
Ing. Univ. Bogotá (Colombia), 20 (2): 303-333, julio-diciembre de 2016. ISSN 0123-2126

Development and Instrumentation of
a Framework for the Generation and

Management of Self-Adaptive Enterprise
Applications1

Desarrollo e instrumentación de un marco de trabajo
para generar y gestionar aplicaciones empresariales

autoadaptativas2

Hugo Arboleda3

Andrés Paz4

Miguel Jiménez5

Gabriel Tamura6

doi:10.11144/Javeriana.iyu20-2.difg

How to cite this article:
H. Arboleda, A. Paz, M. Jiménez, and G. Tamura, “Development and instrumentation of a framework for the generation
and management of self-adaptive enterprise applications,” Ing. Univ., vol. 20, no. 2, pp. 303-333, 2016. http://dx.doi.
org/10.11144/Javeriana.iyu20-2.difg

1 Submitted on: December 18th, 2015. Accepted on: March 8th, 2016. This article is derived from the research project SHIFT:
Framework for the assisted generation of self-adaptive enterprise software, with register code 2117-569-33721, developed
by the research group I2T of the Universidad Icesi, Cali, Colombia.
2 Fecha de recepción: 18 de diciembre de 2015. Fecha de aceptación: 8 de marzo de 2016. Este artículo se deriva de un proyecto
de investigación denominado SHIFT: Framework para la generación asistida de software empresarial en tiempo de ejecución,
con código de registro 2117-569-33721, desarrollado por el grupo de investigación I2T de la Universidad Icesi, Cali, Colombia.
3 Ingeniero de sistemas, Universidad del Valle, Cali, Colombia. Magíster en Sistemas y Computación, Universidad de
los Andes, Bogotá, Colombia. Doctor en Informática, École des Mines de Nantes, Nantes, Francia. Doctor en Ingeniería,
Universidad de los Andes. Director de la Maestría en Gestión de Informática y Telecomunicaciones y profesor asistente e
investigador Grupo I2T, Universidad Icesi, Cali, Colombia. E-mail: hfarboleda@icesi.edu.co
4 Ingeniero de sistemas, Universidad Icesi, Cali, Colombia. Magíster en Informática y Telecomunicaciones, Universidad Icesi.
Asistente de investigación, Université du Québec, École de Technologie Supérieure, Montreal, Canadá.
E-mail: andres.paz@me.com
5 Ingeniero de Sistemas, Universidad Icesi, Cali, Colombia. Estudiante Maestría en Informática y Telecomunicaciones,
Universidad Icesi. Investigador Grupo I2T, Universidad Icesi. E-mail: majimenez@icesi.edu.co
6 Ingeniero de Sistemas y Computación, Pontificia Universidad Javeriana, Cali, Colombia. Magíster en Sistemas y Com-
putación, Universidad de los Andes, Bogotá, Colombia. Doctor en Informática, Université Lille 1, Lille, Francia. Doctor
en Ingeniería, Universidad de los Andes. Profesor asociado e investigador Grupo I2T, Universidad Icesi, Cali, Colombia.
E-mail: gtamura@icesi.edu.co

304 Hugo Arboleda, Andrés Paz, Miguel Jiménez, Gabriel Tamura

Ing. Univ. Bogotá (Colombia), 20 (2): 303-333, julio-diciembre de 2016

Abstract
Operations of companies have become over-dependent
on their supporting enterprise software applications.
This situation has placed a heavy burden onto software
maintenance teams who are expected to keep these ap-
plications up and running optimally in varying execution
conditions. However, this high human intervention drives
up the overall costs of software ownership. In addition, the
current dynamic nature of enterprise applications consti-
tutes challenges with respect to their architectural design
and development, and the guarantee of the agreed quality
requirements at runtime. Efficiently and effectively achiev-
ing the adaptation of enterprise applications requires an
autonomic solution. In this paper, we present SHIFT, a
framework that provides (i) facilities and mechanisms for
managing self-adaptive enterprise applications using an
autonomic infrastructure, and (ii) automated derivation
of self-adaptive enterprise applications and their respective
monitoring infrastructure. Along with the framework,
our work led us to propose a reference specification and
architectural design for implementing self-adaptation
autonomic infrastructures. We developed a reference
implementation of SHIFT; our contribution includes
the development of monitoring infrastructures, and
dynamic adaptation planning and automated derivation
strategies. SHIFT, along with its autonomic infrastruc-
ture and derived enterprise application, can provide a
cost-effective mean to fulfill the agreed quality in these
types of applications.

Keywords
self-adaptive enterprise applications; software product
lines; component configurations

Resumen
Las operaciones de las empresas se han vuelto excesiva-
mente dependientes en sus aplicaciones empresariales.
Esta situación ha puesto una carga sobre los equipos
de mantenimiento de software, de quienes se espera que
mantengan estas aplicaciones disponibles y funcionando
óptimamente en diferentes condiciones de ejecución. Sin
embargo, esta alta intervención humana hace subir los
costos totales de propiedad del software; además, la actual
naturaleza dinámica de las aplicaciones empresariales
constituye retos respecto a su diseño arquitectónico y
su desarrollo, y el cumplimiento en tiempo de ejecución
de los escenarios de calidad acordados. Para lograr adaptar
las aplicaciones empresariales con eficiencia y eficacia se
requiere una solución autonómica. Este artículo presenta
SHIFT, un marco de trabajo que provee: 1) servicios y
mecanismos para la gestión de aplicaciones empresariales
autoadaptativas mediante una infraestructura autonómica,
y 2) derivación automatizada de aplicaciones empre-
sariales autoadaptativas y su respectiva infraestructura
de monitoreo. Junto con el marco de trabajo, el trabajo
lleva a proponer una especificación de referencia y un
diseño arquitectónico para implementar infraestructuras
autonómicas para autoadaptación. Se desarrolló una
implementación de referencia de SHIFT. Se incluye el
desarrollo de infraestructuras de monitoreo y estrategias de
planeación dinámica de adaptaciones y derivación automa-
tizada. SHIFT, junto con su infraestructura autonómica y
aplicaciones empresariales derivadas, puede proporcionar
un mecanismo costoefectivo para cumplir con la calidad
acordada en este tipo de aplicaciones.

Palabras clave
aplicaciones empresariales autoadaptativas; líneas de
producto de software; configuraciones de componentes

305Development and Instrumentation of a Framework for the Generation and Management of Self-Adaptive Enterprise Applications

Ing. Univ. Bogotá (Colombia), 20 (2): 303-333, julio-diciembre de 2016

Introduction
Enterprise Applications (EAs) have become key assets for all modern organi-
zations, holding huge amounts of data and providing concurrent user access
to such information as well as processing services for it. They live in dynamic
execution contexts and are no longer isolated but instead interact with other
systems. With operations of companies increasing the dependency on their
EAs, any disruption to them translates into severe direct and indirect financial
losses (e.g., lost transaction revenues, increased labor costs, legal penalties, lost
business opportunities, brand damage) [1]. Modern EAs are, thus, expected to
maintain functional and quality agreements despite the fact that their dynamic
nature implies they are constantly under the influence of external, unforeseeable
stimuli (i.e. disturbances) from various sources inside or outside the system scope
that may affect their behavior or the levels at which they satisfy agreed quality.
Regardless of the intrinsic uncertainty of disturbances and their possible sources,
EAs still have to fulfill the customers’ quality agreements. This has generated a
growing interest concerning support of infrastructures for autonomic adaptation,
as well as flexible architectural designs conceived for allowing recomposition at
runtime. However, achieving self-adaptation in EAs requires a proper framework
and tooling to cope with two challenges (i) the fulfillment of the agreed quality
at runtime, and (ii) the design, development, and evolution of such self-adaptive
enterprise applications.

