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Abstract 

 

Objective: This paper proposes a new 

methodology to solve one-dimensional cases of 

integral equations with difference kernels using 

Fourier analysis. Methodology: In this study, it 

was proven that any Fredholm equation of the first 

kind can be expressed as an extended 

convolutional problem; consequently, a new 

approach to solve that problem, using the nonideal 

instantaneous sampling theory and Fourier 

analysis, can be developed. Results and 

Discussion: The proposal was extensively 

evaluated and compared with the method of 

moments by considering two benchmarks. The 

first was a narrowband problem related to a 

second-order differential equation with specific 

boundaries. The second was a standard wideband 

problem related to wire antenna radiation in 

electrodynamics, known as the Pocklington 

equation. In both cases, we derived new 

interpretations and different approaches to solve 

the problems efficiently. Conclusions: The new 

proposal generalized the method of moments via 

new interpretations, strategies and design rules. 

We found that the techniques based on the method 

of moments are point-matching procedures 

independent of the weighting functions; the basis 

functions can be designed as generalized 

interpolation functions with more information 

provided by the original domain; the weighting 

functions literally represent a sampled linear filter; 

the unknown continuous function can be 

approximated without using the classical 

variational approach; and several new strategies 

based on the Fourier transform can be used to 

reduce the computational cost. 

 

 

 

Keywords: deconvolution, integral equations, 

method of moments, moment methods, sampling 

methods 

Resumen 

 

Objetivo: Este artículo propone una nueva 

metodología para solucionar ecuaciones integrales 

conformadas con núcleos diferenciales de una 

dimensión usando el análisis de Fourier. 

Metodología: En este estudio, se ha probado que 

cualquier ecuación de Fredholm de primera clase 

puede ser expresado como un problema 

convolucional extendido; consecuentemente, un 

nuevo enfoque para solucionar ese problema, 

usando la teoría de muestreo instantánea no ideal 

y el análisis de Fourier, puede ser desarrollado. 

Resultados y discusión: La propuesta fue 

extensivamente evaluada y comparada con el 

Método de los Momentos usando dos benchmarks. 

El primero fue un problema de banda angosta 

relacionado con una ecuación diferencial de 

segundo orden con fronteras específicas. El 

segundo fue un problema estándar de banda ancha 

relacionada con la radiación de una antena de 

alambre en electrodinámica, denominado la 

Ecuación de Pocklington. En ambos casos, nuevas 

interpretaciones y diferentes enfoques fueron 

encontrados con el objeto de solucionar 

eficientemente los problemas. Conclusiones: La 

nueva propuesta generaliza el Método de los 

Momentos con nuevas interpretaciones, 

estrategias y reglas de diseño. Nosotros 

encontramos que las técnicas basadas en el 

método de los momentos son procedimientos de 

acople de puntos que independiente de las 

funciones de peso, las funciones base pueden ser 

diseñadas como funciones de interpolación 

generalizadas con más información provista por el 

dominio original; las funciones de peso 

literalmente representan a un filtro lineal 

muestreado; las funciones continuas desconocidas 

pueden ser aproximadas sin usar el enfoque 

variacional clásico; y varias nuevas estrategias 

basadas en la transformada de Fourier poder ser 

usadas para reducir el costo computacional. 

Palabras clave: deconvolución, ecuaciones 

integrales, método de los momentos, métodos de 

muestreo 
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Main Nomenclature 

 

𝑔(x)   Unknown function over the interval [𝑎, 𝑏]. 

𝑓(x)  Known function over the interval [𝑎, 𝑏]. 

𝐾(𝑥, 𝑢)  Kernel of the integral equation. 

𝑔Ω(𝑥)   Truncated function of 𝑔(x) over the interval 𝑥 ∈ ℝ. 

𝑓∞(𝑥)  Extended function of 𝑓(x) over the interval 𝑥 ∈ ℝ. 

𝑔Ω(𝑥𝑛)  Instantaneous value of 𝑔Ω(𝑥) at sample 𝑥𝑛 ∈ ℝ. 

�̂�Ω(𝑥𝑛)  Instantaneous approximation of 𝑔Ω(𝑥𝑛). 

Ψ(𝑥)   Nonideal sampling function over the interval 𝑥 ∈ ℝ. 

𝜗   Sampling rate. 

𝑝𝑛(𝑥; Δ)  Generalized interpolation function over the interval 𝑥 ∈ ℝ. 

ℎ̃(𝑣)   Fourier transform of ℎ(𝑥). 

�̃�Ω(𝑣)   Fourier transform of 𝑔Ω(𝑥). 

𝐵𝑊2
ℎ   Essential bandwidth of ℎ ∈ 𝐿2.  

𝐿1∧2   Means 𝐿1 ∩ 𝐿2. 

Mathematical definitions and other notations can be found in appendices A.1 and A.2. 

  



Novel computational approach to solve convolutional integral equations: method of sampling for one dimension 

INGENIERÍA Y UNIVERSIDAD: ENGINEERING FOR DEVELOPMENT | COLOMBIA | V. 23 | NO. 2 | 2019 | ISSN: 0123-2126 / 2011-2769 | Pág. 4 
 

Introduction 

 

Integral equations (IEs) allow the modeling of a large number of complex problems in 

several areas of engineering and physics such as heat and mass transfer, oscillation theory 

and electromagnetic fields. An IE is an equation in which an unknown function 𝑔(∙) related 

to an integral needs to be found under a known excitation 𝑓(∙). Some examples include 

one-dimensional IEs with forms ∃𝑔(∙): ∫ 𝐾(𝑥, 𝑢)𝑔(𝑢)𝑑𝑢
𝑏

𝑎
= 𝑓(𝑥) and 

∃𝑔(∙): ∫ 𝐾(𝑥, 𝑢)𝑔(𝑢)𝑑𝑢
𝑥

𝑎
= 𝑓(𝑥), which are respectively known as the Fredholm and 

Volterra equations of the first kind, in which 𝐾(𝑥, 𝑢) is usually known as the kernel. 

 

Several techniques have been developed over the years to solve this kind of problem using 

exact, asymptotic and numerical approaches. A comprehensive summary of these 

techniques for different problems can be found in [1]–[3]. In particular, a well-known 

numerical technique to solve electromagnetic problems using IEs is called the method of 

moments (MoM) [4], [5]. This approach allows the development of a general framework 

including different types of modern techniques, known as the method of weighted residuals 

(MWR). For example, the finite element method (FEM) and the finite difference method 

(FDM) can be represented using the MWR [6], [7]. In recent times, the MoM has been used 

to solve multidimensional open boundary problems in electrodynamics, and it is included in 

many CAD platforms such as HFSS, IE3D, FEKO, and NEC. 

 

In [8], we proposed an original approach to solve integral equations, based on the nonideal 

instantaneous sampling theory, which involved developing a novel framework for solving 

linear operators using Fourier analysis. The new approach was based on the fact that a 

Fredholm equation of the first kind with a difference kernel 𝐾(𝑥, 𝑢) = 𝐾(𝑥 − 𝑢) can be 

expressed as an extended convolutional problem with form 𝐾(𝑥) ∗ 𝑔Ω(𝑥) = 𝑓∞(𝑥), where 

where 𝑔Ω(𝑥) is a truncated function of 𝑔(𝑥), 𝑓∞(𝑥) is an extended function of 𝑓(𝑥), Ω ≜

[𝑎, 𝑏], and (∗) is the standard convolution operator. As a result, although the problem must 

be solved via matrix techniques using the original domain, the convolution properties and 

Fourier analysis can be used to design an efficient solution. This new property, known as 

the convolutional equivalence, allows the establishment of design rules that cannot be 

determined when using the MoM. These results are detailed in this paper through a new 

framework termed as the method of sampling for one dimension (MoS!-1D). 

 

Most previous works aimed at solving Fredholm equations in the context of 

electrodynamics were focused mainly on the MoM. The different approaches established 

benchmarks for computational techniques (e.g., the comparison between MoM, FEM and 

FD-TD) and experimental techniques (e.g., the wire antenna) and identified particular 

computational issues (e. g., extremely ill-conditioned matrices), and they have been the 

cornerstone for generalizations in two and three dimensions. For example, [4] and [9] 
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solved the problem of wire antennas with arbitrary shapes; [10] and [11] used telegraphist’s 

equations to evaluate transmission lines by using the Green function; [12] proposed the use 

of semiorthogonal compactly supported spline wavelets to evaluate an infinitely long 

metallic cylinder illuminated by a TM plane wave; [13] found the unknown current of a 

linear dipole with MFIE using high-order basis functions; and [14] and [15] solved the 

scattering for an infinite curved smooth strip considering the TM and TE cases by using the 

Nystrom method. However, few discussions exist regarding the relationship between the 

system theory based on the convolution operator and the Fredholm equation in the context 

of electrodynamics. Notably, [16] defined an effective bandwidth of a scattered field using 

the bandlimited behavior of the far field. Subsequently, [17] and [18] used this property to 

define basis functions with better convergence based on the entire domain and quasi-

localized bandlimited interpolation functions. Furthermore, [19] used this behavior to 

simplify the Green function by removing the unexpected spectral components. This 

approach was supported by the similarity of the problem with a convolutional formulation, 

which was not very well defined. 

 

The main contributions of this paper are new design paradigms and strategies for solving a 

Fredholm equation of the first kind, which covers the MoM methodology. For instance, we 

found that the functions used to determine a linear equation system can be designed as 

generalized interpolation functions without the assumption of continuity or smoothness, the 

weighting functions are sampled linear filters with particular specifications, and the new 

matrix coefficients (𝑆𝑚𝑛) may contain information concerning the supradomain (𝑥 ∈ Ω𝑐). 

In the same manner, we proved that the generalized interpolation functions can be different 

from the functions used to approximate the unknown continuous function, and it is possible 

to reduce the computational cost based on the properties of linear and invariant systems. 

