of component 
set applications. The application is not planned if the component set should not 
be deployed, and planned if the component set should be deployed. However, not 
every possible resolution model is a valid solution. A valid solution must satisfy the 
following constraints: (i) a component set must be deployed satisfying the respective 
application relationship of the applicability model; (ii) two deployable component 
sets must not exclude each other; and (iii) all applicable component sets must take 
into account all the quality scenarios’ states in the configuration.

Since many valid solutions may be found, we have formulated in [29] some 
operations on the previous CSP representation to provide the Planner element 
with additional information in order to determine the best possible solution. The 
application operation takes an applicability model, a quality configuration, and 
a resolution model to verify the resolution model’s applicability as a solution. 
The possible resolutions operation calculates all the potential solutions from the 
given quality configuration and applicability model. The number of resolutions 
operation calculates the number of potential resolution models from the given 
quality configuration and applicability model. This operation gives an indication 
of flexibility and complexity of the applicability model. The validation operation 
indicates if a given applicability model can provide at least one resolution model.

If no valid resolution model is found the Planner should notify no adaptation 
is possible with the available assets; thus, new assets should be derived. If at 
least one resolution model is found, the Planner should evaluate for an opti-
mum resolution. Three operations are used in this task. The flexible component 
sets operation determines the component sets shared by a given set of possible 
resolution models. The inflexible component sets operation gives the opposite 
result of the flexible component sets operation, i.e. the component sets unique 
to each resolution model in a set of possible resolution models. The optimum 
resolution operation finds the best resolution model within a set of possible 
resolution models through the use of a maximizing or minimizing function 
depending on whether the greater or the least number of component sets, 
respectively, is more fit to adapt the Managed EA. If no optimum resolution is 
found, the Planner will notify of the event. If an optimum resolution is found, 
a gap analysis is performed to compare the actual deployed artifacts with the 
identified solution and determine the necessary, high-level actions that will 
achieve the target deployment. The action plan is created and finally passed 
to the Executor element for realization.
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4. Automated Derivation
The Automated Derivation layer in Figure 1 (bottom) contains two interrelated 
models: Monitoring Infrastructure and Managed Application. Subsection 4.1 outlines 
the Monitoring Infrastructure model and illustrates how Sensor and Monitor com-
ponents are derived from such model. Subsection 4.2 explains the Managed Ap-
plication model and describes how EA components are derived from such model.

4.1. Specification and Derivation of Sensor and Monitor Elements
In SHIFT, the specification and generation of monitoring infrastructures, deploy-
able at runtime, is performed through PASCANI. PASCANI is a Domain-Specific 
Language (DSL) still under development that allows defining and generating 
sensors and monitors.

Monitoring specifications can be parameterized and derived in an automated 
way for those quality attributes with clear definition of metrics and measurement 
methods [30]. In SHIFT’s current state, we have already designed a mechanism 
for automatically generating PASCANI components for the performance qual-
ity attribute. This mechanism takes place in the automated derivation phase, 
and produces the monitoring component and its corresponding deployment 
descriptors. A monitoring specification comprises a Variables Store and a Mon-
itor skeleton for each performance factor covered in the quality submodel of 
the Decision Support model. EA developers should use these Monitor skeletons 
as templates to declare the actual Managed Application components that will be 
subject of measurement.

One of most useful features of PASCANI is the standard abstraction between 
measurement mechanisms and event-based monitoring logic, which is based 
on the Event-based and Implicit invocation architectural style [31]. This sep-
aration of concerns allows PASCANI to monitor different quality attributes, 
as far as sensors implementing the necessary measurement methods exist. In 
our current implementation, sensors to measure performance factors and ex-
ceptional behaviors are automatically generated and inserted into the Managed 
Application’s components.

Figure 6 shows a simple specification for monitoring the latency of an EJB. 
Line 1 declares that monitor Throughput will read and update variables within 
the VariableSpace Performance. As illustrated in Figure 7, a variable space reserves 
space for variable names and values. This facilitates the aggregation of monitor-
ing variables from different monitors. Line 4 of Figure 6 creates and associates a 
sensor element to the EJB ejb1. Additionally, it provides the monitor with direct 
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access to the sensor. Line 5 defines a periodic event to be raised every minute; 
each time it is raised, the throughput variable is updated according to the number 
of service executions during the last minute (see lines 8 and 9).