In this paper, we consider the problem of implementing self-adaptation
support in EAs. Targeting this we disclose SHIFT [2], a framework that pro-
vides (a) facilities and mechanisms as part of an autonomic infrastructure for
managing self-adaptive enterprise applications based on the adaptation feedback
loop of the DYNAMICO reference model [3] and (b) support for automated
derivation of self-adaptive enterprise applications considering possible quality
and monitoring variations. A number of proposals have achieved to develop
autonomic infrastructures for self-adapting applications (e.g., [4]–[7]); however,
they do not fully address all the concerns related to the first challenge, and,

306

Ing. Univ. Bogotá (Colombia), 20 (2): 303-333, julio-diciembre de 2016

Hugo Arboleda, Andrés Paz, Miguel Jiménez, Gabriel Tamura

furthermore, they do not approach the second challenge. Our goal is to offer a
comprehensive proposal.

Our first technical contribution is to provide a low-level, complete and con-
sistent specification and architectural design for building autonomic infrastruc-
tures with a minimum set of functional and non-functional requirements. Our
requirements come mostly from IBM’s architectural blueprint for autonomic
computing [8], but we modify some of them, include new ones and specify them
with the necessary technical details for their straightforward implementation.
Our second technical contribution is to provide facilities that dynamically and
non-intrusively measure relevant data from the EAs and their execution contexts.
Our third technical contribution is to provide automated reasoning at runtime
regarding context- and system-sensed data to determine and apply necessary
adaptations to the EA, considering deployment and undeployment tasks. Our
last technical contribution is to assist software architects and engineers in the
specification and development of monitoring infrastructures, and the design and
development of EAs. We contemplate the modeling of functional and quality
variations, and support the automated derivation of EA components and their
respective monitoring infrastructures.

We organize the remainder of this paper as follows. Section 1 introduces the
context of our study and shows related work. Section 2 provides a high-level
design of the SHIFT framework as well as an overview of its reference imple-
mentation. Section 3 describes the specification and architectural design of
SHIFT’s autonomic infrastructure, and presents our monitoring infrastructure
and adaptation planning implementations. Section 4 exposes the mechanisms
for SHIFT’s assisted derivation of monitoring infrastructures and enterprise
applications. Last section sets out a summary of our contributions and outlines
future work.

1. Background and Related Work
Our general context comprises self-adaptive software systems, autonomic in-
frastructures providing self-adaptation support, and automated derivation of
software systems. Subsection 1.1 presents a short overview of the general respon-
sibilities and comprising elements of autonomic infrastructures. Subsection 1.2
briefly describes the evolution of generative software development. Subsection
1.3 discusses related works and contrasts them with our proposed framework
to qualitatively determine its soundness.

307

Ing. Univ. Bogotá (Colombia), 20 (2): 303-333, julio-diciembre de 2016

Development and Instrumentation of a Framework for the Generation and Management of Self-Adaptive Enterprise Applications

1.1. Autonomic Infrastructures
An autonomic infrastructure [8] is the infrastructure that allows a managed
system to be adapted to unforeseen context changes in order to ensure the satis-
faction of agreed quality. Composing this infrastructure are five basic elements: a
monitor element that continuously senses relevant context data; an analyzer that
interprets monitoring events reported by the monitor to determine whether the
SLAs are being fulfilled or predict future shortcomings by correlating current
measurements with historical data; and the planner and executor elements that
synthesize and realize (respectively) action plans to alter the system’s behavior,
either by modifying the system structure or by varying parameters to reach a
desired system state. These four components share relevant information through
the knowledge manager element. The autonomic infrastructure interfaces with the
managed system through a set of touchpoint elements, namely sensors and effectors.
Sensors collect measurements of variables of interest from the managed system;
effectors provide the necessary interfaces to modify the resources or artifacts of
the managed system. The DYNAMICO reference model [3] comprises three au-
tonomic infrastructures characterizing three identified levels for self-adaptation:
(i) control objectives, (ii) managed system, and (iii) monitoring infrastructure.
Due to extension limitations, in this paper we do not delve into the details of
DYNAMICO; for more information refer to [3].

We have identified a lack of a detailed, standard reference specification and
architectural design for building autonomic infrastructures. In light of this, our
previous work in [9] gives a first step towards this with the design of a com-
ponent-based architecture for the five basic elements previously introduced.
However, such a work does not provide a complete reference specification
that sets out detailed functional scope, restrictions, and quality concerns. It
is our interest to build on this work and present a reference specification and
architectural design for the implementation of an autonomic infrastructure,
including its functional scope, restrictions, and quality concerns, and a refer-
ence implementation for it.

1.2. Automated Derivation
Automated derivation of software seeks to automatically generate software assets
from given written specifications [10]. The combination of Software Product
Line Engineering (SPLE) and Model-Driven Engineering (MDE) has attracted
attention as an important automated derivation approach. On the one hand,
SPLE [11] aims to derive high-quality software through a (semi-)automatic

308

Ing. Univ. Bogotá (Colombia), 20 (2): 303-333, julio-diciembre de 2016

Hugo Arboleda, Andrés Paz, Miguel Jiménez, Gabriel Tamura

development process that models families of closely related software systems in
terms of their shared common features and their variations. Then, it builds their
implementations by assembling reusable assets promoting the desired features.
The conceptual problem space captures a family’s functional and non-functional
requirements in terms of variability models (e.g., feature models, orthogonal
variability models), which also govern product configuration knowledge. In
the solution space, SPLE approaches use a variant derivation mechanism to
transform a product configuration into a concrete product.

On the other hand, MDE’s principle is to use domain specific models
representing software system specifications as first-class artifacts during the
whole development process [12]. The development of domain-specific models
may be guided by: metamodels or domain-specific languages (DSLs) [13].
The former involves an abstract representation of domain concepts and their
relationships. The latter involves a context-free grammar that determines the
syntax (abstract and concrete) and semantics for a textual language. Gener-
ators transform such models (incrementally or in one step) into source code.
The generators make use of model-to-model transformations, which take a
model and transform it into another model with a different representation,
and model-to-text transformations, which take a model and transform it into
source code representation.

It is our interest to follow an MD-SPLE approach for the automated derivation
of component-based enterprise applications, additional deployable enterprise
application components when an adaptation requires them, and the artifacts
making up sensor and monitor elements of the autonomic infrastructure.

1.3. Related Work and Conceptual Validation
Current approaches implement dynamic adaptation of service compositions at the
language level [14]–[16], or using models at runtime [17]–[20]. The first ones
have specific facilities, tied to the languages themselves, to handle the definition
of constraints and conditions that regulate the replanning of compositions at
runtime. Despite these flexibilities, they can be complex and time-consuming,
and with low-level implementation mechanisms. Model-based approaches for
dynamic adaptation of service compositions, on the other hand, implement,
tacit or explicitly, the five basic elements of autonomic infrastructures [8]: (i) a
Monitor, (ii) an Analyzer, (iii) a Planner, (iv) an Executor, and (v) a Knowledge
manager. Our work is related to approaches that use models at runtime.

