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Abstract 
Hyperspectral imaging requires handling a large amount 
of multidimensional spectral information. Hyperspectral 
image acquisition, processing, and storage are computa-
tionally and economically expensive and, in most cases, 
slow processes. In recent years, optical architectures have 
been developed for acquisition of spectral information in 
compressed form by using a small set of measurements 
coded by a spatial modulator. This article formulates a 
processing scheme that allows the measurements acquired 
by such compressive sampling systems to be used to 
perform spectral detection of targets, by adapting tra-
ditional detection algorithms for use in the compressive 
sampling model, and shows that the performance is 
comparable with that obtained by detection processes 
without compression.

Keywords
hyperspectral imaging; compressive sensing; target de-
tection; sparsity model

Resumen
La adquisición y procesamiento de imágenes espectrales 
involucra el manejo de grandes cantidades de información 
espectral multidimensional. Su adquisición, procesamiento 
y almacenamiento son costosos temporal, computacional y 
económicamente. En los últimos años se han desarrollado 
arquitecturas ópticas para la adquisición de información 
espectral de forma comprimida, usando un conjunto redu-
cido de mediciones codificadas por un modulador espacial. 
En este artículo se formula un esquema de procesamiento 
que permita utilizar las mediciones adquiridas por dichos 
sistemas de muestreo compresivo; por tanto, para efectuar 
la detección espectral de objetivos, se adaptarán algoritmos 
de detección tradicionales a fin de usarlos en el modelo de 
muestreo compresivo, y se mostrará que su desempeño 
es comparable al obtenido en procesos de detección sin 
compresión.

Palabras clave
imágenes hiperespectrales; muestreo compresivo; detec-
ción de objetivos; modelo de escasez 
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Introduction
Over the last several decades, the development of optical sensors has facilitated 
remote sensing analysis with rich spatial, spectral, and temporal information. 
The increase in the spectral resolution of hyperspectral images (HSI) and 
infrared sounders has led to new application domains and poses new method-
ological challenges in data analysis. HSI allows characterization of the objects 
of interest (e.g., land-cover classes) with unprecedented accuracy and aids 
in keeping inventories up to date. Furthermore, improvements in spectral 
resolution have necessitated advances in signal processing and exploitation 
algorithms [1]. 

Hyperspectral image classification and target detection are among the most 
important problems in various scientific disciplines, such as machine learning 
[2] image processing, and computer vision. Several critical issues should be 
considered in the classification of hyperspectral data. For instance, the high 
number of spectral channels and low number of labeled training samples lead to 
the curse-of-dimensionality problem (i.e., the Hughes phenomenon [3]) and 
result in the risk of overfitting of the training data [4]. To alleviate the prob-
lems that come with the great dimensionality of data, the spatial variability of 
spectral information, and the high cost of true sample labeling and to enhance 
the numerical stability, a variety of approaches have been proposed [5].

In general, these approaches take advantage of the inherent sparsity in a cer-
tain basis of the natural signals, whereby they can be approximately represented 
by a few coefficients that carry the most relevant information [6]. Applications of 
sparse representations in computer vision and pattern recognition can be found 
in various fields, including motion segmentation [7], image super-resolution [8], 
image restoration [9], and discriminative tasks such as face recognition [10], 
iris recognition [11], tumor classification [12], and HSI classification [13]. In 
these applications, the use of sparsity as a prior condition often leads to state-of-
the-art performance. Furthermore, the sparse nature of spectral imagery can be 
exploited when classifying images that were acquired using compressive spectral 
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imaging systems, which require fewer measurements than do those attained by 
systems with traditional hyperspectral imaging sensors [14], [15].

The coded-aperture snapshot spectral imaging (CASSI) system depicted in 
Figure 1 is a compressive hyperspectral imager that is used to acquire compressive 
spectral measurements. The CASSI system simultaneously encodes spatial and 
spectral information of a scene in a small set of coded focal plane array (FPA) 
measurements [16].

Figure 1. Coded-aperture snapshot spectral imaging (CASSI) system [17]

Passband filter
Coded aperture

Lens

Retransmision lens
Dispersive element

Detector

Spectral datacube

Source: Authors own elaboration.

