
Ing. Univ. Bogotá (Colombia), 22 (1): 33-51, enero-junio de 2018. ISSN 0123-2126

Agile Architecture in Action (AGATA)1

Arquitectura ágil en acción (AGATA)2

Luis Freddy Muñoz Sanabria3

Julio Ariel Hurtado Alegría4

Francisco Javier Álvarez Rodríguez5

How to cite this article:

L. F. Muñoz Sanabria, J. A. Hurtado Alegria, F. J. Álvarez Rodriguez, “Agile Architecture in Action (AGATA),” Ing. Univ. Eng.
for Dev., vol. 22, no. 1, 2018. http://dx.doi.org/10.11144/Javeriana.iyu22-1.aaaa

1 Submitted on: November 9th, 2016. Accepted on: January 19th, 2017. This article is derived from the research project called
“AGile/ArchiTecture in Action (AGATA): a holistic and managed process for architecture-centered agile software development
for medium size teams”. Proposed by the investigation group LOGICIEL-IDIS attached to Fundación Universitaria de Popayán
y la Universidad del Cauca. Popayán, Cauca, Colombia
2 Fecha de recepción: 9 de noviembre de 2016. Fecha de aceptación: 19 de enero de 2017. Este artículo se deriva de un
proyecto de investigación denominado “AGile/ArchiTecture in Action (AGATA): un proceso holístico y gestionado para el
desarrollo de software ágil con arquitectura orientado a equipos de tamaño mediano”. Desarrollado por el grupo de
investigación LOGICIEL-IDIS de la Fundación Universitaria de Popayán y la Universidad del Cauca. Popayán, Cauca, Colombia.
3 Ingeniero de sistemas, Universidad Antonio Nariño. Magíster en computación, Universidad del Cauca. Doctor en Ciencias
de la Electrónica, Universidad del Cauca. Docente Investigador, Fundación Universitaria de Popayán. Popayán, Colombia.
Correo electrónico: lfreddyms@fup.edu.co
4 Ingeniero en Electrónica, Universidad del Cauca. Magíster en Computación, Universidad de Chile. Doctor en Ciencias de la
Computación, Universidad de Chile. Docente, Universidad del Cauca. Popayán, Colombia. Correo electrónico: ahurtado@

unicauca.edu.co
5 Licenciado en Informática, Universidad Autónoma de Aguascalientes. Magíster en Administración, Universidad Autónoma
de Aguascalientes. Doctor en Ingeniería, Universidad Nacional de México. Docente Investigador, Universidad Autónoma
de Aguascalientes. Aguascalientes, México. Correo electrónico: fjalvar@correo.uaa.mx

DOI: 10.11144/Javeriana.iyu22-1.aaaa

Ingenieria 22-1.indb 33 24/07/18 4:25 p.m.

34 Luis Freddy Muñoz Sanabria, Julio Ariel Hurtado Alegría, Francisco Javier Álvarez Rodríguez

Ing. Univ. Bogotá (Colombia), 22 (1): 33-51, enero-junio de 2018

Abstract
Introduction: This work proposes Agile Architecture in
Action (AGATA), a software process framework that scales
agile methods to larger teams. Methodology: following a
human interface model, several Extreme Programming
(XP) development teams work together around a central
team that takes advantage of the ability of architectural
methods to define the solution at the architectural level,
improving communication and maintaining agile param-
eters. Results: AGATA was applied in a development proj-
ect, involving software engineers and software engineering
senior students that participated in a graduate practical
course. In this case study we measured communication
based in the architecture and face-to-face channels, taking
into account the degree of distortion and quality of the
channels. The main results show that communication
levels in the whole team are reasonable and that the
channels proposed by AGATA maintain agile parameters
as to intergroup relationship and client deliveries. There
are reports indicating scaling problems as teams grow;
particularly, communication worsens. Conclusions: It is
necessary to propose clear channels of communication.
AGATA practices managed to maintain agile elements
with a large team.

Resumen
Introducción: Este trabajo propone Agile Architecture in
Action (AGATA), un marco de proceso de software que
escala métodos ágiles a equipos más grandes. Metodología:
Siguiendo un modelo de interfaz humano, varios equipos
de desarrollo de Extreme Programming (XP) trabajan juntos
alrededor de un equipo central que aprovecha la capacidad
de métodos arquitectónicos para definir la solución a nivel
arquitectónico, mejorando la comunicación y manteniendo
los parámetros ágiles. Resultados: AGATA se aplicó en un
proyecto de desarrollo, en el que participaron ingenieros
de software y estudiantes de último año de ingeniería de
software, que participaron en un curso práctico de pos-
grado. En este caso de estudio se midieron los canales de
comunicación la arquitectura y el cara a cara, teniendo en
cuenta el grado de distorsión y la calidad de los canales. Los
principales resultados muestran que los niveles de comuni-
cación en todo el equipo son razonables y que los canales
propuestos por AGATA mantienen parámetros ágiles en
cuanto a relaciones intergrupales y entregas de clientes.
Hay informes que indican problemas de escala, a medida
que los equipos crecen; en particular, la comunicación.
Conclusiones: es necesario proponer canales claros de
comunicación; las prácticas utilizando AGATA lograron
mantener los elementos ágiles con un equipo grande.

Palabras clave
Arquitectura de software; escala; métodos ágiles; procesos
de software.