309

Ing. Univ. Bogotá (Colombia), 20 (2): 303-333, julio-diciembre de 2016

Development and Instrumentation of a Framework for the Generation and Management of Self-Adaptive Enterprise Applications

The recent work of Alférez et al. [21] summarizes good practices implement-
ing autonomic infrastructures and gives implementation details about recon-
figuration mechanisms. They center their attention on service recomposition
at runtime using (dynamic) product line engineering practices for assembling
and redeploying complete applications according to context- and system-sensed
data. However, model-based approaches for dynamic adaptation of service
compositions (e.g., [17], [21], [22]) do not consider changing requirements
over Service-Component Architecture (SCA) composites, Enterprise Java Beans
(EJB), or OSGi models. This triggers new challenges given the complexity of
deployment at the stage of adapting composites, EJB, and bundle bindings. The
work of van Hoorn et al. [23] goes in this direction by proposing an adaptation
framework operating over component-based software systems. Nonetheless,
their proposal remains at a high level without working with specific component
models and their framework is centered around component migration and load
balancing, while our interest is component recomposition over SCA composites,
EJB components, and OSGi bundles.

The work of Cedillo et al. in [17] is also closely related to ours. They propose
a middleware for monitoring cloud services defined around a monitoring pro-
cess that uses models at runtime capturing low- and high-level non-functional
requirements from Service Level Agreements (SLAs). Their middleware only
provides a partial implementation of an autonomic infrastructure, specifically of
the monitor and analyzer elements. Their proposal derives the monitoring code
from the input model at runtime. The monitoring code is used by the middleware
during the monitoring process. Heinrich et al. [22] also work around monitoring
cloud applications; however, they are only concerned with triggering change
events when the observation data model is populated at runtime.

Other approaches do not take into account the design, development, and
evolution of self-adaptive applications. Our goal is to grant support for the as-
sisted derivation of EA components and their associated monitoring infrastruc-
tures. This is important in order to efficiently provide standard mechanisms to
control the monitors’ behavior. Assisted derivation of both EA components and
monitoring infrastructure also guarantees relevance of the complete self-adaptive
architecture in changing context conditions of system execution [3].

In previous works, we proposed independent approaches and imple-
mentations in the contexts of the engineering of highly dynamic adaptive
software systems with the DYNAMICO reference model [3] model-based
product line engineering with the FIESTA approach [24]–[26]; automated

310

Ing. Univ. Bogotá (Colombia), 20 (2): 303-333, julio-diciembre de 2016

Hugo Arboleda, Andrés Paz, Miguel Jiménez, Gabriel Tamura

reasoning for derivation of product lines [27]; and the recent (unpublished)
contributions regarding quality variations in the automated derivation
process of product lines [26]. The SHIFT framework is motivated by the
required integration of all these efforts as part of the SHIFT research project
in a move to approach automation and quality awareness along the life cycle
of enterprise applications.

2. The SHIFT Framework
The SHIFT Framework has two layers: Autonomic Infrastructure and Automated
Derivation. Figure 1 depicts the high-level architectural view of the SHIFT
Framework. Subsection 2.1 describes the scope of the Autonomic Infrastructure
layer. Subsection 2.2 describes the scope of the Automated Derivation layer. Fol-
lowing sections delve into key elements of these two layers.

2.1. Autonomic Infrastructure
The Autonomic Infrastructure layer (see Figure 1 top) provides an implementa-
tion of the adaptation feedback loop of the DYNAMICO reference model [3].
As part of this layer, SHIFT deploys a monitoring infrastructure bound to the
Managed Application. The monitoring infrastructure comprises a set of Sensor
and Monitor elements for allowing the measurement of actual service executions
in the Managed Application. Monitoring rules define when a control symptom
should be reported to the Analyzer element for further analysis. The Analyzer
element is in charge of deciding when an adaptation is needed to ensure the
fulfillment of performance SLAs. When the Analyzer element identifies an ad-
aptation symptom, the framework considers the need for dynamically deploying
and undeploying components in response. Thus, the Planner element provides
automated reasoning on the dynamic creation of structural solutions. In order
to obtain the best possible selection of components when configuring an ad-
aptation to a deployed product, we rely on constraint satisfaction to reason on
the set of constraints defined by reachable quality scenarios configurations and
their relationships with the component sets implementing them. Interactions
between quality scenarios may occur, and since different component sets may
be available, conflicts between component sets may arise. Through automated
reasoning, the Planner element may cope with this issue by taking into account
additional information to get the best possible selection of component sets when
determining an action plan to preserve the fulfillment of performance SLAs,
when possible.

311

Ing. Univ. Bogotá (Colombia), 20 (2): 303-333, julio-diciembre de 2016

Development and Instrumentation of a Framework for the Generation and Management of Self-Adaptive Enterprise Applications

Figure 1. High-level architectural view of the SHIFT components

Source: authors’ own elaboration

Realizing an action plan is the responsibility of the Executor element. This
task includes, sequentially or concurrently, transporting components from their
source repository to the corresponding computational resource, undeploying
previous versions of them, deploying them into the middleware or application
server, binding their dependencies and services, and executing them. All of these
while redirecting new requests for the application’s components to the new in-
stances being deployed, and allowing existing requests and sessions to properly
terminate. The Executor element performs these actions over SCA composites,
EJB components, and OSGi bundles by means of the introspection capabilities
in the FraSCAti middleware [28] and the dynamic redeployment in operational en-
vironment features in the GlassFish and Equinox middleware. In addition, The
Executor element is able to recompile the system’s source code, if necessary, to
make measurement interfaces available to the monitoring infrastructure. Accord-
ingly, these deployment tasks are applied to the Monitor element to effectively
ensure dynamic quality awareness.

Some conceptual constraints, nonetheless, will limit the reach of the framework
in the Autonomic Infrastructure layer. For instance, the measurement of quality
attributes is a challenging field and many of them are particularly difficult to

312

Ing. Univ. Bogotá (Colombia), 20 (2): 303-333, julio-diciembre de 2016

Hugo Arboleda, Andrés Paz, Miguel Jiménez, Gabriel Tamura

measure (e.g., the security quality attribute). Additionally, the Autonomic Infrastruc-
ture elements are inherently tied to the Managed Application at different extents,
particularly the Analyzer, the Planner, and the Executor elements are closely related
to it. We are currently focused on the performance quality attribute and, thus,
automated measurement support is bound to the provided performance sensors,
any other measurement will require the manual development of the correspond-
ing sensor. For the Planner element, with the use of the principles of constraint
satisfaction we have detached the concerns related to the managed application
into a model representation called PISCIS [29] derived, and stored in a repository
managed by the Knowledge Manager element.

2.2. Automated Derivation
As for the Automated Derivation layer (see Figure 1 bottom left), SHIFT is con-
cerned about provisioning, through automated derivation, (i) component-based
self-adaptive enterprise applications and their respective monitoring infrastruc-
tures, and (ii) artifacts (i.e. models and deployable enterprise application com-
ponents) that are input of the adaptation processes initiated by the autonomic
infrastructure.

In this layer SHIFT uses two interrelated models. On the one hand, the
Monitoring Infrastructure model captures the monitoring infrastructure scope,
i.e. Sensor elements that will be attached to the Managed Application through a
non-intrusive strategy based on aspect-oriented programming, and event-based
Monitor elements that collect context data. On the other hand, the Managed
Application model captures the functional, quality, and architectural scopes of the
EAs. Generated component sets and quality decision models, relating component
sets with quality scenarios, are stored in the Components and Quality Repository,
which is managed by the Knowledge Manager element. Although the process of
generating EA components is automated, binding the functional, quality, and
architectural scopes of an EA requires the intervention of a software architect
since complex interactions may arise.