 

The remaining sections of the article are organized as follows: in method of sampling 

section describes the justification and development of the novel approach using the 

nonideal instantaneous sampling theory. In analysis and evaluation section, several aspects 

of the matrix approach are discussed, and two examples are numerically evaluated. In 

conclusions, we present the conclusions of this research. Finally, appendices A and B detail 

several definitions, theorems and properties needed to make this paper self-contained. 
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Method of Sampling 

 

Convolutional Equivalence 
 

Assume a convolutional integral equation (CIE) with the form ∃𝑔(∙): ∫ 𝐾(𝑥, 𝑢)𝑔(𝑢)𝑑𝑢
𝑏

𝑎
=

𝑓(𝑥) with 𝑎 < 𝑏, ∀𝑥 ∈ Ω ≜ [𝑎, 𝑏] ⊂ ℝ and 𝐾(𝑥, 𝑢) = 𝐾(𝑥 − 𝑢). Let 𝐾 ∈ 𝐿2 and 𝑔Ω ∈

𝐿1∧2 with the essential bandwidths being 𝐵𝑊2
𝐾 and 𝐵𝑊2

𝑔Ω (see definition 8). 

 

Consider the extended equivalent problem ∃𝑔Ω(∙): ∫ 𝐾(𝑥, 𝑢)𝑔(𝑢)𝑑𝑢
∞

−∞
= 𝑓∞(𝑥) =

𝑓Ω
∞(𝑥) + 𝑓Ω𝑐

∞(𝑥), with 𝑓Ω
∞(𝑥) = 𝑓Ω(𝑥) and Ω𝑐 = ℝ − Ω [8]. From this formulation, the 

extended function 𝑓∞(𝑥) has two components: The first (𝑓Ω
∞) is the known function 

because 𝑓Ω(𝑥) = {𝑓(𝑥), ∀𝑥 ∈ Ω and zero elsewhere}; the second (𝑓Ω𝑐
∞) is the extended 

function 𝑓∞(𝑥) evaluated in the supradomain (𝑥 ∈ Ω𝑐), which is a degree of freedom with 

mathematical sense allowing the hypothesis 𝑔Ω

𝐾
→ 𝑓∞. For a major discussion concerning 

this equivalence, see [8]. 

 

The analysis of this new problem can be performed in the original domain (𝑥 −domain) or 

the Fourier domain (𝑣 −domain) by using 

 

 𝐾(𝑥) ∗ 𝑔Ω(𝑥) = 𝑓∞(𝑥) (1) 

 

 �̃�(𝑣) ∙ �̃�Ω(𝑣) = 𝑓∞(𝑣) (2) 

 

where 𝑓∞ ∈ 𝐿2 with 𝐵𝑊2
𝑓∞

. The critical bandwidth of this new problem is denoted by 

𝐵𝑊 = min⁡{𝐵𝑊2
𝑓∞

, 𝐵𝑊2
𝑓Ω

∞

}. 

 

The solution of this problem must be in the 𝑥 −domain because the degree of freedom 

𝑓Ω𝑐
∞(𝑥) is unknown, and even though this function makes mathematical sense, it is not 

related to the physics of the original problem. 

 

Asymptotic Reduction 
 

Let 𝑥𝑛 ∈ {… , 𝑥−1, 𝑥0, 𝑥1, … } be sampling points such that 𝒮 ≜ {𝑥1, … , 𝑥𝑁} ⊆ Ω and 𝒮𝑐 ≜

{… , 𝑥−1, 𝑥0, 𝑥𝑁+1, 𝑥𝑁+2, … } ⊈ Ω. Let Ψ(𝑥) be a nonideal sampling function defined by 

 

 Ψ(𝑥) = ∑ �̂�Ω(𝑥𝑛)𝑝𝑛(𝑥; Δ)⁡

∞

𝑛=−∞

 (3) 



Novel computational approach to solve convolutional integral equations: method of sampling for one dimension 

INGENIERÍA Y UNIVERSIDAD: ENGINEERING FOR DEVELOPMENT | COLOMBIA | V. 23 | NO. 2 | 2019 | ISSN: 0123-2126 / 2011-2769 | Pág. 7 
 

 

 
𝒮 ⊆ Ω,∧, 𝒮𝑐 ⊈ Ω

⁡=
∑ �̂�Ω(𝑥𝑛)𝑝𝑛(𝑥; Δ)

𝑁

𝑛=1

 (4) 

 

 

 
= �̂�Ω(𝑥) + 𝜖Δ(𝑥) (5) 

 

where �̂�Ω(𝑥𝑛) is an instantaneous approximation of 𝑔Ω(𝑥𝑛), and 𝑝𝑛(𝑥; Δ) is a generalized 

interpolation function [8]. 

 

In contrast with other computational methods developed so far, the nonideal sampling 

function Ψ(𝑥) is not necessarily a satisfactory representation of 𝑔Ω(𝑥) in the conventional 

sense (e. g., variational sense). This fact means that Ψ(𝑥): ∆⁡> 0 does not necessarily 

minimize a continuous error, such as min∀𝑥∈Ω max|Ψ(𝑥) − 𝑔Ω(𝑥)|, min∫ |Ψ(𝑥) −
Ω

𝑔Ω(𝑥)|𝑑𝑥 or min ∫ (Ψ(𝑥) − 𝑔Ω(𝑥))
2
𝑑𝑥

Ω
, as can be inferred from figure 1. We use 

functions such that �̂�Ω(𝑥) and 𝜖Δ(𝑥) are asymptotically (Δ → 0+) separable through the 

𝑣 −domain. As a result, Ψ(𝑥) is not necessarily conformed by a combination of orthogonal 

or smooth functions with domain Ω (see figure 1). 

 

If we use uniform generalized interpolation functions 𝑝𝑛(𝑥; Δ) = 𝑝(𝑥 − 𝑥𝑛; Δ) = 𝑝(𝑥; Δ) ∗

𝛿(𝑥 − 𝑥𝑛) with domain Ω𝑝𝑛
⊆ ℝ and uniform samples 𝑥𝑛 = 𝑥𝑛−1 + Δ = 𝑥0 + 𝑛Δ, the 

spectral error is (see theorem 11) 

 

 𝜖Δ̃(𝑣) = {∆−1 ∙ 𝑝(𝑣; Δ) − 1} ∙ �̃̂�Ω(𝑣) + �̃�∆(𝑣) (6) 

 

 �̃�∆(𝑣) = ∆−1 ∙ 𝑝(𝑣; Δ) ∑ �̃̂�Ω(𝑣 ± 𝑘𝜗)𝑒±2𝜋𝑗∙𝑘𝜗𝑥0

∞

𝑘=1

 (7) 
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Figure 1. Conceptual example of a generalized interpolation function proposed in this paper 

 
Source: Páez [8] 

 

Therefore, the spectral error function 𝜖Δ̃(𝑣) has three spectral components: The first 

component is the distortion of {∆−1 ∙ 𝑝(𝑣; Δ) − 1} in |𝑣| ≤ 𝐵𝑊. The second component is 

the interference of �̃�∆(𝑣) in |𝑣| > 𝐵𝑊. From (7), this interference may be centered at the 

harmonics ±𝑘𝜗, and it may be located in the intervals |𝑣 ± 𝑘𝜗| ≤ 𝐵𝑊. The third 

component is the aliasing of �̃�∆(𝑣) in |𝑣| ≤ 𝐵𝑊. Consequently, if  

 

 𝛿∆(𝑥) ≜ ∆−1 ∙ 𝑝(𝑥; Δ) (8) 

 

 

is a nascent Delta-Dirac function, then the distortion and aliasing are asymptotically 

removed via 𝜖Δ̃(𝑣) for 𝑔Ω ∈ 𝐿1∧2 using the Nyquist criterion 𝜗 ≜ Δ−1 > 2𝐵𝑊. If the 

Nyquist criterion is not satisfied, the aliasing cannot be controlled, and therefore, it is not 

possible for convergence to occur in the problem. 

 

We assume the new equivalent instantaneous problem in the 𝑥 −domain and in the 

𝑣 −domain to be defined as follows: 

 

 (𝐾 ∗ Ψ)(𝑥) = (𝐾 ∗ �̂�Ω)(𝑥) + (𝐾 ∗ 𝜖Δ)(𝑥) = 𝑓∞(𝑥) (9) 

 

 (�̃� ∙ Ψ̃)(𝑣) = (�̃� ∙ �̃̂�Ω)(𝑣) + (�̃� ∙ 𝜖Δ̃)(𝑣) = 𝑓∞(𝑣) (10) 
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The novel approach is based on the solution of this new problem assuming the asymptotic 

reduction of the spectral error, summarized by 

 

 lim
Δ→0+

⁡‖(�̃� ∙ 𝜖Δ̃)(𝑣)‖
2

→ 0 (11) 

 

 

As a result, �̂�Ω(𝑥) → 𝑔Ω(𝑥) and �̂�Ω(𝑥𝑛) → 𝑔Ω(𝑥𝑛) almost everywhere. Therefore, the 

relations among the interpolation function 𝑝(𝑥; Δ), kernel 𝐾(𝑥) and sampling rate (𝜗 ≜

Δ−1) to achieve this particular behavior are not arbitrary. 

 

Remark 1. Because we do not know �̂�Ω(𝑥) a priori, our methodology only obtains the 

instantaneous values �̂�Ω(𝑥𝑛) [8]. Consequently, a smooth interpolation algorithm, denoted 

by ℐ{∙}, must be used to find the unknown continuous approximation given by �̂�Ω(𝑥) =

ℐ{�̂�Ω(𝑥𝑛)}, under the hypothesis of compliance with the Nyquist criterion. 

 

In contrast with other methodologies, the proposed approach allows the determination of 

several design strategies and interpretations to solve linear operators using Fourier analysis. 

For clarity and space reasons, we discuss only two of these strategies below. 

 

Bandwidth Matching Procedure (BM-P) 
 

We propose a general methodology to solve a CIE assuming that the combination of the 

interpolation functions and the kernel allows the undervaluing of the influence of the 

spectral error in the problem, for example, by assuming 𝐵𝑊2
𝑔Ω ≫ 𝐵𝑊2

𝐾 or ‖(�̃� ∙

�̃�Ω)(𝑣)‖
2

≫ ‖(�̃� ∙ 𝜖Δ̃)(𝑣)‖
2
. We name this technique the bandwidth matching procedure 

(BM-P). 