Keywords
Software architecture; scaling; agile methods; software
process.

Ingenieria 22-1.indb 34 24/07/18 4:25 p.m.

35Agile Architecture in Action (AGATA)

Ing. Univ. Bogotá (Colombia), 22 (1): 33-51, enero-junio de 2018

1. Introduction
Organizations today require the automation of their processes due to the growing
amounts of information they handle, the need to be competitive, and the desire
for reliable and trustworthy results. The software industry has a responsibility to
meet these expectations. It therefore seeks to rely on methodologies that meet the
criteria, at the speed of the internet. Agile methodologies have gone some way
to meeting these requirements [1]: as well as responding to rapid developments
in environments of considerable uncertainty, they include basic quality practices.
The biggest quality problems come from the specification of requirements [2,
3], which is addressed in the Agile context with short development cycles aimed
at generating value and with direct participation of the client.

Most of the scientific reports on agile methods show the methods are effective
in small teams working on small, non-critical, totally new projects for the same
organization, with stable architectures and simple working rules [4]; whereas
in projects with other characteristics, problems arise. Among these problems is
communication, as when teams increase in size, the complexity of communica-
tion among their members increases dramatically [5]. This can become a real
problem, since the effective communication of a software development team is
a critical factor in the success of a software project [6].

Hence, group size is an important consideration when making decisions about
the structure of the teams and the eventual partition of projects into smaller
sub-projects. This partition is a key practice with direct implications in the deci-
sion to distribute project teams [7]. The architecture becomes a communication
channel, as an additional support at the technical level for each sub-project,
and it aids team management in a large software project attempting to employ
agile methodologies [8].

The absence of an orientation toward management within agile methodologies
does not allow emphasizing early decisions that will have a profound impact on
all software engineering work. Neither is a model built that, although relatively
small and intellectually understandable, would make it possible to verify how the

Ingenieria 22-1.indb 35 24/07/18 4:25 p.m.

36

Ing. Univ. Bogotá (Colombia), 22 (1): 33-51, enero-junio de 2018

Luis Freddy Muñoz Sanabria, Julio Ariel Hurtado Alegría, Francisco Javier Álvarez Rodríguez

system is structured and how its components work together. The metaphor of the
system [3] is an initial approximation of the architecture and the management that
is useful for simple solutions and this can serve as a starting point for a description
of a model that will enable scalability of the agile methods.

One of the virtues of agile methodologies is that they generate value quickly,
for both client and development team. To do this, the methodologies establish
rules such as the prioritization of requirements, with the idea of generating early
delivery of functioning software. This competitiveness hardly ever benefits orga-
nizations at the development stage and in maintenance of the application. The
idea is that the software industry strengthens at the same time it produces, i.e.
the industry reuses its components, elements, structures and design decisions,
as well as obtains products that can be easily maintained [9].

Therefore, for a market that demands quick solutions because their processes
require it, absence of design in agile methods can yield products that are scarcely
competitive, and inflexible. This article presents a process framework for scaling
XP and Scrum called Agile Architecture in Action (AGATA), centered on team
management, architecture and communication, oriented to large teams (2 to 9
sub-teams) [10]. The framework seeks to improve and enhance the productivity
of development teams in the software industry.

AGATA introduces a holistic model for improving the coordination of a set
of small development teams, working independently with XP and Scrum, syn-
chronized by a team of agile architecture. We validated the proposed model in a
study involving the model’s implementation in a software development project.

The remainder of this paper is organized as follows: Section II presents the
main work related to scalability of agile methods; Section III presents the AGATA
process, which involves specification of values, equipment, practices, and processes;
Section IV presents the model’s application in the case study along with analysis of
the results. Finally, Section V presents conclusions, limitations, and future work.

2. Related work
Yang et al. in [11] analyzed the combination between architecture, team man-
agement, and agile methods in the stages of exploration and analysis. They
proposed the application of architectural designs in different agile practices,
taking account of costs, benefits, challenges, factors, tools, and lessons learned.
The result of the study was that the application of architectural design is re-
quired, that makes it possible to establish communication criteria, quality, and
maintainability even when the project abandons agile principles.

Ingenieria 22-1.indb 36 24/07/18 4:25 p.m.

37

Ing. Univ. Bogotá (Colombia), 22 (1): 33-51, enero-junio de 2018

Agile Architecture in Action (AGATA)

A method based on the use of reference patterns and implementation of
architecture in XP, called C3A and developed by [12], presents a set of con-
tracts for components and a methodology that aligns the timing and granu-
larity of the tasks. This method, however, does not explicitly define practices
regarding the development of requirements and architecture design. Neither
does it report cases of application.

Erder and Pureur described in [13] how to adopt an architectural approach
for the overall process, sometimes called “DevOps”, and how to use it for team
management and communication, based on five components: feedback and
continuous monitoring, continuous integration, continuous release and deploy-
ment, continuous testing, and hybrid cloud. The aim of continuous delivery
is to respond quickly to business needs by delivering high quality software in
rapid cycles. The method they propose does not present clearly the elimination
of bottlenecks observed in the above steps; for this, they recommend systematic
application in a disciplined architectural perspective. However, as teams grow
in number they do not use these perspectives to define a communication model
according to quality requirements, due to the size of the application.