3. Autonomic Infrastructure
Pertaining the Autonomic Infrastructure layer in Figure 1 (top), SHIFT contains a
reference implementation for the autonomic infrastructure necessary to realize
the adaptation feedback loop of the DYNAMICO reference model. Subsection
3.1 presents the proposed reference specification for building autonomic infra-
structures for self-adaptation and from which SHIFT was built. Subsection 3.2

313

Ing. Univ. Bogotá (Colombia), 20 (2): 303-333, julio-diciembre de 2016

Development and Instrumentation of a Framework for the Generation and Management of Self-Adaptive Enterprise Applications

describes in detail the monitoring infrastructure. Subsection 3.3 exposes our
dynamic adaptation planning strategy for the Planner element.

3.1. Reference Specification
We build from the design proposed in [9] and present a reference specification
and architectural design for the implementation of an autonomic infrastructure,
including its functional scope and quality considerations, and structural and
behavioral architectural designs.

3.1.1. Functional Scope

An autonomic infrastructure is required to implement the following set of
functional requirements, based on IBM’s architectural blueprint for autonomic
computing in [8].

Sensor requirements:

S-1 A Sensor element must collect measurements of variables of interest
(from now on referred to as sensed data) (e.g., quality attributes spec-
ified in the series of standards ISO 25000 [30] like performance of a
service, availability of resources, topology information, configuration
properties) in the context in which it is located, i.e. its execution context
or the context of the domain to which it belongs.

S-2 A Sensor element must temporarily store sensed data.
Rationale. The Monitor elements’ responsiveness relies on the timely
availability of the sensed data. This availability can be achieved by
supporting temporary storage, which would allow Monitor elements
to gather data at any moment. Nonetheless, Sensor elements can use
up memory space assigned to the Managed Application, thus, other
storage options should be taken into consideration.

S-3 A Sensor element must expose a subset of the sensed data to the set of
Monitor elements, whether both Monitor and Sensor elements have
been deployed jointly or independently.

S-4 A Sensor element must remove a subset of the sensed data being stored
temporarily when instructed by a Monitor element.

314

Ing. Univ. Bogotá (Colombia), 20 (2): 303-333, julio-diciembre de 2016

Hugo Arboleda, Andrés Paz, Miguel Jiménez, Gabriel Tamura

S-5 A Sensor element must perform primitive operations (e.g., count rep-
etitions of a measurement in a given time interval) on a subset of the
sensed data.
Rationale. The ongoing transmission of sensed data from Sensor ele-
ments to Monitor elements can overuse network resources, thereby
hindering the Managed Application’s regular operation. Placing
primitive operations in Sensor elements can considerably reduce the
amount of data transmitted through the network when Monitor ele-
ments do not require the entire collection of sensed data but, instead,
calculations over it.

Monitor requirements:

M-1 A Monitor element must obtain the sensed data from one or more
Sensor elements where it has been captured through the required access
modes, i.e. by request (pull) or per occurrence (push).

M-2 A Monitor element must calculate metrics (based on sensed data)
related to the variables of interest to characterize the current state of
the Managed Application. Said calculation can be made periodically or
whenever a new measurement happens, which would produce average
or instant calculations, respectively. This calculation can also involve
the composition or correlation of metrics calculated by other Monitor
elements.

M-3 A Monitor element must make the calculated metrics available,
through the Knowledge Manager element, to other Monitor elements
so they can compose their own calculations.

M-4 A Monitor element must filter the calculated metrics before being
reported to the Analyzer element. The filter must be done through
the application of a set of domain-dependent monitoring rules over
the calculated metrics.

M-5 A Monitor element must report to the Analyzer element control symp-
toms, i.e. the metrics (simple or compound) that meet the conditions
set by the monitoring rules.

M-6 A Monitor element must allow changing the periodicity in which it
calculates its metrics.

315

Ing. Univ. Bogotá (Colombia), 20 (2): 303-333, julio-diciembre de 2016

Development and Instrumentation of a Framework for the Generation and Management of Self-Adaptive Enterprise Applications

M-7 A Monitor element must allow to update the set of monitoring rules it
applies to perform the filter of metrics. Such update may be triggered
by, for example, a structural change of the Managed Application, or a
change in the quality scenarios.
Rationale. Business and system’s operation can make a variable of
interest gain or lose relevance, thereby requiring flexibility against such
behavior at runtime. Furthermore, providing elements with operations
to control their internal behavior help support such flexibility.

Analyzer requirements:

A-1 An Analyzer element must evaluate reported control symptoms
against reference values previously established (corrective behavior).
Reference values must be recovered using the Knowledge Manager
element. The evaluation should identify violations that occur with
respect to these reference values. A violation indicates an adaptation
symptom.

A-2 An Analyzer element must store a record of trends and violations
through the Knowledge Manager.

A-3 An Analyzer element must reason about the reported control symptoms
taking into account the historical records of trends and violations (re-
covered using the Knowledge Manager element) to identify observable
degradation trends with respect to the reference values (also recovered
using the Knowledge Manager element) to avoid future violations
(predictive behavior). The evaluation can employ time-series forecast-
ing and queuing models. An observable degradation trend indicates
an adaptation symptom.

A-4 An Analyzer must create and send one or more change requests to the
Planner element if adaptation symptoms are detected. Such request
must include which variable of interest is at risk of being (predictive
behavior) or has already been (corrective behavior) violated, the vari-
able’s corresponding value, the motive for the request (e.g., violation,
risk of violation), and the set of artifacts under the scope of the variable
of interest (i.e. affected artifacts).

316

Ing. Univ. Bogotá (Colombia), 20 (2): 303-333, julio-diciembre de 2016

Hugo Arboleda, Andrés Paz, Miguel Jiménez, Gabriel Tamura

Planner requirements:

P-1 A Planner element must reason about the variable of interest, the
degree of the violation, and the set of affected artifacts to identify a
reachable, optimum resolution. For this reasoning, the Planner element
must take into account the quality, quality configuration, and artifact
applicability models. This information must be recovered using the
Knowledge Manager.

P-2 A Planner element must perform a gap analysis to determine the
necessary, high-level actions (e.g., deploy new artifacts, redeploy ex-
isting artifacts, replace existing artifacts with alternate ones, remove
existing artifacts, update configuration setting) to reach the identified
resolution.

P-3 A Planner element must create and send an action plan to the Ex-
ecutor element. Such action plan must include the set of high-level
control actions determined with the gap analysis that will modify the
Managed Application.

P-4 A Planner element must store a record of optimum resolutions and
their corresponding action plans through the Knowledge Manager.

P-5 A Planner element must recover a previous action plan through the
Knowledge Manager if the reachable optimum resolution identified
matches to one of the action plans stored.

Executor requirements:

E-1 An Executor element must perform the realization of the action plan
given by the Planner element through the scripting of executable com-
mands (e.g., compile, deploy, redeploy) by the corresponding Effector
elements.

E-2 An Executor element must use the corresponding Effector element to
run commands over the Managed Application.

317

Ing. Univ. Bogotá (Colombia), 20 (2): 303-333, julio-diciembre de 2016

Development and Instrumentation of a Framework for the Generation and Management of Self-Adaptive Enterprise Applications

Effector requirements:

Ef-1 An Effector element must allow managing a resource or set of re-
sources (e.g., manage a middleware to deploy, redeploy, and undeploy
components).

Knowledge manager requirements:

K-1 A Knowledge Manager element must perform create, retrieve, update,
and delete operations over the repositories where the information of
interest to the other elements of the autonomic infrastructure is stored.

K-2 A Knowledge Manager element must provide support operations for
the analysis of the information managed by it.