 

Without loss of generality, if we take samples at 𝑥 = 𝑥𝑚 ∈ 𝒮 in (9),  

 

 ∑ �̂�Ω(𝑥𝑛)𝐾(𝑥) ∗ 𝑝𝑛(𝑥; Δ)

𝑁

𝑛=1

|

𝑥=𝑥𝑚

= 𝑓∞(𝑥)|𝑥=𝑥𝑚
 (12) 

 

Rewriting (12) in integral form, we obtain 

 

 ∑ �̂�Ω(𝑥𝑛)∫ 𝐾(𝑥𝑚 − 𝑢)
∞

−∞

𝑝𝑛(𝑢; Δ)𝑑𝑢

𝑁

𝑛=1

= 𝑓(𝑥𝑚) (13) 
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 ∑ �̂�Ω(𝑥𝑛)𝑆𝑚𝑛

𝑁

𝑛=1

= 𝑓(𝑥𝑚) (14) 

 

 

The linear equation system using BM-P is 𝑺𝚿 = 𝐟 with 𝚿 = [�̂�Ω(𝑥𝑛)], 𝐟 = [𝑓(𝑥𝑚)] and 

𝑺 = [𝑆𝑚𝑛], where �̂�Ω(𝑥𝑛) is an instantaneous approximation of 𝑔Ω(𝑥𝑛), 𝑓(𝑥𝑚) is the 

instantaneous value printed by the output, and 𝑆𝑚𝑛 is the instantaneous equivalent system 

between the samples, defined as 

 

 𝑆𝑚𝑛 = ∫ 𝐾(𝑥𝑚 − 𝑢)
∞

−∞

𝑝𝑛(𝑢; Δ)𝑑𝑢 (15) 

 

 

Corollary 2. If we design 𝑝𝑛(∙; 𝛥) as the basis functions and 𝛺𝑝𝑛
⊆ 𝛺, the BM-P obtains the 

same equations as those used by the MoM when using the point matching procedure (PM-

P). 

 

If the Fourier transform of the functions are well-defined and ℱ{𝐾(𝑥) ∗ 𝑝(𝑥; Δ)} =

�̃�(𝑣)�̃�(𝑣; Δ) holds with �̃� ∙ 𝑝 ∈ 𝐿1, another way to evaluate the system coefficients [8] is 

by using 

 

 𝑆𝑚𝑛 = ∫ �̃�(𝑣)
∞

−∞

𝑝(𝑣; Δ)𝑒−2𝜋𝑗∙𝑣(𝑥𝑛−𝑥𝑚)𝑑𝑣 (16) 

 

Regularization Technique by Convolution (RT) 
 

We propose another general methodology to solve a CIE assuming some spectral anomaly, 

for instance 𝐵𝑊2
𝑔Ω ≪ 𝐵𝑊2

𝐾 or ‖(�̃� ∙ �̃�Ω)(𝑣)‖
2

≪ ‖(�̃� ∙ 𝜖Δ̃)(𝑣)‖
2
. In this case, we 

propose the regulation of (1) using 𝑅(𝑥; Δ) with the convolution operator (literally, filtering 

the problem) as 

 

 𝑅(𝑥; Δ) ∗ {𝐾(𝑥) ∗ 𝑔Ω(𝑥)} = 𝑅(𝑥; Δ) ∗ 𝑓∞(𝑥) ≜ 𝑓̅∞(𝑥) (17) 

 

such that the new system can be modeled as a well-defined low-pass problem with a new 

critical bandwidth 𝐵𝑊̅̅ ̅̅ ̅ < 𝐵𝑊. We name this technique as the regularization technique by 

convolution (RT). 

 

Therefore, to have asymptotic convergence toward the original problem, we design the 

filter 𝑅(𝑥; Δ) as a nascent Delta-Dirac function with nulls specifically located to reduce the 
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spectral anomalies in the problem. In particular, we design these nulls to remove 

asymptotically the last component of the spectral error, that is, the harmonic interference. 

Without loss of generality, if we take samples at 𝑥 = 𝑥𝑚 ∈ 𝒮 in the new equivalent 

instantaneous problem,  

 

 ∑ �̂�Ω(𝑥𝑛)𝑅(𝑥; Δ) ∗ {𝐾(𝑥) ∗ 𝑝𝑛(𝑥; Δ)}

𝑁

𝑛=1

|

𝑥=𝑥𝑚

= 𝑓̅∞(𝑥)|
𝑥=𝑥𝑚

 (18) 

 

Rewriting (18) in integral form, we obtain 

 

∑ �̂�Ω(𝑥𝑛)∫ 𝑅(𝑥𝑚 − 𝜉; Δ)∫ 𝐾(𝜉 − 𝑢)
∞

−∞

𝑝𝑛(𝑢; Δ)𝑑𝑢
∞

−∞

𝑑𝜉

𝑁

𝑛=1

= ∫ 𝑅(𝑥𝑚 − 𝜉; Δ)𝑓∞(𝜉)𝑑𝜉
∞

−∞

 (19) 

 

 ∑ �̂�Ω(𝑥𝑛)𝑆�̅�𝑛

𝑁

𝑛=1

= 𝑓̅∞(𝑥𝑚) (20) 

 

where the function 𝑅𝑚(𝜉; Δ) = 𝑅(𝑥𝑚 − 𝜉; Δ) is literally the sampled impulse response of a 

standard linear filter. 

 

The linear equation system using RT is �̅�𝚿 = 𝐟 ̅ with 𝚿 = [�̂�Ω(𝑥𝑛)], 𝐟̅ = [𝑓̅∞(𝑥𝑚)] and 

�̅� = [𝑆�̅�𝑛], where �̂�Ω(𝑥𝑛) is an instantaneous approximation of 𝑔Ω(𝑥𝑛) considering the 

filter 𝑅(𝑥; Δ), 𝑓̅∞(𝑥𝑚) is the instantaneous value printed by the regularized output, and 

𝑆�̅�𝑛 is the new instantaneous equivalent system between the samples given by 

 

 𝑆�̅�𝑛 = ∫ 𝑅𝑚(𝜉; Δ)∫ 𝐾(𝜉 − 𝑢)
∞

−∞

𝑝𝑛(𝑢; Δ)𝑑𝑢
∞

−∞

 (21) 

 

 𝑓̅∞(𝑥𝑚) = ∫ 𝑅𝑚(𝜉; Δ)𝑓∞(𝜉)𝑑𝜉
∞

−∞

 (22) 

 

 

If we design 𝑅𝑚(𝜉; Δ) with subdomains (Ω𝑅𝑚
⊂ Ω) or entire domains (Ω𝑅𝑚

= Ω) to avoid 

unknown information of 𝑓∞(𝑥), the resulting respective techniques are called the 

subdomain regularization technique (S-RT) and the entire domain regularization technique 

(E-RT). 

 

Corollary 3. If we design 𝑝𝑛(∙; 𝛥) as the basis functions, 𝑅𝑚(∙; 𝛥) as the weighting functions 

related to an interior product, and 𝛺𝑝𝑛
, 𝛺𝑅𝑚

⊆ 𝛺, the RT obtains the same equations as 
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those used when applying the general approach of the MoM (and in general, those 

employed when using the MWR). 

 

If it is possible to use the associativity property 𝑅 ∗ {𝐾 ∗ Ψ} = {𝑅 ∗ 𝐾} ∗ Ψ = 𝐾 ∗ {𝑅 ∗ Ψ} 

(e.g., see Fubini’s theorem and Hölder’s inequality), the formulation can be simplified and 

computational cost can be reduced by using ∑ �̂�Ω(𝑥𝑛)𝑁
𝑛=1 𝐾(𝑥) ∗ 𝑃𝑛(𝑥; ∆) = ⁡𝑓̅∞(𝑥) 

because 𝑃𝑛(𝑥; ∆) ≜ (𝑅 ∗ 𝑝𝑛)(𝑥; ∆) and Ω𝑃𝑛
≜ Ω𝑅 ∗ Ω𝑝𝑛

 may have closed forms. The new 

function 𝑃𝑛(𝑥; ∆) is known as an ultrafunction, and the simplified formulation as termed as 

the ultra-RT. In this case, the system coefficients [8] can be obtained using 

 

 𝑆�̅�𝑛 = ∫ 𝐾(𝑥𝑚 − 𝑢)𝑃𝑛(𝑢; Δ)𝑑𝑢
∞

−∞

 (23) 

 

 ⁡= ∫ 𝐾(𝑥𝑛 − 𝑥𝑚 − 𝑢)𝑃(𝑢; Δ)𝑑𝑢
∞

−∞

 (24) 

 

 ⁡= ∫ 𝐾(𝑢)𝑃(𝑥𝑛 − 𝑥𝑚 − 𝑢; Δ)𝑑𝑢
∞

−∞

 (25) 

 

Finally, if the Fourier transforms of the functions are well defined and ℱ{𝑅(𝑥; Δ) ∗ 𝐾(𝑥) ∗

𝑝(𝑥; Δ)} = �̃�(𝑣; Δ)�̃�(𝑣)𝑝(𝑣; Δ) holds with �̃� ∙ �̃� ∙ 𝑝 ∈ 𝐿1,  

 

 𝑆𝑚𝑛 = ∫ �̃�(𝑣; Δ)�̃�(𝑣)
∞

−∞

𝑝(𝑣; Δ)𝑒−2𝜋𝑗∙𝑣(𝑥𝑛−𝑥𝑚)𝑑𝑣 (26) 

 

From (10) and (17), if we choose 𝑅(𝑥; Δ) = ∆−1 ∙ 𝑝(𝑥; Δ), the harmonic interference can be 

reduced by using a quadratic factor. In the same way, if the related functions are designed 

as in the MoM, this technique can be considered an alternative explanation of the Galerkin 

method, and it can easily explain under what conditions the solution can be successfully 

applied [8]. 

 

Design Considerations 
 

The asymptotic reduction is obtained and justified using the sample theory in the following 

manner. The distortion is asymptotically removed by choosing the interpolation function as 

a nascent Delta-Dirac function because lim
Δ→0+

𝛿Δ(𝑣) → 1: ∀|𝑣| ≤ 𝐵𝑊. The interference is 

reduced by designing the interpolation functions (and the filter) with spectral nulls at the 

harmonic interference, given by |𝛿Δ(𝑣)| ≤ 𝛿𝐼 ≪ 1, ∀|𝑣 ± 𝑘𝜗| ≤ 𝐵𝑊, 𝑘 ∈ ℕ. This 

interference is asymptotically removed by increasing the sampling rate because the kernel 
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has a finite bandwidth. The spectral nulls should be designed to exactly match with this 

interference to reduce the possibility of occurrence of ambiguities caused by the 

nonexistence of 𝑓Ω𝑐
∞(𝑥). Finally, the aliasing is asymptotically removed by increasing the 

sampling rate because ∀�̂�Ω ∈ 𝐿1∧2 has the property lim
𝑣→∞

�̃̂�Ω(𝑣) → 0. As a result, 

lim
Δ→0+

�̃̂�Ω(𝑣 ± 𝑘𝜗) → 0: ∀|𝑣| ≤ 𝐵𝑊, 𝑘 ∈ ℕ and lim
Δ→0+

�̃�∆(𝑣) → 0: ∀|𝑣| ≤ 𝐵𝑊. For details 

and examples of these considerations, see [8]. 