Figure 6. Monitor specification to monitor Service Time-behavior

Source: authors’ own elaboration

Figure 7. Variable Space specification for holding and sharing throughput values

Source: authors’ own elaboration

4.2. Specification and Derivation of Managed Applications
Figure 8 shows the Managed Application model through a UML-like notation 
diagram. Quality concerns of an EA are captured in the Decision Support scope 
under the quality submodel concept (see Figure 8 top center) as quality scenari-
os. A quality scenario may involve various functional artifacts in the EA being 
stimulated. The Domain scope (see Figure 8 bottom left) comprises concepts 
for capturing the functional scope of EAs in terms of business entities, and their 
associations and operations [26]. The Domain scope may be extended to include 
more complex business logic representations. A quality scenario, thus, relates to 
a stimulated entity and the corresponding stimulus triggers an operation defined 
in such entity. Since quality concerns for a self-adaptive EA may (and do) vary 
over time, a variability submodel (see Figure 8 top center) in the Decision Support 
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scope is focused on supporting this information. Quality scenarios in the variability 
submodel are represented as variation points and the possible alternative responses 
are the variants.

Figure 8. Interrelated models for the derivation of  component sets

Source: authors’ own elaboration

The Reference Architecture scope (see Figure 8 bottom left) is focused on sup-
porting the modeling of software architectural implementations for quality 
variations. In order to associate architectural implementations for quality vari-
ants, we select design patterns in their pure form or we compose them. Resulting 
structures are documented as variable software reference architecture fragments that 
are later composed and made concrete during the derivation process of compo-
nents and complete applications. In that way, we compose patterns respecting a 
base (common) reference architecture, over which variable reference architecture 
fragments are integrated before deriving concrete implementations. We also 
document the impact of patterns over quality attributes, i.e. a pattern promotes 
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or inhibits a quality attribute. This is useful information when choosing design 
implementations for quality variants. The Reference Architecture scope may be ex-
tended to include support for modeling other non-software related architectural 
concepts for hardware or network architecture by extending the tactic concept.

The Decision Support scope provides support for assisted reasoning regarding 
achievable quality configurations and their interactions. Our decision submodel 
(see Figure 8 top right) is a collection of (partial) reachable product quality 
configurations, expressed as sets of quality variants, and the modeling of their 
impact on other configurations. The impact of one configuration over another is 
expressed in terms of promote, require, inhibit, and exclude relationships. For every 
impact of one configuration over another, a reference architecture fragment should be 
associated, if a reasonable solution that accommodates both configurations can 
be achieved. Such architecture fragments model resulting structures and behav-
iors that produce the composition of patterns associated to variants involved in 
the related configurations. Concrete architectures of reusable components and 
complete applications are created as a composition of a common reference ar-
chitecture and reference architecture fragments. Composition rules are managed 
in model-based artifacts that will be introduced in the following subsection.

Components result from transforming into source code a set of functionalities 
with a configuration of quality levels and structured by a composition of com-
mon and variable software reference architecture fragments. The transformation 
process satisfies the constraints and conditions dictated by a common reference 
architecture and the variable reference architecture fragments that contribute 
to the overall architecture (see Figure 8 bottom left). EA developers should use 
the derived components as partial implementations conforming to a reference 
architecture promoting the desired quality attributes and must complete such 
implementations in order to fulfill their project’s specific functional requirements.

Our derivation strategy is based on a composable templates approach that 
delegates responsibilities on the templates themselves to reduce the need for a 
separate, bulky control logic to weave common and variable reference architec-
ture fragments. Each template will contain a set of model-to-text transforma-
tions. Figure 9 depicts such interaction. The common reference architecture is 
associated to a set of Common Templates in charge of orchestrating the concrete 
architecture composition. Such templates know the specific points where contri-
butions can be made, i.e. they mark out extension points. Concrete contributions 
determined by the corresponding configured quality variants are inserted into 
these extension points. Thus, common templates delegate the code declaration 
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in an extension point to one or more Contributors, which are concrete Xtend 
classes able to return source code fragments, call other standalone extension 
templates, or, in turn, mark out their own extension points and delegate onto 
other contributors the responsibility of returning required source code.