3.1.2. Quality considerations

An autonomic infrastructure must satisfy a set of quality concerns impacting its
functioning. As Sensor elements are placed inside of the Managed Application,
the application’s regular operation is subject to be impacted as well. In addition
to the previous functional requirements and their supporting quality rationale,
we identified the quality scenarios in Tables 1 and 2... describing concerns re-
garding the development of autonomic infrastructures.

Table 1. Quality scenario for Accountability and Analyzability of adaptation symptoms

Quality Scenario 1. Traceability of adaptation symptoms

Quality attribute Security – Accountability; Maintainability – Analyzability

Justification The lack of information in an adaptation symptom can obscure its root
cause.

Stimulus A new change request is sent to the Planner element

Source of stimulus Analyzer element

Environment The Managed Application is not in a desired state; an adaptation is under way.

Artifact Planner element

Response
The change request contains all the necessary information such that all
adaptation symptoms can be traced back to the originating sources, in
order for the Planner element to know what artifacts from the Managed
Application to consider in the adaptation.

Source: authors’ own elaboration

318

Ing. Univ. Bogotá (Colombia), 20 (2): 303-333, julio-diciembre de 2016

Hugo Arboleda, Andrés Paz, Miguel Jiménez, Gabriel Tamura

Table 2. Quality scenario for Co-existence, Interoperability, and Modularity of Sensor elements

Quality Scenario 2. Introduction of Sensor elements

Quality Attribute Compatibility – Co-existence and Interoperability; Maintainability – Modularity

Justification Sensor elements can be entangled with the Managed Application, thereby
increasing the complexity of the Managed Application’s maintainability.

Stimulus A new Sensor element is introduced into the Managed Application

Source of Stimulus A change in an existing quality scenario or the occurrence of a new scenario.

Environment Managed Application and Autonomic Infrastructure are under operation.

Artifact The intended component to be sensed in the Managed Application.

Response The Sensor element is introduced into the Managed Application in a non-
intrusive way.

Source: authors’ own elaboration

3.1.3. Architectural Design

The architectural design of the autonomic infrastructure satisfies the previous
requirements specification and follows a component-based model. The compo-
nent diagram in Figure 2 presents the structural view of the autonomic infra-
structure’s components. Due to space restrictions, communication interfaces
are only named in Figure 2; Figure 3 presents the definition of such interfaces
in a class diagram representation.

Figure 2. Component diagram for the reference architecture of an autonomic infrastructure

Source: authors’ own elaboration

319

Ing. Univ. Bogotá (Colombia), 20 (2): 303-333, julio-diciembre de 2016

Development and Instrumentation of a Framework for the Generation and Management of Self-Adaptive Enterprise Applications

Figure 3. Class diagram for the communication interfaces in Figure 2

Source: authors’ own elaboration

The autonomic infrastructure components are arranged in a ‘pipes and filters’
architectural style, where each component performs subsequently the specific
functions of the corresponding autonomic element in the autonomic infrastruc-
ture. Each component, thus, exposes a very simple interface to receive an inbound
message, process it and forward the result to the next component. The Analyzer,
Planner, and Executor elements are implemented by one component. Generally,
one would expect to have multiple Sensor and Monitor components depending
on the variables of interest. The Effector component is usually provided by the
middleware supporting the Managed Application, although one would have to
be built if the middleware does not provide one. If the Managed Application is
distributed among different middleware, an Effector component is required for
each middleware. The adaptation processing behavior exhibited by the auto-
nomic infrastructure is specified step by step in the collaboration diagram in
Figure 4. The internal designs of the components’ structure and behavior are
not detailed in this paper (except for the Planner, which is shown in Subsection
3.3); these will be part of future publications.

320

Ing. Univ. Bogotá (Colombia), 20 (2): 303-333, julio-diciembre de 2016

Hugo Arboleda, Andrés Paz, Miguel Jiménez, Gabriel Tamura

3.2. Monitoring Infrastructure
The monitoring infrastructure is supported at runtime by the PASCANI library,
a collection of classes that allows implementing the monitoring elements of the
reference architecture, namely Sensors and Monitors. Sensors are introduced into
the system, their services bound dynamically and then started, therefore allow-
ing to measure actual service executions. Monitors contain the necessary logic to
abstract single context events (i.e. events arising from Sensors) into complex and
relevant monitoring data to be analyzed by the Analyzer and other components
(e.g., log components and monitoring dashboards).

Both Sensors and Monitors are supplied with standard traceability and control-
lability mechanisms to (i) prevent the monitoring infrastructure from introducing
considerable overhead in the system’s regular operations, and (ii) feed knowledge
sources with relevant monitoring data. Controlling the produced executable mon-
itoring components is important when the Managed Application reaches critical
quality levels, given that it can end up breaching quality agreements or overusing
system resources. This is also important in order to keep the monitoring data rel-
evant through time, as new variables of interest can emerge as product of system
and business evolution. Adding support for monitoring new variables at runtime
requires introducing new Sensors into the Managed Application and monitoring rules
into the monitoring infrastructure. The interaction between Sensors and Monitors
is event-based, and is specified in a single source file.

Besides Sensors and Monitors, PASCANI includes a shared variable model con-
taining relevant monitoring variables holding both reference values (e.g., Service
Level Indicators contracted in SLAs) and values describing the current state of
the system (e.g., current system throughput). Monitors and other components
can read and update these values; additionally, they can observe changes in
them, by defining events in the monitoring specifications (see Subsection 4.1).

3.3. Dynamic Adaptation Planning
The Planner element of the Autonomic Infrastructure layer in Figure 1 (top) is a key
factor in the SHIFT Framework. SHIFT’s Planner element takes advantage of PI-
SCIS, a formal model based on constraint satisfaction for adaptation planning we
presented in [29]. The Planner element includes automated reasoning facilities that
help design solutions that alter the system’s behavior by modifying its structure or
by varying parameters to reach a desired system state. In order to obtain the best
possible selection of components to alter the system’s behavior we use the PISCIS
model, which relies on the principles of constraint satisfaction to (i) capture the set

321

Ing. Univ. Bogotá (Colombia), 20 (2): 303-333, julio-diciembre de 2016

Development and Instrumentation of a Framework for the Generation and Management of Self-Adaptive Enterprise Applications

of constraints that define reachable architectural adaptations, and (ii) provide infor-
mation to reason over the best possible solution. We have adapted and extended
the definitions presented in [27] for the PISCIS model. Figure 5 provides a look
at the internal behavior of the Planner element in the SHIFT Framework.

Figure 4. Component collaboration for the autonomic infrastructure in Figure 2

Source: authors’ own elaboration

322

Ing. Univ. Bogotá (Colombia), 20 (2): 303-333, julio-diciembre de 2016

Hugo Arboleda, Andrés Paz, Miguel Jiménez, Gabriel Tamura

The process of planning an adaptation initiates with a change request re-
ceived from the Analyzer element. The Planner then retrieves the EA’s quality
configuration and applicability model, inputs to the PISCIS model. A quality
configuration consists of a finite set of quality scenarios classified as unselected (i.e.
with a state of 1) or selected (i.e. with a state of 2). We relate on applicability models
the information of applicable component sets promoting such quality scenarios in
order to define the necessary actions to derive adaptation plans in accordance
with a quality configuration. Implementing a quality scenario in an application
may often require several composed components, thus, we refer as a component
set to the set of composed components implementing a quality scenario. An
applicability model is a finite set of weighted application relationships between
one component set and one quality scenario. The application relationship may be 0
if the quality scenario does not constraint the application or deployment of the
component set, 1 if the component set requires the quality scenario to be unselected,
and 2 if the component set requires the quality scenario to be selected.