 

 

Analysis and Evaluation  

 

Novel Approach to Solve Convolutional Integral Equations 
 

Because the approach of the MoS! has a different way to obtain convergence, to the best of 

the author’s knowledge, our proposal is an innovative framework for solving Fredholm 

equations of the first kind. The MWR solves ∃𝑔(∙): ℒ{𝑔} = 𝑓 by using �̂� = ∑ 𝛼𝑛𝑏𝑛
𝑁
𝑛=1 , 

such that the residual error 𝑟 = ℒ{�̂�} − 𝑓 is reduced by means of the interior product 

〈𝑟, 𝑅𝑚〉 = 0 [4]. The novel approach includes the same interpretation because the same 

equations are determined when Ω𝑝𝑛
, Ω𝑅𝑚

⊆ Ω, albeit with new paradigms and degrees of 

freedom. We highlight the following aspects of our methodology. 

 

Before taking the samples 𝑥𝑚 in (12) and (18), the functions 𝑝(𝑥; Δ) and 𝑅(𝑥; Δ) can be 

designed to reduce the error in both domains because ‖𝜖Δ̃(𝑣)‖2 = ‖𝜖Δ(𝑥)‖2. A more 

comprehensive approach to design 𝑅(𝑥; Δ) (and the problem) using the communication 

theory may be considered because that function is not necessarily related to a reduction in 

the residual error in the sense of a geometric projection. For instance, the filter 𝑅(∙; Δ) may 

be designed as a standard receptor system with several roles related to reducing the noise 

caused by the rounding errors (e. g., pre-emphasis and de-emphasis techniques and matched 

filter) and transforming a dense matrix in a sparse matrix (e. g., intersymbol interference 

techniques). 

 

After taking the samples 𝑥𝑚 in (12) and (18), the obtained matrices 𝑺𝚿 = 𝐟 and �̅�𝚿 = 𝐟 ̅are 

the formulations of a standard discrete-time system (formally a discrete 𝑥 −domain 

system), in which it is now evident that all the information between the samples 𝑥𝑚 and 

𝑥𝑚+1 is lost because, in general, 𝑓∞(𝑥) and 𝑓̅∞(𝑥) are not bandlimited functions. As a 

result, Ψ(x) is not necessarily a good continuous approximation of the unknown function 

𝑔Ω(𝑥). 
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Remark 4. The only methodological difference between BM-P and RT is that the original 

problem is regularized by a filter to obtain a slower problem. As a consequence, the MoM 

(and, in general, the MWR) is an instantaneous technique, or “point matching procedure”, 

independent of the weighting functions. 

 

Discussion Concerning Interpolation Functions 
 

A standard interpolation function is defined as a basis function in the context of being used 

by standard numerical methods such as the MoM. For instance, the well-known rectangular 

and triangular basis functions are 𝑝𝑛
Π(𝑥; Δ) = ΠΔ(𝑥 − 𝑥𝑛) and 𝑝𝑛

Λ(𝑥; Δ) = ΛΔ(𝑥 − 𝑥𝑛). Our 

approach allows the analysis of these functions because their Fourier transforms are well 

defined by 𝑝Π(𝑣; Δ) = 𝜗−1𝑠𝑖𝑛𝑐(𝜋𝑣/𝜗) and 𝑝Λ(𝑣; Δ) = 𝜗−1𝑠𝑖𝑛𝑐2(𝜋𝑣/𝜗).  

 

Consequently, to maintain the distortion in 0.95 ≤ |Δ−1 ∙ 𝑝(𝑣; Δ)| ≤ 1, ∀|𝑣| ≤ 𝐵𝑊, it is 

required that 𝐵𝑊 ≤ 0.175𝜗 and 𝐵𝑊 ≤ 0.124𝜗. As a result, the minimum sampling rate 

with that distortion for 𝑝Π(∙; Δ) is 𝜗 = 0.175−1𝐵𝑊 ≥ 6 ∙ 𝐵𝑊 and that for 𝑝Λ(∙; Δ) is 𝜗 =

0.124−1𝐵𝑊 ≥ 9 ∙ 𝐵𝑊. 

 

These results prove that if the kernel has a narrow bandwidth such that it reduces the 

interference of the sampling process, the rectangular function should unexpectedly obtain a 

better accuracy than the triangular function does because the distortion is lower at the same 

sample rate. 

 

In contrast, because the reduction in the first harmonic interference is given by |Δ−1 ∙

𝑝(𝑣; Δ)| < 𝛿𝐼
±1, ∀|𝑣 ± 𝜗| < 𝐵𝑊 with 𝛿𝐼

±1.Π = 0.2016 and 𝛿𝐼
±1.Λ = 0.0192, the triangular 

function should demonstrate superior performance in the kernels with wide bandwidths (e. 

g., kernels with some singularity or quasi-singularity) because the main harmonic 

interference of the sampling process is one decade lower at the same sample rate. From our 

approach, it is now evident that the rectangular function does not necessarily minimize 

‖Ψ(𝑥) − 𝑔Ω(𝑥)‖, although the instantaneous value �̂�Ω(𝑥𝑛) may be more accurate. 

 

A generalized interpolation function is defined in a different direction using the asymptotic 

separability in the 𝑣 −domain between the unknown approximation and the error. As a 

result, Ψ(x) may not be a standard representation of 𝑔Ω(𝑥) (see figure 1). Nevertheless, 

these functions require careful design to avoid the numerical instability caused by the 

spectral mismatch (e. g., new spectral nulls in the problem). An uncomplicated method to 

formulate a generalized interpolation function is  

 𝑝(𝑥; Δ) = (𝑝1) ∗ … ∗ 𝑝𝑀))(𝑥; Δ) ≜
𝑀
⋇

𝑖 = 1
𝑝𝑖)(𝑥; Δ) (27) 
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where 𝑝(𝑣; Δ) = ∏ 𝑝𝑖)𝑀
𝑖=1 (𝑣; Δ) and Δ−1 ∙ 𝑝(𝑥; Δ) represent a nascent Delta-Dirac function 

with nulls located strictly in the harmonic interference of the sampling process. To 

demonstrate this methodology, the authors propose 𝑝𝑒(𝑥; Δ) = (𝑝1) ∗ 𝑝2))(𝑥; Δ) as an 

example, such that 𝑝1)(𝑥; Δ) = ΠΔ(𝑥) −
𝑐

2
ΠΔ (𝑥 +

Δ

2
) −

𝑐

2
ΠΔ (𝑥 −

Δ

2
) and 𝑝2)(𝑥; Δ) = ⁡ 𝑡1 ∙

ΠΔ(𝑥), as shown in figure 2a. 

 

Figure 2. Generalized interpolation function 𝒑𝒆(𝒙; 𝚫)  

(a) Model in the (𝒙/∆) −domain 

(b) Model in the (𝒗/𝝑) −domain 

 

 
Source: Páez [8] 

 

The formulation of this unusual combination in the 𝑣 −domain is 𝑝𝑒(𝑣; Δ) = (𝑝1) ∙

𝑝2))(𝑣; Δ) = 𝑡1𝜗
−2𝑠𝑖𝑛𝑐2(𝜋𝑣/𝜗){1 − 𝑐 ∙ cos(𝜋𝑣/𝜗)}; therefore, to achieve the nascent 

Delta-Dirac behavior, the constant 𝑡1 = 𝜗/(1 − 𝑐). Figure 2b shows that if 𝑐 = 1/3, 

𝑝𝑒(𝑣; Δ) increases the linearity regarding 𝑝Π(𝑣; Δ), and the spectral nulls have a similar 

attenuation to 𝑝Λ(𝑣; Δ). As a result, using low-pass kernels, this interpolation function 

ought to exhibit better performance and low computational cost. The function defined in 

this example is similar to those defined by the wavelet theory, although it does not 

necessarily imply a good continuous representation of the original function or a 

multiresolution signal decomposition. 

 

Remark 5. Because the rectangular and triangular functions are nascent Delta-Dirac 

functions with nulls at ±𝑘𝜗, that basis functions are generalized interpolation functions, as 

well. The main difference between MoM and MoS! in these cases it is that the 

instantaneous values �̂�Ω(𝑥𝑛) may allow a better continuous approximation than Ψ(𝑥) does. 

Finally, if |�̃�(𝑣)| is strongly decreasing toward zero at high frequencies, it is possible to 

define 
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 𝑝𝛿(𝑥; ∆) = ∆ ∙ 𝛿(𝑥) (28) 

 

because (46) is proved from (45). As a result, some low-pass kernels may have a 

convergent closed-form matrix using high sampling rates (𝜗 ↑), which allows the study of 

an analytic or asymptotic inverse for the problem, using the digital signal processing 

framework. 

 

Example 1: A Narrow Band Kernel 
 

The problem ∫ |𝑥 − 𝑢|𝑔(𝑢)𝑑𝑢
1

0
= 𝑓(𝑥) with ∀𝑥, 𝑢 ∈ [0,1] is the CIE of the differential 

equation 𝑔(𝑥) =
1

2

𝑑2

𝑑𝑥2
𝑓(𝑥), ∀𝑥 ∈ [0,1], where 𝑓(𝑥) is not an arbitrary function. This 

function must have some properties [1] such as appropriate boundaries 𝑓(0)⁡and⁡𝑓(1), and 

it must be a bounded twice-differentiable function with a bounded first derivative. As a 

theoretical and numerical benchmark, we propose 𝑓(𝑥) = 𝜋−1 − 2𝜋−2 sin(𝜋𝑥) , ∀𝑥 ∈ [0,1] 

and 𝑔(𝑥) = sin(𝜋𝑥) , ∀𝑥 ∈ [0,1]  

 

Using our approach, the extended convolutional model is 

 

 |𝑥| ∗ 𝑔
Ω
(𝑥) = 𝑓∞(𝑥) (29) 

 

where Ω = [0,1], 𝐾(𝑥) = |𝑥|, 𝑓Ω
∞(𝑥) = 𝑓Ω(𝑥), and 𝑓Ω𝑐

∞(𝑥) is a degree of freedom with 

mathematical sense. Because 
𝑑

𝑑𝑥
|𝑥| = 𝑠𝑔𝑛(𝑥), ∀𝑥 ≠ 0, �̃�(𝑣) = −

1

2𝜋2𝑣2 , ∀𝑣 ≠ 0. 