Kazman, Bass and Klein describe in [14] a new method for improving team
management through architectural models within agile methods, called APTIA
(Analytical Principles and Tools for the Improvement of Architectures), which
is used in the life cycle as a means for understanding the objectives of the busi-
ness. Mapping the requirements leads to an architectural representation and
evaluation of the risks associated with this assignment. The method proposed
by Kazman et al. developed into a series of techniques and shared components
for both agile methods and traditional methodologies that seek to clarify the
requirements of the customer. There are no results proving the effectiveness and
difference of APTIA when used in agile and/or traditional methods.

Zaychik and Regli state in [15] that within the life cycle of the project, the
initial stages for building the product are quite problematic from the perspec-
tive of communication. Hence, the teams have to adopt cooperative work tools
supported by computer to facilitate the processing of information, which in
most cases has not been successful due to its complexity.

From another perspective, [16] introduce a method based on team com-
munication with the client, based on inclusive and customized practices. They
specify needs about qualitative aspects of the dynamics of systems, integrating
existing methodologies to facilitate the iterative modeling process.

Ingenieria 22-1.indb 37 24/07/18 4:25 p.m.

38

Ing. Univ. Bogotá (Colombia), 22 (1): 33-51, enero-junio de 2018

Luis Freddy Muñoz Sanabria, Julio Ariel Hurtado Alegría, Francisco Javier Álvarez Rodríguez

Reinhardt, in [17], states how some studies highlighted the fact that ad hoc
informal communication in agile methods is significant in group interaction;
however, it is not possible to achieve any positive effect when the team grows.

3. Agile Architecture in Action (AGATA)
AGATA is a brand of software process based on the values and principles of
Scrum process management. It adds the architecture practices of XP/Architec-
ture (XA) [18] and Extreme Programming (XP) principles [19], and establishes
channels and clear rules of communication with the aim of enabling the use of
the agile approach in projects with large teams (2 to 9 sub-teams) [10] where
agile methodologies have previously proven difficult to scale [20].

AGATA therefore becomes the stimulus motivating the fundamental orga-
nization of the development team, embodied in its components, in the relations
between team members, in the working environment and in the principles
orienting the design and evolution of the software system.

In AGATA, communication becomes a fundamental element for team
synchronization, proposing an architecture team that will motivate sub-team
members, controlling and proposing effective channels so that information rel-
evant to the project flows automatically. AGATA is a holistic, managed process
brand that seeks to continue obtaining results from agile methods despite teams
growing larger (2 to 9 sub-teams). Figure 1 illustrates the model.

Figure 1. AGATA holistic model

Scrum (XA)Scrum (XP)

Scrum (XP)

Scrum (XP)

Scrum (XP)

Source: Author’s own elaboration

Ingenieria 22-1.indb 38 24/07/18 4:25 p.m.

39

Ing. Univ. Bogotá (Colombia), 22 (1): 33-51, enero-junio de 2018

Agile Architecture in Action (AGATA)

3.1. AGATA elements
From the management perspective, AGATA proposes intergroup commu-
nication, architecture-centered development; the organization of tasks to be
performed by the development team to achieve the project objective in the
time proposed by agile methodologies. It is based on the following structure:

3.1.1. Values

AGATA is characterized by its intrinsic values that are reflected in each iteration,
the events that take place within and the results obtained in these iterations:

Adaptiveness: It has the ability to change and learn from experience [21].
Empirical control: Control based on inspection and continuous adjustment

depending on the results obtained after each iteration, and on the project context.
Transparency: In AGATA, it is important that the most relevant occurrences

during the process are visible for all project managers.
Communication: This is crucial at all stages of the process and a funda-

mental proposition of AGATA. As such, it proposes two channels that will be
responsible for directing the team for the success of the project.

Team management: The AGATA team self-organizes, depending on the
interests and skills of each of its members, in sub-teams that revolve around
the proposed model.

3.1.2. Principles

As Scrum [22], AGATA is based on practices focused on the results expected
by the client:
•	 Take advantage of incremental development characteristics.
•	 Prioritize requirements based on value for the client.
•	 Take into account independent development variables of the product [23].
•	 Maintain empirical control of the project.
•	 Synchronizes and make daily adjustments to the team.
•	 Communication flowing around the project will become a vital element.

This will generate in both client and development team a dynamic that will
strengthen decision-making to obtain the desired results.

3.1.3. Events

AGATA proposes a series of events in order to strengthen and improve commu-
nication between teams and energize each of the AGATA actors:

Ingenieria 22-1.indb 39 24/07/18 4:25 p.m.

40

Ing. Univ. Bogotá (Colombia), 22 (1): 33-51, enero-junio de 2018

Luis Freddy Muñoz Sanabria, Julio Ariel Hurtado Alegría, Francisco Javier Álvarez Rodríguez

Sprint planning meeting: This is the first meeting the customer has with
AGATA for sharing of concerns about the system and the conditions for carrying
out the project.

Product backlog organization: This is the visible means of monitoring the
progress of the project. The client and teams discuss their tasks and prioritize
their activities, as well as measure their results.

Iteration planning: AGATA prepares a list of tasks for iteration and es-
timates development effort. These tasks are the requirements the team has
committed itself to carrying out.

Daily sprint meeting: Also called daily synchronization meeting, lasting
a maximum of 15 minutes, this is where the agile team evaluate the progress
of the tasks.