Figure 5. Activity diagram for the Planner element

Source: authors’ own elaboration

With these models, the Planner builds a PISCIS model, i.e. a constraint satis-
faction problem (CSP) representation, to evaluate the set of constraints defined
by reachable quality configurations and their relationships with component sets.
A resolution model is an applicability model instance (i.e. a solution to the CSP),

323

Ing. Univ. Bogotá (Colombia), 20 (2): 303-333, julio-diciembre de 2016

Development and Instrumentation of a Framework for the Generation and Management of Self-Adaptive Enterprise Applications

which binds variability and defines the system’s future structure, i.e. the resulting
adaptation plan. A resolution model, or adaptation plan, is a finite set of component
set applications. The application is not planned if the component set should not
be deployed, and planned if the component set should be deployed. However, not
every possible resolution model is a valid solution. A valid solution must satisfy the
following constraints: (i) a component set must be deployed satisfying the respective
application relationship of the applicability model; (ii) two deployable component
sets must not exclude each other; and (iii) all applicable component sets must take
into account all the quality scenarios’ states in the configuration.

Since many valid solutions may be found, we have formulated in [29] some
operations on the previous CSP representation to provide the Planner element
with additional information in order to determine the best possible solution. The
application operation takes an applicability model, a quality configuration, and
a resolution model to verify the resolution model’s applicability as a solution.
The possible resolutions operation calculates all the potential solutions from the
given quality configuration and applicability model. The number of resolutions
operation calculates the number of potential resolution models from the given
quality configuration and applicability model. This operation gives an indication
of flexibility and complexity of the applicability model. The validation operation
indicates if a given applicability model can provide at least one resolution model.

If no valid resolution model is found the Planner should notify no adaptation
is possible with the available assets; thus, new assets should be derived. If at
least one resolution model is found, the Planner should evaluate for an opti-
mum resolution. Three operations are used in this task. The flexible component
sets operation determines the component sets shared by a given set of possible
resolution models. The inflexible component sets operation gives the opposite
result of the flexible component sets operation, i.e. the component sets unique
to each resolution model in a set of possible resolution models. The optimum
resolution operation finds the best resolution model within a set of possible
resolution models through the use of a maximizing or minimizing function
depending on whether the greater or the least number of component sets,
respectively, is more fit to adapt the Managed EA. If no optimum resolution is
found, the Planner will notify of the event. If an optimum resolution is found,
a gap analysis is performed to compare the actual deployed artifacts with the
identified solution and determine the necessary, high-level actions that will
achieve the target deployment. The action plan is created and finally passed
to the Executor element for realization.

324

Ing. Univ. Bogotá (Colombia), 20 (2): 303-333, julio-diciembre de 2016

Hugo Arboleda, Andrés Paz, Miguel Jiménez, Gabriel Tamura

4. Automated Derivation
The Automated Derivation layer in Figure 1 (bottom) contains two interrelated
models: Monitoring Infrastructure and Managed Application. Subsection 4.1 outlines
the Monitoring Infrastructure model and illustrates how Sensor and Monitor com-
ponents are derived from such model. Subsection 4.2 explains the Managed Ap-
plication model and describes how EA components are derived from such model.

4.1. Specification and Derivation of Sensor and Monitor Elements
In SHIFT, the specification and generation of monitoring infrastructures, deploy-
able at runtime, is performed through PASCANI. PASCANI is a Domain-Specific
Language (DSL) still under development that allows defining and generating
sensors and monitors.

Monitoring specifications can be parameterized and derived in an automated
way for those quality attributes with clear definition of metrics and measurement
methods [30]. In SHIFT’s current state, we have already designed a mechanism
for automatically generating PASCANI components for the performance qual-
ity attribute. This mechanism takes place in the automated derivation phase,
and produces the monitoring component and its corresponding deployment
descriptors. A monitoring specification comprises a Variables Store and a Mon-
itor skeleton for each performance factor covered in the quality submodel of
the Decision Support model. EA developers should use these Monitor skeletons
as templates to declare the actual Managed Application components that will be
subject of measurement.

One of most useful features of PASCANI is the standard abstraction between
measurement mechanisms and event-based monitoring logic, which is based
on the Event-based and Implicit invocation architectural style [31]. This sep-
aration of concerns allows PASCANI to monitor different quality attributes,
as far as sensors implementing the necessary measurement methods exist. In
our current implementation, sensors to measure performance factors and ex-
ceptional behaviors are automatically generated and inserted into the Managed
Application’s components.

Figure 6 shows a simple specification for monitoring the latency of an EJB.
Line 1 declares that monitor Throughput will read and update variables within
the VariableSpace Performance. As illustrated in Figure 7, a variable space reserves
space for variable names and values. This facilitates the aggregation of monitor-
ing variables from different monitors. Line 4 of Figure 6 creates and associates a
sensor element to the EJB ejb1. Additionally, it provides the monitor with direct

325

Ing. Univ. Bogotá (Colombia), 20 (2): 303-333, julio-diciembre de 2016

Development and Instrumentation of a Framework for the Generation and Management of Self-Adaptive Enterprise Applications

access to the sensor. Line 5 defines a periodic event to be raised every minute;
each time it is raised, the throughput variable is updated according to the number
of service executions during the last minute (see lines 8 and 9).

Figure 6. Monitor specification to monitor Service Time-behavior

Source: authors’ own elaboration

Figure 7. Variable Space specification for holding and sharing throughput values

Source: authors’ own elaboration

4.2. Specification and Derivation of Managed Applications
Figure 8 shows the Managed Application model through a UML-like notation
diagram. Quality concerns of an EA are captured in the Decision Support scope
under the quality submodel concept (see Figure 8 top center) as quality scenari-
os. A quality scenario may involve various functional artifacts in the EA being
stimulated. The Domain scope (see Figure 8 bottom left) comprises concepts
for capturing the functional scope of EAs in terms of business entities, and their
associations and operations [26]. The Domain scope may be extended to include
more complex business logic representations. A quality scenario, thus, relates to
a stimulated entity and the corresponding stimulus triggers an operation defined
in such entity. Since quality concerns for a self-adaptive EA may (and do) vary
over time, a variability submodel (see Figure 8 top center) in the Decision Support

326

Ing. Univ. Bogotá (Colombia), 20 (2): 303-333, julio-diciembre de 2016

Hugo Arboleda, Andrés Paz, Miguel Jiménez, Gabriel Tamura

scope is focused on supporting this information. Quality scenarios in the variability
submodel are represented as variation points and the possible alternative responses
are the variants.

Figure 8. Interrelated models for the derivation of component sets

Source: authors’ own elaboration

The Reference Architecture scope (see Figure 8 bottom left) is focused on sup-
porting the modeling of software architectural implementations for quality
variations. In order to associate architectural implementations for quality vari-
ants, we select design patterns in their pure form or we compose them. Resulting
structures are documented as variable software reference architecture fragments that
are later composed and made concrete during the derivation process of compo-
nents and complete applications. In that way, we compose patterns respecting a
base (common) reference architecture, over which variable reference architecture
fragments are integrated before deriving concrete implementations. We also
document the impact of patterns over quality attributes, i.e. a pattern promotes

327

Ing. Univ. Bogotá (Colombia), 20 (2): 303-333, julio-diciembre de 2016

Development and Instrumentation of a Framework for the Generation and Management of Self-Adaptive Enterprise Applications

or inhibits a quality attribute. This is useful information when choosing design
implementations for quality variants. The Reference Architecture scope may be ex-
tended to include support for modeling other non-software related architectural
concepts for hardware or network architecture by extending the tactic concept.