 

In this problem, it not possible to use the 𝑣 −domain to calculate the matrix coefficients 

because �̃�(𝑣) has a distribution not calculated at 𝑣 = 0. However, the Fourier domain 

interpretation is reasonably valid because the Fourier transform is well defined using the 

distribution theory, and the convolution operator is well established in this problem for a 

finite interval Ω. As a result, by using the spectral interpretation for ∀𝑣 ≠ 0, it is valid to 

assume that this problem is a narrowband kernel for 𝐵𝑊 ≥ 𝜋−12−1/2. 

 

The matrix formulation simplifying Ω = (0,1) for 𝑝Π(𝑥; Δ) is (𝑰 + 4𝑩)𝚿 = 4𝜗2𝒇, where 

𝑩 = [𝐵𝑚𝑛] = [|𝑚 − 𝑛|] and 𝑰 is the identity matrix; for 𝑝Λ(𝑥; Δ) is (𝑰 + 3𝑩)𝚿 = 3𝜗2𝒇, 

and for 𝑝Π(𝑥; Δ) and 𝑅Π(𝑥; Δ) = Δ−1ΠΔ(𝑥) is (𝑰 + 3𝑩)𝚿 = 3𝜗2�̅�, where 𝑓�̅� = 𝜋−1 −

2𝜋−2sin⁡(𝜋𝑥𝑚)sinc(
1

2
𝜋∆). From the MoM approach, the first two formulations pertain to 

the PM-P, and the last one pertains to the Galerkin method. 
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The matrix formulation using the MoS!-1D with 𝑝𝑒(𝑥; Δ) is (𝑻 + 𝑩)𝚿 = 𝜗2𝒇, where 𝑻 is 

an uniform tridiagonal matrix with coefficients 𝑇1,1 = 12−1(4 − 7𝑐)(1 − 𝑐)−1 and 𝑇1,2 =

24−1(24 − 25𝑐)(1 − 𝑐)−1 − 1. We emphasize that this solution is different from the MoM 

approach because the integrals have different domains. 

 

Figure 3 compares the different estimations through the relative residual error 

 

 ‖�̂�Θ(𝑥𝑛) − 𝑔Θ(𝑥𝑛)‖2/‖𝑔Ω(𝑥𝑛)‖2 (30) 

 

for Θ ≜ [10,1 − 10Δ]; in this case, several new paradigms are evident. Because a low-pass 

kernel is more relevant for the distortion rather than the interference, the function 𝑝Π(∙) 

finds a better outcome than 𝑝Λ(∙) does, and the new proposal 𝑝𝑒(∙) has a significantly better 

performance for Θ, with a different slope (logarithm) of convergence. For instance, the 

number of unknown variables for an instantaneous relative residual error of 10−7 is 𝑁 ≈

50 for 𝑝𝑒(∙) using the MoS! and 𝑁 ≈ 2000 for the classical low order functions using the 

MoM. 

 

Nevertheless, we note that 𝑝Λ(∙) still exhibits better elimination of the first harmonic 

interference in figure 2b. This little energy is accumulated at the boundaries at 𝑥𝑛 ∈

(0,9Δ] ∪ [1 − 9Δ, 1). As a result, this location is the only one at which 𝑝Λ(∙) exhibits better 

performance in this problem. 

 

Considering special interpolation functions, we found an inverse with linear complexity 

using 𝑝𝛿(𝑥; Δ). The solution in this case is 𝚿 = ∆−2𝑩−1𝒇, where 𝑩−1 is detailed in 

appendix B. This matrix solution is similar to the matrix used by FDM for 𝑔(𝑥) =
1

2

𝑑2

𝑑𝑥2 𝑓(𝑥). This solution exhibits the same performance as 𝑝Λ(∙), thereby proving 

conclusively that the interference is not dominant in this problem. The theoretical matrix 

𝑩−1 allows the solution of the general case (𝑰 + 𝛽𝑩)𝚿 = 𝛽𝜗2𝒇 by applying the Neuman 

series by means of 𝚿 ≈ {𝛽−1𝑩−1 + ⋯+ (−1)𝑘+1𝛽−𝑘𝑩−𝑘}𝛽𝜗2𝒇 for 𝑁 ≥ 3 and 

𝜌+(𝛽−1𝑩−1) < 2𝛽−1 < 1. As shown in figure 3, this algorithm converges with 𝑘 = 3 in 

the same way as Gaussian elimination for the rectangular (𝛽 = 4) and triangular (𝛽 = 3) 

cases. 

 

This problem exhibits ill conditioning at high sampling rates (or breakdown segmentation) 

because this kernel has extremely low spectral information at extremely high frequencies. 

From figure 3, the breakdown for the classical basis functions can be noted at 𝑁 ≳ 4000 

and that for 𝑝𝑒(∙) can be noted at 𝑁 ≳ 400. 
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In summary, several of the new paradigms were distinguished in this example. First, we 

demonstrated that Ψ(𝑥) is not necessarily the best way to represent the unknown function 

because the rectangular function exhibits a better instantaneous performance than the 

triangular function does. Second, we demonstrated that the Galerkin method does not 

increase the accuracy because this problem is not anomalous at high frequencies. 

Consistent with the ultraformulation, the same system matrix is found using the triangular 

function with PM-P and the rectangular function with the Galerkin method. As a 

consequence, any difference between both results can only be interpreted by filtering of the 

source. Third, considering the example of 𝑝𝑒(𝑥; Δ), the use of generalized interpolation 

functions with supradomain information can significantly increase the accuracy. Finally, we 

demonstrated that the formulation based on 𝑝𝛿(𝑥; Δ) can be used to design asymptotic 

techniques to solve this narrowband problem. 

 

Figure 3. Instantaneous relative residual error using different interpolation functions in example 1 

 
Source: Páez [8] 

 

Example 2: A Wideband Kernel 
 

To discuss the novel approach using a standard electromagnetic benchmark, the authors 

solved the unknown current of a linear dipole with radio 0 < 𝑎 ≤ 10−2𝜆 and length 𝐿 ≫ 𝑎 

using the reduced or approximate Pocklington equation under a particular printed source 

𝐸(𝑥). Without loss of generality, we use the Richmond simplification [20] to use a standard 

CIE. The extended convolutional problem is 

 

 𝐸∞(𝑥) = 𝐾𝑎𝑝(𝑥) ∗ 𝐼Ω(𝑥) (31) 
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 𝐾𝑎𝑝(𝑥) = 𝐾0𝐺𝑎𝑝(𝑟)𝑟−4(𝑘2𝑎2𝑟2 + (1 + 𝑗𝑘𝑟)(2𝑟2 − 3𝑎2)) (32) 

 

 𝐺𝑎𝑝(𝑟) =
𝑒−𝑗𝑘𝑟

4𝜋𝑟
 (33) 

 

 𝑟 = √𝑥2 + 𝑎2 (34) 

 

where 𝑥 ∈ ℝ, Ω = (−
𝐿

2
,
𝐿

2
), 𝐾0 = 𝑗 ∙ (2𝜋𝑓𝜖)−1, 𝑗 = √−1, 𝑐 = 𝜆𝑓, 𝑘 = 2𝜋/𝜆, 𝑓⁡[Hz] is the 

frequency, 𝑐⁡[m/s] is the speed and 𝜆⁡[m] is the wavelength in a medium with permittivity 

𝜖⁡[F/m], 𝐸Ω
∞(𝑥) = 𝐸Ω(𝑥) is the printed source in Ω, and 𝐸Ω𝑐

∞ (𝑥) is a degree of freedom 

with mathematical sense. 

 

This quasi-singular kernel can be understood from the Fourier transform �̃�𝑎𝑝(𝑣) =

ℱ{𝐾𝑎𝑝(𝑥)} approximated through the DFT with samples 𝑥𝑛 =
𝑎

150
𝑛. For instance, figure 4c 

details log10|�̃�𝑎𝑝(𝑣𝑛)| using 𝑎 = 0.05𝜆 and 𝜆 = 1⁡m, in which several behaviors are 

evident. 
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Figure 4. Reduced kernel using 𝒂 = 𝟎. 𝟎𝟎𝟓𝝀 and 𝝀 = 𝟏  

(a) Real part of 𝑲𝒂𝒑(𝒙)  

(b) Imaginary part of 𝑲𝒂𝒑(𝒙)  

(c) Approximate logarithm transfer function by means of DFT 

 
Source: Páez [8] 

 

As expected, this kernel has a large bandwidth caused by its quasi-singularity. We find a 

local minimum at 𝑣 = ±1 (and, in general, at 𝑣 = ±𝜆−1) related to the main spatial 

harmonic of the unknown current, and a local maximum at 𝑣 ≈ ±50 (and, in general, at 

𝑣 = ±
1

4
𝑎−1). Moreover, the transfer function has an exponential decay for |𝑣| ≳ 200, 

whose value tends rapidly toward zero. Although the bounded oscillations in |𝑣| ≳ 600 

have a pseudorandom appearance, they are caused by an infinite 𝑥 −domain function with a 

fast decay toward zero at high frequencies, which is approximated by a truncated function. 