Figure 9. Delegation strategy

Source: authors’ own elaboration

We have developed a library as tool support for describing and weaving 
required contribution compositions. The library includes facilities for defining 
extension points in templates and contributions, and registering contributors. 
It also includes an engine for weaving code fragments returned by contributors. 
We have implemented the library as a set of Eclipse plug-ins. Currently, we 
generate JEE7 components under the EJB 3.2 specification. The generation of 
SCA composites and OSGi bundles is part of our roadmap. The specification, 
design, and derivation of quality-concerned enterprise application is part of our 
recent (unpublished) work available in [26].

Figure 10 shows a simple Common Template for generating the Boundary element 
of a component with an Entity-Control-Boundary microarchitecture as proposed by 
Bien in [32]. Line 1 declares the template as a CommonTemplate. Line 8 shows an ex-
tension point marking the space for including contributions from the set of registered 
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Contributors. As illustrated in Figure 11, Contributors registered to a specific extension 
point will be asked to perform their contribution (see Line 3). Figure 12 defines a 
Contributor that provides a reference to a Fast Lane Reader pattern implementation 
(see Lines 3 through 8) for retrieving all the occurrences of an entity.

Figure 10. Common template example for deriving an EJB component skeleton

Source: authors’ own elaboration

Figure 11.. Including contributions from contributors

Source: authors’ own elaboration

Figure 12. Example of  a contribution to an EJB component

Source: authors’ own elaboration
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Conclusions and Future Work
The over-dependence of companies on their software applications forces an 
uninterrupted satisfaction of agreed software quality. The high human interven-
tion needed along with the dynamic nature of enterprise applications requires, 
however, a more cost-effective approach. The use of software self-adaptation for 
activities previously done by software maintenance teams is seen as a promising 
alternative. Nonetheless, a proper framework and tooling are necessary.

In this paper we presented SHIFT, a framework for the generation and 
management of self-adaptive enterprise applications. SHIFT has a high-level 
architecture based on the DYNAMICO [3] reference model. A key point that 
lets our framework go much further than other approaches is the introduction 
of the two layers, Autonomic Infrastructure and Automated Derivation, that cover 
automation and quality awareness across the life cycle of enterprise applications. 
An important contribution of our work is the proposed reference specification 
and architectural design for implementing self-adaptation support as an auto-
nomic infrastructure, and it is from which we base the framework’s Autonomic 
Infrastructure layer. Our framework, through PASCANI, provides a rich DSL 
for defining Sensors and Monitors that abstract metrics and measurement imple-
mentations. The introduced Planner element and its associated PISCIS model, 
built on the principles of constraint satisfaction, provides a means to automated 
reasoning able to find the best configuration of components necessary to preserve 
SLAs. The Automated Derivation layer, as we have illustrated, is SHIFT’s basis for 
supporting changing functional and quality requirements. It offers support for 
the assisted derivation of enterprise application components and their associated 
monitoring infrastructures. A more detailed qualitative contrast of the SHIFT 
framework against other approaches can be found in Section 1.3.

Some conceptual constraints are still present that need to be addressed. For 
instance, measuring quality attributes is an open research field since many of 
them are particularly difficult to measure (e.g., the security quality attribute). 
Additionally, the elements composing the Autonomic Infrastructure layer are 
inherently tied to the managed system at different extents, particularly the 
Analyzer, the Planner, and the Executor elements are closely related to it. We are 
currently focused on the performance quality attribute and, thus, automated 
measurement support is bound to the provided performance monitor probes; 
any other measurement will require the manual development of the neces-
sary monitor probes. For the Planner element with the use of the principles of 
constraint satisfaction we have detached the concerns related to the managed 
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system into a CSP representation derived and stored in a repository managed 
by the Knowledge Manager element. The composition of software design patterns 
in reference architectures still requires the intervention of a software architect 
since complex interactions may arise.

As future work, we will be working on refining the reference specification and 
architectural design as well as on the design of the framework and completing 
the concrete implementations for all the elements presented, including the com-
plete autonomic infrastructure and its interoperability with Java middleware. In 
addition, we will propose and perform the validation of our SHIFT framework 
and the implemented tool support with an industrial case study.
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