Sprint review: At the end of each Sprint, AGATA leaders hold a very infor-
mal meeting with the client to present the requirements completed.

Sprint retrospective: A meeting held by all AGATA actors once the Sprint
is finished to analyze what went right, what processes could be improved, and
how to improve them.

3.1.4. Roles

The management of a project in AGATA focuses on defining what are the
characteristics the product must have (what to build, what not to build, and in
what order) and overcoming any obstacles that might hinder the work of the
development team. The AGATA actors are:

Scrum (XA) team: Also known as architecture team, coordinates the proj-
ect with the AGATA actors, organizes the product backlog, reviews the Sprint
results, and manages the project through the architecture as a communication
channel.

Scrum (XP) team: Also known as development team follows Extreme
Programming practices while keeping Scrum management in mind.

AGATA master: Maintains team synergy, while ensuring adherence to
AGATA principles and values.

Product owner: The representative of the client in AGATA, serves to focus
team vision and is further responsible for the ROI of the project.

3.2. AGATA life cycle
AGATA follows its phases and iterations as shown in Figure 2.

Ingenieria 22-1.indb 40 24/07/18 4:25 p.m.

41

Ing. Univ. Bogotá (Colombia), 22 (1): 33-51, enero-junio de 2018

Agile Architecture in Action (AGATA)

Figure 2. Phases of the AGATA method

Source: Author’s own elaboration

Exploration: In AGATA, Scrum (XA) team members meet with the client
(XA) to set out the initial requirements of the system, establishing system limits.

Planning: This is the initial stage of all projects. It is ongoing in nature,
beginning a continuous relationship between client and development team to
find the system’s requirements. Here, the AGATA team plans the number and
size of the project iterations and make adjustments to the practices of the Scrum
(XP) teams based on the characteristics of the product [24].

In planning, the AGATA team should take into account the following aspects:
History of architecture: Comprising the results of the conversation between

client (XA) and Scrum (XA) team, it will be the best means of communication
for managing the Scrum (XP) teams.

User stories: The Scrum (XA) leader is the one who decides what to do,
based on the meeting of Scrum team (XA) and client. As a first step, the leader
provides a clear idea of what the project will be [25]. User stories serve as a tool
to let the scrum (XP) development team know the requirements of the system.
The stories are small texts in which an activity to be carried out by the system
is described; writing these is done with the client in mind, not the developer,
so that the terminology is clear and simple, without going into detail. The user
stories allow the estimation of delivery time.

Speed of project: This is a measure of the ability of the development team
to evacuate user stories in a given iteration. The AGATA team calculates this
by totaling the number of user stories resolved in a single iteration.

Daily meeting or “stand-up meeting”: Both the Scrum (XA) team and
Scrum (XP) teams require a continuous review of the work plan. Therefore, the
AGATA team schedules very short daily meetings to discuss the point where
everyone got to the previous day, what the problems were, and what work the
teams are planning for the day ahead [26].

Delivery plan: At the start of every iteration, the Scrum (XA) team and the
client meet. At that meeting, they define the time frame for implementing the

Ingenieria 22-1.indb 41 24/07/18 4:25 p.m.

42

Ing. Univ. Bogotá (Colombia), 22 (1): 33-51, enero-junio de 2018

Luis Freddy Muñoz Sanabria, Julio Ariel Hurtado Alegría, Francisco Javier Álvarez Rodríguez

system. The client sets out his requirements to the group members and they
verify the tasks that are broken down from each architectural story and estimate
the degree of difficulty of implementing each one. Tools help to show which jobs
have still to be done, which ones are in process, and which ones have been done.

Building with architecture: Based on the previous phase, the AGATA team
prioritizes the requirements of the system, and develops a draft of the architec-
ture proposed by the Scrum (XA) architectural team for those requirements.
The system is modularized and the requirements distributed to the Scrum
(XP) development teams involved in the project. The AGATA team works on
defining the architecture alongside the development of the Scrum (XP) teams.
The system undergoes continual integration. As in Extreme Programming, this
construction is iterative and incremental ensuring continued customer feedback.

3.3. AGATA architecture practices
AGATA maintains the management of Scrum, and XP the simplicity, the met-
aphor of the system, and the refactoring. Furthermore, AGATA applies adapt-
ed forms of the Attribute-Driven Design (ADD) [27] and Quality Attribute
Workshops (QAW) [28] architecture methods. Previous studies have combined
and compacted these practices with the base practices of XP [12, 29] and this
research takes them as a reference point for obtaining the fragments of process
concerning architectural themes as shown in the following:

The planning game: A continuous practice, here the client comes to agree-
ment with the AGATA team. From the beginning of product development,
the group and the client must have an overall, clear picture of what tasks they
want and which of these tasks they will do, i.e. they need to understand and
agree with what the “other party” puts forward. During the project, a number
of meetings take place in order to organize the tasks and new ideas arising from
the customer and the team [30].

In-situ client: The client must be available to the architecture team in order
to resolve any questions or concerns that may arise in the course of the project.
He himself represents the requirements in real life and validates whether or not
the delivery is useful [31].

Simple design: Complex designs have no place in this discipline, because
they generally do not provide clear solutions to product development. This does
not mean forgoing design: AGATA instead calls for a simple and flexible design
understandable to all team members [32].