 

To compare the MoM and MoS!, we find the input impedance (𝑍𝑖𝑛) of a center-fed dipole 

using the magnetic frill source simplified by 

 

 𝐸(𝑥) =
𝑉𝑆

2ln(𝑏/𝑎)
{
𝑒−𝑗𝑘√𝑥2+𝑎2

√𝑥2 + 𝑎2
−

𝑒−𝑗𝑘√𝑥2+𝑏2

√𝑥2 + 𝑏2
} (35) 
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for all 𝑥 ∈ Ω, 𝑏 = 2.3𝑎 and 𝑉𝑆 = 1. Because the complex power provided by the source is 

𝑆 =
1

2
∫ 𝐸(𝑥)𝐼∗(𝑥)𝑑𝑥

𝐿/2

−𝐿/2
, and it can also be defined using 𝑆 =

1

2
|𝐼(0)|2𝑍𝑖𝑛, we estimate the 

input impedance with the MoM using 𝐼Ω(𝑥)~Ψ(𝑥) as 

 

 𝑍𝑖𝑛 ≈ |𝐼Ω(0)|
−2

∫ 𝐸(𝑥)Ψ∗(𝑥)𝑑𝑥
𝐿/2

−𝐿/2

 (36) 

 

 = |𝐼Ω(0)|
−2

∑ 𝐼Ω
∗ (𝑥𝑛)∫ 𝐸(𝑥)𝑝𝑛(𝑥; ∆)𝑑𝑥

𝐿/2

−𝐿/2

𝑁

𝑛=1
 (37) 

 

In the MoS!, any continuous operation with the unknown current requires the definition of 

an interpolator because Ψ(𝑥) loses information between discrete samples. Without loss of 

generality, we find 𝐼Ω(𝑥) through the piecewise cubic Hermite interpolating polynomials 

[21] using 𝐼Ω(𝑥𝑛) and the boundaries 𝐼 (±
𝐿

2
) = 0. Consequently, we estimate the input 

impedance with the MoS! by using 

 

 𝑍𝑖𝑛 ≈ |𝐼Ω(0)|
−2

∫ 𝐸(𝑥)𝐼Ω
∗
(𝑥)𝑑𝑥

𝐿/2

−𝐿/2

 (38) 

 

Furthermore, the difference between the MoS! and MoM is particularly accentuated when 

we use bandlimited interpolation functions. For instance, and only to differentiate between 

the methods, if 𝑝(𝑥; Δ) = sinc(𝜋𝑥∆−1) with 𝑥𝑛 = −𝐿/2 + ∆ ∙ 𝑛 and ∆= 𝐿/(𝑁 + 1), PM-P 

obtains an impedance matrix (𝒁) with coefficients 

 

 𝑍𝑚𝑛 = ∫ 𝐾𝑎𝑝(𝑥𝑚 − 𝑢)sinc(𝜋(𝑢 − 𝑥𝑛)∆−1)𝑑𝑢
𝐿/2

−𝐿/2

 (39) 

 

Therefore, 𝑂(𝑁2) is required to ensure computational storage and 𝑂(𝑁3) is required to 

solve the linear equation system using Gaussian elimination because the impedance matrix 

does not have useful properties. In contrast, the system matrix (𝑺) obtained by (15) is a 

symmetric Toeplitz matrix, which only requires 𝑂(𝑁) for computational storage, and 

several efficient algorithms are available to solve the linear equation system [22]. We 

compare 𝑍𝑖𝑛 using PM-P and BM-P with 𝐿 = 0.47𝜆 in table 1a. 

 

Another application of the MoS! is to use the system matrix as a preconditioner for the 

MoM because 𝑺−1𝑬 may lead to a low computational cost and both formulations are 

closely related at 𝑥𝑚, 𝑥𝑛 ∈ 𝒮. As an example, figure 5 shows the relative residual error in 

solving 𝒁𝚿 = 𝑬 using sinc(∙) and the conjugate gradient squared method (CGS) with and 
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without the preconditioner 𝑺. As shown, the solution with the preconditioner 𝑺 has fast 

convergence, even for a small number of unknown variables (𝑁). 

 

Figure 5. Relative residual error at 𝒁𝑵×𝑵𝜳 = 𝑬 with CGS  

(a) 𝑵 = 𝟏𝟏 

(b) 𝑵 = 𝟓𝟑 

(c) 𝑵 = 𝟗𝟓 

(d) 𝑵 = 𝟏𝟑𝟕 

 
Source: Páez [8] 

 

Although the unknown current has a well-identified fundamental harmonic at 𝑣 = ±1, a 

considerable bandwidth (𝐵𝑊 >
1

2Δ
|
𝑁=101

=
𝑁+1

2𝐿
|
𝑁=101

= 108.5) is necessary to obtain an 

absolute relative error less than 3.5 % in the imaginary part. The analysis of the magnetic 

frill source shows that its bandwidth is the cause of this situation. If we assume that 𝑍𝑖𝑛 is 

mainly obtained from band base information, filtering the source with the normalized filter 

𝑅Λ(𝑥; Δ) = Δ−1ΛΔ(𝑥) should increase the convergence rate, as shown in table 1b. 
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Table 1. Input impedance (𝒁𝒊𝒏) for a center-fed dipole using the 𝐬𝐢𝐧𝐜(∙) interpolation function with 𝑳 = 𝟎, 𝟒𝟕𝝀 

and 𝒂 = 𝟎, 𝟎𝟎𝟓𝝀  

(a) Basic approach with PM-P and BM-P 

(b) Subdomain regularization technique with MoM and S-RT 

(c) Galerkin method (MoM) 

(a) 
 

(b)  (c) 

N PM-P BM-P 

 

MoM S-RT  

Galerkin 
 using 𝑹𝚲(𝒙; 𝚫)  

5 11.52 − 5.48i 11.32 − 5.93i  68.65 − 1.33i 66.23 − 8.46i  66.08 − 5.73i 

11 24.95 − 3.94i 24.67 − 4.49i  73.26 + 3.26i 71.20 − 0.81i  73.13 + 0.176i 

17 37.58 − 2.05i 37.29 − 2.71i  74.13 + 5.71i 72.88 + 2.68i  72.51 + 3.71i 

23 48.38 − 0.01i 48.01 − 0.74i  75.19 + 7.26i 73.99 + 4.82i  75.00 + 5.72i 

29 56.81 + 1.20i 56.45 + 1.20i  75.61 + 8.43i 74.69 + 6.34i  74.56 + 7.22i 

35 63.08 + 3.80i 62.66 + 2.98i  76.17 + 9.34i 75.28 + 7.51i  76.10 + 8.41i 

41 67.46 + 5.37i 67.07 + 4.52i  76.46 + 10.10i 75.71 + 8.44i  75.70 + 9.29i 

47 70.55 + 6.69i 70.12 + 5.84i  76.84 + 10.74i 76.11 + 9.22i  76.87 + 10.14i 

53 72.63 + 7.81i 72.23 + 6.94i  77.06 + 11.30i 76.41 + 9.89i  76.46 + 10.74i 

59 74.11 + 8.74i 73.69 + 7.88i  77.34 + 11.79i 76.71 + 10.47i  77.45 + 11.40i 

65 75.12 + 9.53i 74.72 + 8.68i  77.53 + 12.23i 76.95 + 10.98i  77.03 + 11.83i 

71 75.88 + 10.21i 75.47 + 9.37i  77.75 + 12.63i 77.18 + 11.44i  77.91 + 12.38i 

 

Source: Páez [8] 

 

We compare the results with those obtained using the Galerkin method in table 1c. 

According to our approach, the Galerkin method obtains an oscillatory convergence rate 

because filters conformed by truncated sinc functions do not have well located spectral 

nulls to ensure the efficient elimination of the interference. 

 

The 𝑍𝑖𝑛 evaluated using the ultraformulation (23)-(25) and using the 𝑣 −domain (16), (26) 

exhibit relative residual errors that are less than 1 × 10−5. In particular, using the 

symmetric of (32), we simplify (16) and (26) using 𝑅Λ(∙) by using 

 

 𝑆𝑚𝑛 = 2∆∫ cos(2𝜋(𝑚 − 𝑛)𝑣∆) ∙
2−1∆−1

0

�̃�𝑎𝑝(𝑣)𝑑𝑣 (40) 

 

 𝑆�̅�𝑛 = 2∆∫ cos(2𝜋(𝑚 − 𝑛)𝑣∆) ∙ sinc2(𝜋𝑣∆)
2−1∆−1

0

∙ �̃�𝑎𝑝(𝑣)𝑑𝑣 (41) 

 

 

Although (40)-(41) have some disadvantages caused by the Fourier transform estimation 

and the evaluation of an integrand with an oscillatory behavior, they have other advantages 
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owing to the prior theoretical knowledge of �̃�(∙) and 𝑝(∙), the finite interval of integration, 

the use of the FFT for a fast calculation and windowing to reduce the truncation effect over 

�̃�𝑎𝑝(𝑣). The system coefficients calculated by 𝑣 −domain are a relevant option for other 

more convenient bandlimited interpolation functions, such as the raised cosine functions. 

 

In conclusion, using potentially the most critical bandlimited interpolation function, we 

demonstrate that the MoS! is a viable alternative with low computational cost because the 

new matrix has useful properties based on symmetry, and it can be calculated using low 

cost alternative expressions. Although the MoM has a better convergence rate in this 

example, the solution of �̅�𝑁+18 is mostly equivalent to �̅�𝑁. Moreover, we show that the 

system matrix can be used as a preconditioner for the MoM using a well-known Krylov 

subspace iterative method with very fast convergence. 

 

Furthermore, the MoS! can simplify the solution using subdomain functions because the 

ultraformulation is well defined for 𝐾 ∈ 𝐿2. For such a case, we emphasize that if 

Ω𝑝𝑛
, Ω𝑅𝑚

⊆ Ω, both matrices are equal (𝑺 = 𝒁). However, the input impedance is different 

because both methods employ different approaches for the unknown continuous 

approximation. In this example, this difference is smaller because the input impedance is 

calculated using an integral operator (a low-pass operator). To discuss the ultraformulation, 

we first evaluated 𝑍𝑖𝑛 in tables 2a and b using the rectangular and triangular functions with 

PM-P (and BM-P in the parenthesis) using (15), and MoM (and S-RT in the parenthesis) 

with the filter 𝑅Λ(∙) using (21). As expected, the rectangular function with BM-P exhibited 

an oscillatory behavior without convergence because the reduced kernel has low 

attenuation for its interference (see figure 4c in |𝑣| ≤ 50). 

 

Because (𝑅Λ ∗ 𝑝Π)(𝑥; ∆) and (𝑅Λ ∗ 𝑝Λ)(𝑥; ∆) have closed forms, the ultraformulation has 

two advantages. The first advantage is the reduction of the computational cost owing to the 

transformation of the 2D integral to 1D. The second advantage is the reduction of the 

nontrivial effects of rounding errors. In particular, (24) reduces the jitter produced between 

the interpolation functions and filters, and (25) reduces the jitter produced by the kernel. 