The Decision Support scope provides support for assisted reasoning regarding
achievable quality configurations and their interactions. Our decision submodel
(see Figure 8 top right) is a collection of (partial) reachable product quality
configurations, expressed as sets of quality variants, and the modeling of their
impact on other configurations. The impact of one configuration over another is
expressed in terms of promote, require, inhibit, and exclude relationships. For every
impact of one configuration over another, a reference architecture fragment should be
associated, if a reasonable solution that accommodates both configurations can
be achieved. Such architecture fragments model resulting structures and behav-
iors that produce the composition of patterns associated to variants involved in
the related configurations. Concrete architectures of reusable components and
complete applications are created as a composition of a common reference ar-
chitecture and reference architecture fragments. Composition rules are managed
in model-based artifacts that will be introduced in the following subsection.

Components result from transforming into source code a set of functionalities
with a configuration of quality levels and structured by a composition of com-
mon and variable software reference architecture fragments. The transformation
process satisfies the constraints and conditions dictated by a common reference
architecture and the variable reference architecture fragments that contribute
to the overall architecture (see Figure 8 bottom left). EA developers should use
the derived components as partial implementations conforming to a reference
architecture promoting the desired quality attributes and must complete such
implementations in order to fulfill their project’s specific functional requirements.

Our derivation strategy is based on a composable templates approach that
delegates responsibilities on the templates themselves to reduce the need for a
separate, bulky control logic to weave common and variable reference architec-
ture fragments. Each template will contain a set of model-to-text transforma-
tions. Figure 9 depicts such interaction. The common reference architecture is
associated to a set of Common Templates in charge of orchestrating the concrete
architecture composition. Such templates know the specific points where contri-
butions can be made, i.e. they mark out extension points. Concrete contributions
determined by the corresponding configured quality variants are inserted into
these extension points. Thus, common templates delegate the code declaration

328

Ing. Univ. Bogotá (Colombia), 20 (2): 303-333, julio-diciembre de 2016

Hugo Arboleda, Andrés Paz, Miguel Jiménez, Gabriel Tamura

in an extension point to one or more Contributors, which are concrete Xtend
classes able to return source code fragments, call other standalone extension
templates, or, in turn, mark out their own extension points and delegate onto
other contributors the responsibility of returning required source code.

Figure 9. Delegation strategy

Source: authors’ own elaboration

We have developed a library as tool support for describing and weaving
required contribution compositions. The library includes facilities for defining
extension points in templates and contributions, and registering contributors.
It also includes an engine for weaving code fragments returned by contributors.
We have implemented the library as a set of Eclipse plug-ins. Currently, we
generate JEE7 components under the EJB 3.2 specification. The generation of
SCA composites and OSGi bundles is part of our roadmap. The specification,
design, and derivation of quality-concerned enterprise application is part of our
recent (unpublished) work available in [26].

Figure 10 shows a simple Common Template for generating the Boundary element
of a component with an Entity-Control-Boundary microarchitecture as proposed by
Bien in [32]. Line 1 declares the template as a CommonTemplate. Line 8 shows an ex-
tension point marking the space for including contributions from the set of registered

329

Ing. Univ. Bogotá (Colombia), 20 (2): 303-333, julio-diciembre de 2016

Development and Instrumentation of a Framework for the Generation and Management of Self-Adaptive Enterprise Applications

Contributors. As illustrated in Figure 11, Contributors registered to a specific extension
point will be asked to perform their contribution (see Line 3). Figure 12 defines a
Contributor that provides a reference to a Fast Lane Reader pattern implementation
(see Lines 3 through 8) for retrieving all the occurrences of an entity.

Figure 10. Common template example for deriving an EJB component skeleton

Source: authors’ own elaboration

Figure 11.. Including contributions from contributors

Source: authors’ own elaboration

Figure 12. Example of a contribution to an EJB component

Source: authors’ own elaboration

330

Ing. Univ. Bogotá (Colombia), 20 (2): 303-333, julio-diciembre de 2016

Hugo Arboleda, Andrés Paz, Miguel Jiménez, Gabriel Tamura

Conclusions and Future Work
The over-dependence of companies on their software applications forces an
uninterrupted satisfaction of agreed software quality. The high human interven-
tion needed along with the dynamic nature of enterprise applications requires,
however, a more cost-effective approach. The use of software self-adaptation for
activities previously done by software maintenance teams is seen as a promising
alternative. Nonetheless, a proper framework and tooling are necessary.

In this paper we presented SHIFT, a framework for the generation and
management of self-adaptive enterprise applications. SHIFT has a high-level
architecture based on the DYNAMICO [3] reference model. A key point that
lets our framework go much further than other approaches is the introduction
of the two layers, Autonomic Infrastructure and Automated Derivation, that cover
automation and quality awareness across the life cycle of enterprise applications.
An important contribution of our work is the proposed reference specification
and architectural design for implementing self-adaptation support as an auto-
nomic infrastructure, and it is from which we base the framework’s Autonomic
Infrastructure layer. Our framework, through PASCANI, provides a rich DSL
for defining Sensors and Monitors that abstract metrics and measurement imple-
mentations. The introduced Planner element and its associated PISCIS model,
built on the principles of constraint satisfaction, provides a means to automated
reasoning able to find the best configuration of components necessary to preserve
SLAs. The Automated Derivation layer, as we have illustrated, is SHIFT’s basis for
supporting changing functional and quality requirements. It offers support for
the assisted derivation of enterprise application components and their associated
monitoring infrastructures. A more detailed qualitative contrast of the SHIFT
framework against other approaches can be found in Section 1.3.

Some conceptual constraints are still present that need to be addressed. For
instance, measuring quality attributes is an open research field since many of
them are particularly difficult to measure (e.g., the security quality attribute).
Additionally, the elements composing the Autonomic Infrastructure layer are
inherently tied to the managed system at different extents, particularly the
Analyzer, the Planner, and the Executor elements are closely related to it. We are
currently focused on the performance quality attribute and, thus, automated
measurement support is bound to the provided performance monitor probes;
any other measurement will require the manual development of the neces-
sary monitor probes. For the Planner element with the use of the principles of
constraint satisfaction we have detached the concerns related to the managed

331

Ing. Univ. Bogotá (Colombia), 20 (2): 303-333, julio-diciembre de 2016

Development and Instrumentation of a Framework for the Generation and Management of Self-Adaptive Enterprise Applications

system into a CSP representation derived and stored in a repository managed
by the Knowledge Manager element. The composition of software design patterns
in reference architectures still requires the intervention of a software architect
since complex interactions may arise.

As future work, we will be working on refining the reference specification and
architectural design as well as on the design of the framework and completing
the concrete implementations for all the elements presented, including the com-
plete autonomic infrastructure and its interoperability with Java middleware. In
addition, we will propose and perform the validation of our SHIFT framework
and the implemented tool support with an industrial case study.

Acknowledgments
This work has been partially supported by grant 0369-2013 from the Colombian
Administrative Department of Science, Technology, and Innovation (Colciencias)
under project SHIFT 2117-569-33721.

References
[1] Aberdeen Group, “Downtime and data loss: How much can you afford?,” 2013. [Onli-

ne]. Available: http://www.aberdeen.com/research/8623/ai-downtime-disaster-recovery/

content.aspx.

[2] H. Arboleda, A. Paz, M. Jiménez, and G. Tamura, “A framework for the generation and

management of self-adaptive enterprise applications,” in 10th Computing Colombian Con-
ference (10CCC), 2015.