Ingenieria 22-1.indb 42 24/07/18 4:25 p.m.

43

Ing. Univ. Bogotá (Colombia), 22 (1): 33-51, enero-junio de 2018

Agile Architecture in Action (AGATA)

System metaphors: With the aim of establishing a unified language in
AGATA, the idea is to improve communication and make very simple stories
of the requirements [9].

Refactoring: Architecturally, facilitates the rapid formulation of solutions;
while in parallel ADD provides architectural tactics and strategies for a lon-
ger-term solution, firing architectural refactoring requirements. This makes it
possible for the technical requirements to arise incrementally, backed by the
capacity of the requirements negotiation and refactoring practices, which are
architectural in nature in order to locate the potential changes of greatest impact
as early as possible in the project.

Collective ownership of code: All group members know and handle the
code. This even means that the group has to apply programming standards.

Code conventions: The idea is that all team members know the code and
have access to it so they can make changes. For this reason, the aforementioned
programming standards are applied.

No overtime: This practice seeks to maximize the performance of the teams
without resorting to punishing working hours in the planning of more than 40
hours a week. Instead, the AGATA team plans a “steady pace” in the develop-
ment of each story [33].

Test directed development: “When we know what we are going to test,
then we will know what we are going to develop” [34]. Before making any
unit of code, it is necessary to have the respective test unit. The programmers
conduct tests directed toward the operation of the code. The client and test
engineer are responsible for designing acceptance tests, the purpose of which is
to verify that the user stories are implemented correctly [35].

4. Case study
We applied AGATA in the framework of a project for the software industry,
adhering to the guidelines of empirical research from case studies of a phenom-
enon studied within its real context [11].

4.1. Case study design
Based on the hypothesis that AGATA as an integrated mechanism for agile
project management could improve the communication challenges for large
teams (of 2 to 9 sub-teams), this case study focuses on evaluating the ability of
AGATA to establish communication mechanisms that enable scaling to large
groups within a development project framework. We followed the proposal of

Ingenieria 22-1.indb 43 24/07/18 4:25 p.m.

44

Ing. Univ. Bogotá (Colombia), 22 (1): 33-51, enero-junio de 2018

Luis Freddy Muñoz Sanabria, Julio Ariel Hurtado Alegría, Francisco Javier Álvarez Rodríguez

[22] to design this research, the starting point being the main research questions
to be solved: how to scale agile methods in software projects with large teams
(of 2 to 9 sub-teams) and which practices could be introduced to overcome the
communication challenges.

To support this research, we defined indicators, metrics and data collection
instruments as presented in Table 1. For the collection of information in this
case study we used and designed the following instruments:

Surveys: We surveyed the client, Scrum (XP) teams and Scrum (XA) team
in order to:
•	 Investigate the degree of distortion of the requirements of the system, as well

as the satisfaction of each actor with the method and product;
•	 Understand the degree of acceptance of the proposed model among team

members and the degree of responsiveness of the model and its dynamism
relating to the project and the other actors.
Artifacts: Checklists for the team and the product to evaluate coverage of

the requirements, the defects plan to assess quality, and evaluation of the pro-
posed architecture.

Table 1. Indicators, metrics, information sources, and instruments defined for research support

Indicator Measurements Information sources Instruments

Distortion (D)
Measures degree of
distortion of message

Client and teams Survey

Effectiveness of Channel (EC)
Functionality: ease of
proposed channels

Client, teams and
product

Observation
Checklist

Source: Author’s own elaboration

4.2. Project
When development teams grow, some variables are difficult to control and
therefore may adversely affect the product and the client because of possible
lack of quality in the results. Accordingly, we validated AGATA in an industrial
environment with a team that surpassed the possibilities of agile methods, to
develop software with all the requirements and commercial complexity. We
based the object of study on the development of a Kanban board in order to allow
a better production process workflow in the development of software. To this
end, we observed the following principles: visualize workflow, limit work in
progress, manage and measure workflow, implement feedback cycles, clarify
policies and procedures, continuous collaborative evolution.

Ingenieria 22-1.indb 44 24/07/18 4:25 p.m.

45

Ing. Univ. Bogotá (Colombia), 22 (1): 33-51, enero-junio de 2018

Agile Architecture in Action (AGATA)

4.3. Project development
We delegated a team of 24 participants to develop the application, which would
allow automated tracking of Scrum (XP) and Scrum (XA) teamwork. The 24
project participants organized autonomously for the development of the pro-
posed project.

The 24 participants were unaware of the AGATA methodology. We gave
them training over an extended 8-hour day. On the same day, we also addressed
issues relating to Scrum and Extreme Programming (XP), in order to unify
terms of reference. Finally, we also trained them in architecture topics and
methods, since the group required to know basic concepts, views, styles, and
methods proposed by SEI (Software Engineering Institute), placing an emphasis
on ADD (Attribute-Driven Design) and QAW (Quality Attribute Workshop).
See Figure 3.

Case context: the developers organized themselves into four Scrum (XP)
teams of five members and a Scrum (XA) team of four members. Each team
chose their client/architect representative to Scrum (XA).