For instance, we note that the input impedance in table 2b using 𝑝Π(∙) and 𝑅Λ(∙) must lead 

to better performance because the kernel and the source have been filtered. Table 2c 

summarizes the new estimation using (24), in which we remove the lack of convergence 

without changing the numerical methods. We highlight this nontrivial issue because 

𝜅(�̅�𝑁) ≤ 600 for 𝑁 ≤ 113. 
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Table 2. Input impedance (𝒁𝒊𝒏) for a center-fed dipole using classical subdomain functions with 𝑳 = 𝟎, 𝟒𝟕𝝀 and 

𝒂 = 𝟎, 𝟎𝟎𝟓𝝀  

(a) Basic approach with PM-P (and BM-P) 

(b) Subdomain regularization technique with MoM (and RT) 

(c) Ultraformulation using (24) 

(d) Entire domain regularization technique with MoM (and RT) 

(a) 
 

(b)  (c) 
 

(d) 

N 
PM-P (and BM-P) 

 MoM (and RT): 

𝑹𝚲(𝒙; 𝚫) 
 

Ultraformulation 

(𝒑𝚷 ∗ 𝑹𝚲)(𝒙; 𝚫) 

using (37)  

(and (38)) 

 MoM (and RT): 

𝑹𝛀
𝒈(𝒙; 𝚫) 

𝒑𝚷(𝒙; 𝚫) 𝒑𝚲(𝒙; 𝚫)  𝒑𝚷(𝒙; 𝚫) 𝒑𝚲(𝒙; 𝚫) 
  

𝒑𝚷(𝒙; 𝚫) 𝒑𝚲(𝒙;𝚫) 

5 
14.02 + 7.76i 

(14.00 + 7.79i) 

8.63 − 80.24i 

(8.69 − 81.59i) 
 

65.98 − 10.34i 

(65.89 − 10.21i) 

68.56 + 0.49i 

(69.07 + 0.19i) 
 

66.02 − 10.21i 

(65.93 − 10.08i) 

 73.82 + 10.95i 

(73.72 + 11.07i) 

74.90 + 16.29i 

(75.50 + 16.04i) 

11 
25.36 − 3.06i 

(25.34 − 3.00i) 

19.70 − 59.00i 

(19.75 − 59.56i) 

 71.13 − 0.9i 

(71.10 − 0.76i) 

73.39 + 5.45i 

(73.60 + 5.11i) 
 

71.13 − 0.90i 

(71.10 − 0.76i) 

 75.04 + 8.36i 

(75.01 + 8.52i) 

76.52 + 12.52i 

(76.73 + 12.18i) 

17 
36.97 − 5.19i 

(36.96 − 5.13i) 

31.83 − 41.77i 

(31.87 − 42.05i) 

 72.71 + 1.18i 

(72.71 + 1.30i) 

74.85 + 7.38i 

(74.96 + 7.07i) 
 

72.98 + 2.84i 

(72.98 + 2.96i) 

 75.53 + 8.53i 

(75.52 + 8.66i) 

76.85 + 11.89i 

(76.96 + 11.57i) 

23 
44.82 − 18.18i 

(44.82 − 

18.13i) 

43.30 − 27.72i 

(43.34 − 27.89i) 

 74.12 + 5.07i 

(74.12 + 5.15i) 
75.64 + 8.62i 

(75.70 + 8.35i) 
 

74.06 + 5.10i 

(74.06 + 5.18i) 

 75.95 + 9.14i 

(75.95 + 9.22i) 

77.12 + 11.91i 

(77.19 + 11.64i) 

29 
52.51 − 18.69i 

(52.51 − 

18.66i) 

52.91 − 16.70i 

(52.94 − 16.86i) 

 74.86 + 6.52i 

(74.87 + 6.57i) 
76.17 + 9.54i 

(76.22 + 9.31i) 
 

75.08 + 6.81i 

(75.09 + 6.86i) 

 76.32 + 9.81i 

(76.32 + 9.86i) 

77.35 + 12.13i 

(77.40 + 11.89i) 

35 
61.78 + 1.47i 

(61.78 + 1.48i) 

60.28 − 8.48i 

(60.30 − 8.62i) 

 74.34 + 2.35i 

(74.35 + 2.37i) 

76.56 + 10.26i 

(76.61 + 10.06i) 
 

75.35 + 7.91i 

(75.36 + 7.93i) 

 76.63 + 10.40i 

(76.64 + 10.42i) 

77.56 + 12.41i 

(77.59 + 12.21i) 

41 
67.92 + 12.30i 

(67.93 + 

12.31i) 

65.61 − 2.52i 

(65.63 − 2.66i) 

 73.78 − 1.54i 

(73.79 − 1.54i) 
76.90 + 10.87i 

(76.93 + 10.70i) 
 

75.79 + 8.87i 

(75.79 + 8.87i) 

 76.91 + 10.95i 

(76.917 + 

10.96i) 

77.74 + 12.70i 

(77.77 + 12.53i) 

47 
72.03 + 18.48i 

(72.04 + 

18.48i) 

69.34 + 1.71i 

(69.36 + 1.59i) 

 72.92 − 6.59i 

(72.93 − 6.60i) 
77.18 + 11.39i 

(77.19 + 11.24i) 
 

76.14 + 9.66i 

(76.15 + 9.66i) 

 77.16 + 11.45i 

(77.17 + 11.44i) 

77.91 + 12.99i 

(77.93 + 12.84i) 

53 
71.38 + 5.10i 

(71.39 + 5.09i) 

71.93 + 4.73i 

(71.94 + 4.61i) 

 74.62 + 0.79i 

(74.63 + 0.78i) 

77.41 + 11.85i 

(77.43 + 11.73i) 
 

76.64 + 10.38i 

(76.64 + 10.36i) 

 77.38 + 11.89i 

(77.38 + 11.88i) 

78.07 + 13.27i 

(78.09 + 13.14i) 

59 
71.75 + 0.18i 

(71.75 + 0.17i) 

73.71 + 6.90i 

(73.72 + 6.80i) 

 76.95 + 10.96i 

(76.96 + 10.94i) 

77.63 + 12.31i 

(77.65 + 12.19i) 
 

76.95 + 10.96i 

(76.96 + 10.94i) 

 77.58 + 12.29i 

(77.59 + 12.28i) 

78.22 + 13.54i 

(78.23 + 13.43i) 

65 
73.41 + 3.71i 

(73.41 + 3.69i) 

74.94 + 8.45i 

(74.95 + 8.35i) 

 73.55 − 5.46i 

(73.55 − 5.48i) 

77.81 + 12.61i 

(77.82 + 12.52i) 
 

76.97 + 11.43i 

(76.97 + 11.40i) 

 77.77 + 12.67i 

(77.78 + 12.65i) 

78.35 + 13.80i 

(78.36 + 13.70i) 

71 
71.82 − 7.16i 

(71.82 − 7.19i) 

75.82 + 9.61i 

(75.82 + 9.53i) 

 67.60 − 34.30i 

(67.61 − 34.32i) 

77.97 + 12.93i 

(77.98 + 12.85i) 
 

77.09 + 11.86i 

(77.09 + 11.84i) 

 77.94 + 13.02i 

(77.95 + 12.99i) 

78.47 + 14.04i 

(78.48 + 13.95i) 

Source: Páez [8] 

 

Continuing the discussion on regularization, we note that filters with subdomains are 

inefficient in reducing the source’s bandwidth due to the time-frequency relationship 

(formally, the relationship between the 𝑥⁡and⁡𝑣⁡domains). To enhance the convergence, we 

propose the sampled filter 𝑅Ω
𝑔
(𝑥𝑚 − 𝑥) inspired by the standard Gaussian filter 

 

 𝑅𝑔(𝑥) = 𝜎−1𝑒−𝜋𝑥2/𝜎2
, ∀𝑥 ∈ ℝ (42) 

 

where 𝜎 = 𝑐 ∙ ∆ to obtain a nascent Delta-Dirac function (𝑐 ≥ 1).  

 

Table 2d shows the recalculation of 𝑍𝑖𝑛 using the entire domain filter with 𝑐 = 1.5. As 

shown, it is possible to improve the convergence significantly, even for low order 

interpolation functions (e. g., tables 1 and 2 show that the triangular interpolation function 
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with the quasi-Gaussian filter using 𝑁 = 17 has the same approximate performance as that 

of the triangular filter using 𝑁 = 41, without filter using 𝑁 = 77, and with the entire 

domain formulations using the sinc function and 𝑁 > 53). Nevertheless, some 

disadvantages were observed when filters were used in this problem. First, the conditioning 

number and the fake oscillations [23] and [24] may be increased because the filters reduce 

the bandwidth artificially. Second, the use of any filter includes the establishment of a 

particular model for the discontinuities at low sampling rates, which implies that a specific 

model may be used for the current at the feed point and the edges of the wire. Lastly, 

monotone convergence using the quasi-Gaussian filter when 𝑐 ≳ 1.5 does not occur 

because spectral mismatches exist in this particular problem (e.g., a relevant transience 

exists for 𝑁 < 17 and 𝑐 = 1.5). 

 

In summary, we solved a classical electromagnetic problem with several new paradigms. It 

was noted that the limiting factor for fast convergence is the bandwidth of the printed 

source. Therefore, the regularization filter, and not the interpolation function, is the design 

challenge for a fast and numerically stable solution. Moreover, it was demonstrated that the 

instantaneous values obtained from the system matrix allow the solution of the problem, 

and less notably, Ψ(𝑥) was considered to be an interpolator with an unnecessary high 

computational cost. According to our approach, the use of Ψ(𝑥) to calculate other 

performance parameters based on wideband operators (e.g., vector operators) is not 

desirable because Ψ(𝑥) may possess information that is not valid at high frequencies. In 

particular, the information obtained using the reduced kernel at high frequencies by 

employing any method is strictly incorrect because the real part of this kernel is an almost 

ideal low-pass filter with essential bandwidth 𝐵𝑊2

𝑅𝑒{𝐾𝑎𝑝}
≈ 𝜆−1. For these reasons, we 

changed the terminology of “basis functions” to “interpolation functions” because these 

functions do not necessarily provide basis for the unknown function following the standard 

algebraic approach. 