[3] N. M. Villegas, G. Tamura, H. A. Müller, L. Duchien, and R. Casallas, “DYNAMICO:

A reference model for governing control objectives and context relevance in self-adaptive

software systems,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect.
Notes Bioinformatics), vol. 7475 LNCS, pp. 265–293, 2013.

[4] G. Kaiser, J. Parekh, P. Gross, and G. Valetto, “Kinesthetics eXtreme: An external infras-

tructure for monitoring distributed legacy systems,” in Proc. Autonomic Computing Workshop,
2003, pp. 22–30.

[5] D. Ameller and X. Franch, “Service Level Agreement Monitor (SALMon),” in Proc. the
Seventh Int. Conf. Composition-Based Software Systems (ICCBSS’08), 2008, pp. 224–227.

[6] V. Cardellini, E. Casalicchio, V. Grassi, S. Iannucci, F. Lo Presti, and R. Mirandola, “MO-

SES: A framework for QoS Driven runtime adaptation of service-oriented systems,” IEEE
Trans. Softw. Eng., vol. 38, no. 5, pp. 1138–1159, 2012.

[7] S.-W. Cheng, D. Garlan, and B. Schmerl, “Evaluating the Effectiveness of the Rainbow

Self-adaptive System,” in Proc. of the 2009 ICSE Workshop on Software Engineering for Adaptive
and Self-Managing Systems (SEAMS’09), 2009, pp. 132–141.

332

Ing. Univ. Bogotá (Colombia), 20 (2): 303-333, julio-diciembre de 2016

Hugo Arboleda, Andrés Paz, Miguel Jiménez, Gabriel Tamura

[8] IBM, “An architectural blueprint for autonomic computing,” 2006. [Online]. Available:
http://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20
V7.pdf.

[9] L. Castañeda and G. Tamura, “A reference architecture for component-based self-adaptive
software systems,” Master’s Thesis, Universidad Icesi, Colombia, 2012.

[10] K. Czarnecki, “Overview of generative software development,” in Unconventional Pro-
gramming Paradigms, J.-P. Banâtre, P. Fradet, J.-L. Giavitto, and O. Michel, Eds. Berlin:
Springer, 2005, pp. 326–341.

[11] C. Seidl, S. Schuster, and I. Schaefer, “Generative software product line development
using variability-aware design patterns,” in Proc. of the 2015 ACM SIGPLAN Int. Conf. on
Generative Programming: Concepts and Experiences, 2015, pp. 151–160.

[12] A. Paz and H. Arboleda, “Towards a framework for deriving platform-independent model-
driven software product lines,” Ing. e Investig., vol. 33, no. 2, pp. 70–75, 2013.

[13] B. Rumpe, M. Schindler, S. Völkel, and I. Weisemöller, “Generative software develop-
ment,” in Proc. the 32nd Int. Conf. on Soft. Eng. (ICSE 2010), 2010, pp. 473–474.

[14] M. Colombo, E. Di Nitto, and M. Mauri, “Scene: A service composition execution envi-
ronment supporting dynamic changes disciplined through rules,” in Proc. of the ICSOC’06,
Springer, 2006, pp. 191–202.

[15] L. Baresi and S. Guinea, “Self-supervising bpel processes,” IEEE Trans. Softw. Eng., vol.
37, no. 2, pp. 247–263, 2011.

[16] N. C. Narendra, K. Ponnalagu, J. Krishnamurthy, and R. Ramkumar, Run-time adaptation
of non-functional properties of composite web services using aspect-oriented programming. Berlin:
Springer, 2007.

[17] P. Cedillo, J. Gonzalez-Huerta, S. Abrahao, and E. Insfran, “Towards monitoring cloud
services using models@run.time,” in Proc. of the 9th Workshop on Models@run.time, 2014,
pp. 31–40.

[18] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, and G. Tamburrelli, “Dynamic
QoS management and optimization in service-based systems,” IEEE Trans. Softw. Eng.,
vol. 37, no. 3, pp. 387–409, 2011.

[19] D. Menasce, H. Gomaa, S. Malek, and J. P. Sousa, “Sassy: A framework for self-architecting
service-oriented systems,” IEEE Softw., vol. 28, no. 6, pp. 78–85, 2011.

[20] B. Morin, F. Fleurey, N. Bencomo, J.-M. Jézéquel, A. Solberg, V. Dehlen, and G. Blair,
“An aspect-oriented and model-driven approach for managing dynamic variability,” in
Model Driven Engineering Languages and Systems. Berlin: Springer, 2008, pp. 782–796.

[21] G. H. Alférez, V. Pelechano, R. Mazo, C. Salinesi, and D. Diaz, “Dynamic adaptation of
service compositions with variability models,” J. Syst. Softw., vol. 91, no. 1, pp. 24–47,
2014.

333

Ing. Univ. Bogotá (Colombia), 20 (2): 303-333, julio-diciembre de 2016

Development and Instrumentation of a Framework for the Generation and Management of Self-Adaptive Enterprise Applications

[22] R. Heinrich, E. Schmieders, R. Jung, K. Rostami, A. Metzger, W. Hasselbring, R. Reussner,
and K. Pohl, “Integrating Run-Time Observations and Design Component Models for
Cloud System Analysis,” in Proc. of the 9th Workshop on Models@run.time, 2014, pp. 41–46.

[23] A. van Hoorn, M. Rohr, A. Gul, and W. Hasselbring, “An adaptation framework enabling
resource-efficient operation of software systems,” in Proc. of the Warm Up Workshop for ACM/
IEEE ICSE 2010, 2009, pp. 41–44.

[24] H. Arboleda and J.-C. Royer, Model-Driven and Software Product Line Engineering, 1st ed.
New York: ISTE-Wiley, 2012.

[25] H. Arboleda, R. Casallas, J.-C. Royer, and J.-C. Arboleda, Hugo and Casallas, Rubby
and Royer, “Dealing with fine-grained configurations in model-driven SPLs,” in Proc. of
the 13th Int. Soft. Product Line Conf. (SPLC’09), 2009, pp. 1–10.

[26] D. Durán and H. Arboleda, “Quality-driven software product lines,” Master’s Thesis,
Icesi University, Colombia, 2014.

[27] H. Arboleda, J. F. Diaz, V. Vargas, and J.-C. Royer, “Automated reasoning for derivation
of model-driven SPLs,” in Proc. of the 14th Int. Soft. Product Line Conf. (SPLC 2010), Volume
2, 2nd International Workshop on Model-driven Approaches in Software Product Line Engineering
(MAPLE 2010), 2010, pp. 181–188.

[28] L. Seinturier, P. Merle, R. Rouvoy, D. Romero, V. Schiavoni, and J.-B. Stefani, “A compo-
nent-based middleware platform for reconfigurable service-oriented architectures,” Softw.
Pract. Exp., vol. 42, no. 5, pp. 559–583, 2012.

[29] A. Paz and H. Arboleda, “A model to guide dynamic adaptation planning in self-adaptive
systems,” Electron. Notes Theor. Comput. Sci., vol. 321, pp. 67-88, 2016.

[30] ISO/IEC, “ISO/IEC 25000:2014 Systems and software engineering – Systems and soft-
ware Quality Requirements and Evaluation (SQuaRE) – Guide to SQuaRE,” Information
technology standard, ISO/IEC, 2014.

[31] D. Garlan and M. Shaw, “An introduction to software architecture,” Knowl. Creat. Diffus.
Util., vol. 1, no. January, pp. 1–40, 1994.

[32] A. Bien, Real World Java EE Patterns-Rethinking Best Practices, 2 Ed. lulu.com, 2012.