Figure 3. AGATA members in training

Source: Author’s own elaboration

In the dynamic of the project, while Scrum (XA) met with the client of the
project, the Scrum (XP) teams organized their information displays (whiteboards)
in a place visible to all (see Figure 4). At the beginning of each of the six 8-hour
sessions, the Scrum (XA) team held a 15-minute meeting with the client to
receive feedback.

Ingenieria 22-1.indb 45 24/07/18 4:25 p.m.

46

Ing. Univ. Bogotá (Colombia), 22 (1): 33-51, enero-junio de 2018

Luis Freddy Muñoz Sanabria, Julio Ariel Hurtado Alegría, Francisco Javier Álvarez Rodríguez

Figure 4. Scrum (XA) team members

Source: Author’s own elaboration

The client showed very high commitment, was available, and actively par-
ticipated in the development of requirements. In addition, the Scrum (XA) and
Scrum (XP) teams continued iteration planning and daily work practices as
established by AGATA. In the course of the project, the AGATA team collected
information as planned. The dynamic corresponds to the proposed model, since
during the course of the case study there was commitment by each of the team
members to follow the practices proposed by the model, achieving an adherence
of 82%, which is acceptable for evaluating the results of the case study.

5. Results
The productivity of the Scrum (XP) teams was between 0.010 and 0.017 US-
P-H (User Stories per Person per Hour), while for the Scrum (XA) team it was
0.007 HA-P-H (Histories of Architecture per Person per Hour). In this case
study, the AGATA team developed 12 600 LOC, reaching a productivity of
14.58. In the project, we evaluated other important variables. Results reported
95% level of acceptance of the proposed model and 90% level of client partici-
pation in the course of development of the project. Once the product had been
delivered, customer satisfaction was assessed at 95%. With 95% meeting of
the requirements, the observed level of adherence to the method by teams and
client was 95%. These results provide preliminary validation of the productivity
of AGATA. However, further empirical evaluation should be carried out by the
software industry.

Meanwhile, we measured distortion from the context or semantics of the
messages transmitted by the teams, since this is one of the main barriers to

Ingenieria 22-1.indb 46 24/07/18 4:25 p.m.

47

Ing. Univ. Bogotá (Colombia), 22 (1): 33-51, enero-junio de 2018

Agile Architecture in Action (AGATA)

communication. We therefore took into account conceptualization depending
on the message or the status of each project actor, degree of significance of the
messages understood, information expressed poorly, incongruities, encoding of
messages. To measure distortion, we took into account the following variables:
number of defects found, number of messages transmitted, messages and defects
in functional requirements, messages and information on restrictions, and the
messages and defects in architectonic information (Drivers, Tactics and Strate-
gies). We applied the following equation:

D = {(NDRF/NMERF),(NDR/NMER), (NDA/NMEA)}	 (1)

Where ND is the number of defects found. NME is the number of messages
transmitted. RF refers to messages and defects with functional requirements.
R are messages and defects with constraint information. A refers to messages
and defects with Architectonic information (Drivers, Tactics and Strategies)

We found distortion was 0.01%, giving a reasonably high degree of reliability
for the project (see Figure 5).

Figure 5. Distortion

6

5

4

3

2

1

0
1	 2	 3	 4

 Distortion
 Correct message

Source: Author’s own elaboration

With these results, it was necessary to measure the quality of the channels
used: in this case the architecture proposed by Scrum (XA) and the face-to-face
communication held in each of the events proposed by AGATA. For this, we
took into account the following equation:

MC = (1 - Messages Incorrectly Transmitted Due to Channel/
Total Transmitted Messages) * 100,	 (2)

Ingenieria 22-1.indb 47 24/07/18 4:25 p.m.

48

Ing. Univ. Bogotá (Colombia), 22 (1): 33-51, enero-junio de 2018

Luis Freddy Muñoz Sanabria, Julio Ariel Hurtado Alegría, Francisco Javier Álvarez Rodríguez

resulting in a degree of acceptance and efficiency of 95%, intimating that
the channels used achieved a high degree of confidence on sharing information
among the AGATA actors.

6. Conclusions, limitations and future work
This article has presented AGATA, a development method that extends the agile
practices of XP and the management of Scrum for large teams (2 to 9 sub-teams).
•	 In a preliminary way, the method scales when applied in an industrial case.

The main qualitative findings of this case study include:
–– Due to size of the team, thought should be given to management of its
members; a method should be sought that holistically coordinates the
activities to be carried out by each team member.

–– As the team grows, communication is a factor that must be controlled;
the bigger the team, the greater the information load and the greater the
number of communication messages.

–– The AGATA members understand their role in achieving the integrity of
the holistic model, to generate the histories architecture as a communi-
cation mechanism for establishing the requirements.

It is necessary to propose a preliminary meeting between the architectural
team and the client, or iteration 0. This will ensure that when the sub-teams of
the project are integrated, they already have clear tasks to carry out.

In the literature, most cases do not report the measurements made, or report
without characterizing the context of the case studies, and very rarely is commu-
nication taken into account as a relevant, measurable element in development
teams. That given, this research suffers from certain limitations due to the type
of comparisons of the measures performed and those found in the literature. We
therefore recommend as future work to conduct controlled experiments to be
able to establish a more normalized comparison. Team management and com-
munication are two aspects that need to be taken into account to achieve scaling.