 

Conclusions 

 

The authors presented a novel approach to solve integral equations with difference kernels, 

based on the generalization of a Fredholm equation of the first kind, as an extended 

convolutional problem. The results demonstrated that the method of moments (and in 

general, the method of weighted residuals) is a particular case, in which new 

interpretations, degrees of freedoms and design rules can be found using standard matrix 

techniques. 

 

The new approach can be used to address major methodological questions for the method 

of moments; these questions include those pertaining to the design of all the functions 

related with the computational method (e.g., to the best of the author’s knowledge, a 
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general approach for the design of weighting functions has not been reported so far), the 

establishment of preconditioners in a systematic manner (e.g., in problems using 

bandlimited basis functions), the reduction of computational cost based on several new 

properties (e.g., using ultraformulation and functions with an approach that does not 

necessarily imply orthogonality, differentiability or smooth continuity), the use of the 

Fourier transform as a fundamental design tool although the solution must be performed in 

the original domain (e.g., via matrix coefficients calculated by the Fourier domain), and 

better understanding the formulation based on the interior product as a particular case of 

regularization using convolution. 
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Appendices 

 

A. Preliminaries 

 

A.1. Standard Functions and their Characteristics 

 

Let 𝑔:ℝ → ℂ be a complex-valued function. Let 𝑔Ω(𝑥) be a truncated function with 

compact support given by 

 

 𝑔Ω(𝑥) ≜ {
𝑔(𝑥) ∀𝑥 ∈ Ω

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (43) 

 

Let Π𝑏(𝑥) ≜ 1(−𝑏/2,𝑏/2)(𝑥) be the rectangular function, let Λ𝑏(𝑥) = (1 − |𝑥|/𝑏)Π2𝑏(𝑥) be 

the triangular function, and let sinc(𝑥) ≜ sin⁡(𝑥)/𝑥. 

Let 𝑔 ∈ 𝐿1≤𝑝<∞ if ‖𝑔‖𝑝 ≜ (∫ |𝑔(𝑥)|𝑝𝑑𝑥
∞

−∞
)

1

𝑝 < ∞, and let 𝑔 ∈ 𝐿∞ if ‖𝑔‖∞ ≜

sup𝑥∈ℝ|𝑔(𝑥)| < ∞ [25]. Let 𝐿𝑝∧𝑞 = 𝐿𝑝 ∩ 𝐿𝑞 and 𝐿𝑝∨𝑞 = 𝐿𝑝 ∪ 𝐿𝑞. 

Definition 6. Let 𝛿∆(𝑥) be a nascent Delta-Dirac function for 𝑔 ∈ 𝐿𝑝 if  

 ‖𝑔(𝑥) − lim
∆→0+

(𝛿∆ ∗ 𝑔)(𝑥)‖
𝑝

= 0 (44) 

 

A.2. Continuous Fourier Transform 

 

Let �̃�(𝑣) ≜ ℱ{𝑔(𝑥)} be the Fourier transform. If 𝑔Ω ∈ 𝐿1, �̃�Ω(𝑣) ≜ ℱ{𝑔Ω(𝑥)} ≜

∫ 𝑔Ω(𝑥)𝑒−2𝜋𝑗∙𝑥𝑣𝑑𝑥
∞

−∞
 exists. 

Lemma 7. (Plancherel’s theorem) If 𝑔Ω ∈ 𝐿1∧2, �̃�Ω ∈ 𝐿2 and ‖𝑔Ω(𝑥)‖2 = ‖�̃�Ω(𝑣)‖
2
. 

Definition 8. The essential bandwidth of 𝑔 ∈ 𝐿2 is defined by 𝐵𝑊2
𝑔
: 𝜖 ≜ 1 − ‖�̃�Θ(𝑣)‖2

2/

‖�̃�(𝑣)‖2
2 ≪ 1, where Θ ≜ (−𝐵𝑊2

𝑔
, 𝐵𝑊2

𝑔
). 
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A.3. Linear System Theory  

Let 𝑔
ℎ
→ 𝑓 be a linear and invariant problem given by 𝑓(𝑥) = (ℎ ∗ 𝑔)(𝑥), where 𝑔(𝑥) is the 

input, 𝑓(𝑥) is the output, ℎ(𝑥) is the linear and invariant system, and (∗) is the 

unidimensional invariant convolution operator defined by (ℎ ∗ 𝑔)(𝑥) = ℎ(𝑥) ∗ 𝑔(𝑥) ≜

∫ ℎ(𝑥 − 𝑢)𝑔(𝑢)𝑑𝑢
∞

−∞
, in the case that the improper Riemann integral is well defined. Let 

ℱ{ℎ(𝑥) ∗ 𝑔(𝑥)} = ℎ̃(𝑣) ∙ �̃�(𝑣), in the case that the Fourier transforms ℎ̃(𝑣) = ℱ{ℎ(𝑥)}, 

�̃�(𝑣) = ℱ{𝑔(𝑥)} and the improper Riemann integral are well defined. 

 

A.4. Instantaneous Sampling Theory 

 

Let 𝛿𝑚𝑛 be the Kronecker Delta function. Let 𝛿(𝑥) be the generalized Delta Dirac function. 

Using the distribution theory and the generalized Fourier transform [25] and [26], the 

following theorems can be considered well defined: 

Lemma 9. ℱ{𝛿(𝑥 − 𝑥0)} = 𝑒−2𝜋𝑗∙𝑣𝑥0, ℱ{𝑒2𝜋𝑗∙𝑥𝑣0} = 𝛿(𝑣 − 𝑣0), ℱ{∑ 𝛿(𝑥 − 𝑛∆)∞
𝑛=−∞ } =

∑ ∆−1𝛿(𝑣 − 𝑘∆−1)∞
𝑘=−∞ . 

Theorem 10. Let ℱ{𝑔(𝑥)} = �̃�(𝑣) and the uniform samples 𝑥𝑛 = 𝑥𝑛−1 + ∆= 𝑥0 + 𝑛∆ with 

𝜗 = ∆−1∈ ℝ and 𝑛, 𝑘 ∈ ℤ. The ideal instantaneous sampling theorem can be defined as 

 

 ℱ {∑ 𝑔(𝑥𝑛)𝛿(𝑥 − 𝑥𝑛)
∞

𝑛=−∞
} = 𝜗 ∙ ∑ �̃�(𝑣 − 𝑘𝜗)𝑒−2𝜋𝑗∙𝑘𝜗𝑥0

∞

𝑘=−∞
 (45) 

 

Proof. ℱ{∑ 𝑔(𝑥𝑛)𝛿(𝑥 − 𝑥𝑛)∞
𝑛=−∞ } = ℱ{∑ 𝑔(𝑥0 + 𝑛∆)𝛿(𝑥 − 𝑥0 − 𝑛∆)∞

𝑛=−∞ } =

ℱ{𝛿(𝑥 − 𝑥0) ∗ ∑ 𝑔(𝑥0 + 𝑛∆)𝛿(𝑥 − 𝑛∆)∞
𝑛=−∞ } = ℱ{𝛿(𝑥 − 𝑥0) ∗ ∑ 𝑔(𝑥 + 𝑥0)𝛿(𝑥 −∞

𝑛=−∞

𝑛∆)} = ℱ{𝛿(𝑥 − 𝑥0) ∗ (𝑔(𝑥 + 𝑥0) ∙ ∑ 𝛿(𝑥 − 𝑛∆)∞
𝑛=−∞ )} = 𝑒−2𝜋𝑗∙𝑣𝑥0 ∙ ((�̃�(𝑣)𝑒2𝜋𝑗∙𝑣𝑥0) ∗

∑ 𝜗 ∙ 𝛿(𝑣 − 𝑘𝜗)∞
𝑘=−∞ ) = 𝑒−2𝜋𝑗∙𝑣𝑥0 ∙ ∑ 𝜗 ∙ �̃�(𝑣 − 𝑘𝜗)𝑒2𝜋𝑗∙(𝑣−𝑘𝜗)𝑥0∞

𝑘=−∞ = 𝜗 ∙

∑ �̃�(𝑣 − 𝑘𝜗)𝑒−2𝜋𝑗∙𝑘𝜗𝑥0∞
𝑘=−∞ ∎ 

 

Theorem 11. Let ℱ{𝑔(𝑥)} = �̃�(𝑣), ℱ{𝑝(𝑥)} = 𝑝(𝑣) and the uniform samples 𝑥𝑛 = 𝑥𝑛−1 +

∆= 𝑥0 + 𝑛∆ with 𝜗 = ∆−1∈ ℝ and 𝑛, 𝑘 ∈ ℤ. The nonideal instantaneous sampling theorem 

can be defined as  

 

 ℱ {∑ 𝑔(𝑥𝑛)𝑝(𝑥 − 𝑥𝑛)
∞

𝑛=−∞
} = 𝜗 ∙ 𝑝(𝑣) ∙ ∑ �̃�(𝑣 − 𝑘𝜗)𝑒−2𝜋𝑗∙𝑘𝜗𝑥0

∞

𝑘=−∞
 (46) 
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Proof. ℱ{∑ 𝑔(𝑥𝑛)𝑝(𝑥 − 𝑥𝑛)∞
𝑛=−∞ } = ℱ{𝑝(𝑥) ∗ ∑ 𝑔(𝑥𝑛)𝛿(𝑥 − 𝑥𝑛)∞

𝑛=−∞ } = 𝜗 ∙ 𝑝(𝑣) ∙

∑ �̃�(𝑣 − 𝑘𝜗)𝑒−2𝜋𝑗∙𝑘𝜗𝑥0∞
𝑘=−∞ ∎ 

 

B. Properties of Matrix B 

 

Corollary 12. The matrix 𝑩 = [𝐵𝑚𝑛]𝑁×𝑁 = [|𝑚 − 𝑛|]𝑁×𝑁 for 𝑁 ≥ 3 has a theoretical inverse 

given by 

 

 𝑩−1 =
1

2

[
 
 
 
 
 
 
 
 

1

𝑁 − 1
− 1 1 0 0 ⋯ 0

1

𝑁 − 1
1 −2 1 0 ⋯ 0 0
0 1 −2 1 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 1 −2 1 0
0 0 ⋯ 0 1 −2 1
1

𝑁 − 1
0 ⋯ 0 0 1

1

𝑁 − 1
− 1]

 
 
 
 
 
 
 
 

 (47) 

 

Corollary 13. 𝜌+(𝑩−1) ≤ 2 for 𝑁 ≥ 3. 

 