The case study presented here establishes that to corroborate the results
obtained in this research it is necessary to consider other variables of context
such as those established by [36] to make a more normalized comparison, for
example, the expertise of the participants. The software industry is currently
adopting all these considerations to improve the design of future case studies.

Ingenieria 22-1.indb 48 24/07/18 4:25 p.m.

49

Ing. Univ. Bogotá (Colombia), 22 (1): 33-51, enero-junio de 2018

Agile Architecture in Action (AGATA)

Acknowledgments
The authors would like to thank the research groups: IDIS of the Universidad
del Cauca, and LOGICIEL of the Fundación Universitaria de Popayán, which
made possible the development of this study.

References
[1] 	 K. Beck and C. Andres, Extreme Programming explained: embrace change, 1st ed., New Jersey,

NJ, US: Pearson Education, 2004.
[2] 	 R. L. Nord, and J. E Tomayko, “Software Architecture Centric Methods and Agile De-

velopment,” IEEE Software, vol. 23, no. 2, pp. 47- 53, Mar.-Apr. 2006. doi: 10.1109/
MS.2006.54.

[3] 	 D. J. Reifer, F. Maurer, and H. Erdogmus, “Scaling Agile Methods,” IEEE Software, vol.
20, no. 4, pp. 12-14, Jul. 2003. doi:10.1109/MS.2003.1207448.

[4] 	 K. Beck and M. Fowler, Planning Extreme Programming, 1st ed. Boston, MA, US: Addison-
Wesley, Longman Publishing Co., 2000.

[5] 	 S. W. Ambler. (2009, Dec.). The Agile Scaling Model (ASM): adapting agile methods
for complex environments. [Online]. Avalaible: https://www.researchgate.net/profile/
Scott_Ambler/publication/268424579_Adapting_Agile_Methods_for_Complex_The_
Agile_Scaling_Model_ASM_Adapting_Agile_Methods_for_Complex_Environments/
links/55003e780cf28e4ac347ee34.pdf?origin=publication_detail

[6] 	 B. MacKellar, “A case study of group communication patterns in a large project software
engineering course,” in Software Eng. Educ. Training (CSEE&T),Nanjing, Jiangsu, China,
Apr. 2012 . doi: 10.1109/CSEET.2012.21

[7] 	 D. Rodríguez, M. A. Sicilia, E. García, and R. Harrison, “Empirical findings on team size
and productivity in software development,” J. Syst. Software, vol. 85, no. 3, pp. 562-570,
Mar. 2012. https://doi.org/10.1016/j.jss.2011.09.009.

[8] 	 Extreme Programming: A gentle introduction. [Online]. Available: http://www.extre-
meprogramming.org/.

[9] 	 Beck Kent and Andres Charles. Extreme programming explained: embrace change.
Addison-Wesley, pp. 224, Enero 2012.

[10] 	 P. C. Pendharkar and J. A. Rodger, “The relationship between software development team
size and software development cost,” Commun. ACM, vol. 52, no. 1, pp. 141-144, 2009.
doi: 10.1145/1435417.1435449.

[11] 	 C. Yang, P. Liang, and P. Avgeriou, “A systematic mapping study on the combination of
software architecture and agile development,” J Syst Software, vol. 111, pp. 157–184, Jan.
2016. https://doi.org/10.1016/j.jss.2015.09.028

[12] 	 E. Hadar and G. M. Silberman, “Agile architecture methodology: long term strategy
interleaved with short term tactics,” in OOPSLA Companion ‘08 Companion to the

Ingenieria 22-1.indb 49 24/07/18 4:25 p.m.

50

Ing. Univ. Bogotá (Colombia), 22 (1): 33-51, enero-junio de 2018

Luis Freddy Muñoz Sanabria, Julio Ariel Hurtado Alegría, Francisco Javier Álvarez Rodríguez

23rd ACM SIGPLAN conf. on Object-oriented programming syst. languages and app.,
Nashville, TN, US, 2008, pp. 641-652. doi:10.1145/1449814.1449816.

[13] 	 M. Erder and P. Pureur. Continuous architecture: Sustainable architecture in an agile and
cloud-centric world. Walthman, MA, US: Morgan Kauffmann, Elsevier, 2006.

[14] 	 R. Kazman, L. Bass, and M. Klein, “The essential components of software architecture
design and analysis,” J Syst. Software, vol. 79, no. 8, pp. 1207-1216, Aug. 2006. https://
doi.org/10.1016/j.jss.2006.05.001.

[15] 	 V. Zaychik and W. C. Regli, “Capturing communication and context in the software project
lifecycle,” Res. Eng. Des, vol. 14, no. 2, pp. 75-88, May. 2003. https://doi.org/10.1007/
s00163-002-0027-8

[16] 	 S-A. Marjaie and U. Rathod, “Communication in agile software projects: qualitative
analysis using grounded theory in system dynamics,” 2014.

	 [Online]. Available: http://www.systemdynamics.org/conferences/2011/proceed/papers/
P1353.pdf.

[17] 	 W. Reinhardt, “Communication is the key-Support durable knowledge sharing in software
engineering by microblogging,” in Proc. of the 1st Int. Workshop on Software Eng. within Social
software Environments (SENSE09), Kaiserslautern, Germany, March 3, 2009.

[18] 	 L. Muñoz Sanabria and J. Hurtado Alegría, “XA: Una extensión XP para apoyar estudios
de arquitectura,” in IEEExplore. XI Computer Congress (CCC), Colombia, 2015.

[19] 	 M. Marchesi, G. Succi, D. Wells, and L. Williams, Extreme programming perspectives. New
Jersey, NJ, US: Pearson Education, Addison Wesley, 2002, pp. 624.

[20] 	 P. Pendharkar, and J. Rodger, (2009, enero). The relationship Between Software Development
Team Size and Software Development Cost. ACM, vol 52, 1, pp. 141-144.

[21] 	 K. Schwaber and J. Sutherland. (2013, Jul.). The scrum Guide: The definitive guide to
scrum: the rules of the game. Scrum.[Online]. Available: http://www.scrumguides.org/
docs/scrumguide/v1/scrum-guide-us.pdf

[22] 	 P. Runeson and M. Höst, “Guidelines for conducting and reportingcase study research in
software engineering,” Empirical Software Eng., vol. 14, no. 2, pp. 131-164, Apr. 2009.
https://doi.org/10.1007/s10664-008-9102-8

[23]	 R. N. Jensen, T. Møller, and G. Tjørnehøj, “Architecture and design in eXtreme program-
ming: introducing ‘developer stories’,” in Int. Conf. on Extreme Progr. Agile Process. Software
Eng. XP 2006. Lecture Notes in Comput. Sci., vol. 4044, Berlin, Heidelberg, 2006,pp.
133-142.

[24] 	 S. Kuppuswami, K. Vivekanandan, P. Ramaswamy, and P. Rodrigues, “The effects of indi-
vidual XP practices on software development effort,” Newsletter ACM SIGSOFT Software
Eng. Notes, vol. 28, no. 6, pp. 6, Nov. 2003.

Ingenieria 22-1.indb 50 24/07/18 4:25 p.m.

51

Ing. Univ. Bogotá (Colombia), 22 (1): 33-51, enero-junio de 2018

Agile Architecture in Action (AGATA)

[25] 	 L. M. Echeverry Tobón and L. E. Delgado Carmona, “Caso práctico de la metodología ágil
XP al desarrollo de software,” BSc Thesis, Universidad Tecnológica de Pereira, Colombia,
2007.

[26] 	 A. Martin, J. Noble, R. Biddle, “Programmers are from Mars, customers are from Venus: A
practical guide for customers on XP Projects,” in PLoP ‘06 Proc. 2006 conf. Pattern languages
of programs, Portland, Oregon, US, Oct. 2006, art. 20. doi: 10.1145/1415472.1415496

[27] 	 R. Wojcik, F. Bachmann, L. Bass, and Others, Attribute-Driven Design (ADD) Version
2. Software Architecture Technology Initiative. 2006. Available from: http://www.sei.
cmu.edu/reports/06tr023.pdf.

[28] 	 M. R. Barbacci, et al., (2002, Jun.) Quality Attribute Workshops QAW -3rd Ed., Ar-
chitecture Tradeoff Analysis Initiative.[Online]. Available: https://pdfs.semanticscholar.
org/da24/7e22910e7e4c98071e90fcdc419245ea45bd.pdf.

[29] 	 P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, “Agile software development
methods: Review and analysis,” VTT Electronics, Oulu, Finland, ESPO 2002, VTT Publi-
cations 478, 2002. Available: http://www.pss-europe.com/P478.pdf.

[30] 	 D. J. Reifer, F. Maurer, and H. Erdogmus, “Scaling agile methods,” IEEE Software, vol
20, no. 4, pp. 12-14, Jul. 2003. doi: 10.1109/MS.2003.1207448

[31] 	 A. Sillitti and G. Succi, “Requirements engineering for agile methods,” in Engineering and
Managing Software Requirements, A. Aurum, C. Wohlin (eds). Berlin, Heidelberg: Springer,
2005, pp. 309-326. 2005. https://doi.org/10.1007/3-540-28244-0_14

[32] 	 R. Gittins, S. Hope, “A study of Human Solutions in Extreme Programming,” in Proc.
PPIG 13, Bournemouth, UK, Apr. 2001 Univ. Wales Bangor, pp. 41-51. 2001. [Online].
Available: https://pdfs.semanticscholar.org/6117/7dcb504e5eab9e9e3f5c2e1335f115c
5b208.pdf

[33] 	 K. Beck, et al.(2001). Manifesto for agile software development. [Online]. Available:
https://www.agilealliance.org/.

[34] 	 J. Biolchini, P. Gomes Mian, A. C. Cruz Natali, and G. H. Travassos. (2005, May). Sys-
tematic Review in Software Engineering. [Online]. Available: ftp://161.24.19.221/ele/
ivo/Leitura/biolchini_2005.pdf

[35] 	 B. Kitchenham. (2004, Jul.), Procedures for performing systematic reviews. [Online]
Available: http://www.inf.ufsc.br/~aldo.vw/kitchenham.pdf

[36] 	 L. Layman, L. Williams, and L. Cunningham, “Exploring extreme programming in context:
An industrial case study,” in Proc. Agile Develop. Conf., Salt Lake City, UT, US, 2004, pp.
32-41. doi: 10.1109/ADEVC.2004.15

Ingenieria 22-1.indb 51 24/07/18 4:25 p.m.

Ingenieria 22-1.indb 52 24/07/18 4:25 p.m.