The main elements of the CASSI system are the coded apertures, a disper-
sive element, and the sensor responsible for capturing the energy of the scene 
encoded. The coded apertures are matrix arrays composed of translucent opti-
cal elements that block or unblock the path of light through the system. The 
dispersive elements (usually prisms or gratings) are responsible for splitting the 
light into its wavelengths. The quality of the images acquired by the system 
depend on three main factors: the percentage of translucent elements that allow 
light into the apertures (commonly known as transmittance), the size of the 
data cube, and the compression rate [17].



277

Ing. Univ. Bogotá (Colombia), 21 (2): 273-288, julio-diciembre de 2017

A Sparsity-Based Approach for Spectral Image Target Detection from Compressive Measurements Acquired by the CASSI Architecture

Mathematically, CASSI projections measured in the i-th shot can be treated 
as shown in Figure 2 and are described by y = Hf + w,where H is a  N(N + 
L – 1) × (N2L) matrix whose structure is determined by the coded aperture 
entries and the dispersive element effect. For spectrally rich or spatially detailed 
images, a single-shot FPA measurement is not sufficient to achieve proper 
quality reconstructions, and additional shots are required. The CASSI archi-
tecture is capable of admitting multiple snapshots, each with a different coded 
aperture pattern, thus yielding a less ill-posed inverse problem and improved 
signal reconstructions [18]. The set of k <<  L FPA measurements is given by  
y = Hf + ω, where y = y0

T ,      , yk 1
T T

 is the one-dimensional vectorized form of all 
FPA shots; H = H0

T ,  ... , Hk 1
T T

R
M N+L 1( ) N 2L( ) is the sensing matrix, and ω is the 

additive noise of the sensing system. The spectral data cube is reconstructed as 
ˆ = arg min y H ˆ

2

2
+

1
, where ˆ = arg min y H ˆ

2

2
+

1
 is an S-sparse representation of f on the 

basis ˆ = arg min y H ˆ
2

2
+

1 and l is a regularization constant [19].

Figure 2. Matrix representation of  the compressive sensing process

Source: Authors own elaboration. 

Among the main limitations of the CASSI system are the mixture of spec-
tral information with spatial information due to spectral shifting and the way 
in which the energy is integrated within the detector. In other architectures, 
only the spectral information is mixed [20]. In addition, the number of spectral 
bands available is limited by the size of the detector, M × (N + L – 1). However, 
this example is one of the most broadly studied compressive spectral architectures 
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and has been used in several applications [19], [21], [22], which is why it was 
selected for this work.

This paper focuses on designing a target detection model that uses compres-
sive measurements to find a sparse representation of image pixels from spectral 
information-based dictionaries. In addition, an algorithm is implemented that 
determines whether the evaluated pixel is a target pixel. The proposed algorithm 
is based on a joint sparsity model, where every fi pixel is approximately repre-
sented by a few sets of training signatures among the entire training dictionary. 
This dictionary is composed of sub-dictionaries of the target and background 
signatures. The sparse vector represents the atoms in the training dictionary, and 
their associated weights for each pixel can be recovered from the CASSI com-
pressive measurements by solving a sparsity-constrained optimization problem. 
This process is used to determine whether the observation pixel is a target pixel.

1. Spectral image target detection using a sparsity model
Traditional spectral target detection based on sparsity takes advantage of the fact 
that any pixel in an image can be sparsely represented using a trained dictionary 
M composed of the selected target and the background pixels. Considering the 
existent spatial correlation between each pixel and its spatial neighborhood, we 
can model a linear problem as follows:

F = MA (1)

Where F is the neighborhood consisting of T number of pixels and A 
is the sparse coefficient matrix of the {fi}i=1,2, ..., T pixels represented in the 
subspace spanned by M. 

With a proper pixel-wise sparse representation, the goal of the detection task 
is to apply a detection function to each pixel in the image as follows:

D fi( ) = F M b Ab

F
F M t At

F
(2)

Where Ab consists of the first Nb rows of the matrix A corresponding to the 
background sub-dictionary Mb and At consists of the remaining Nt rows in A that 
correspond to the target sub-dictionary Mt. If the output D(x) is greater than a 
fixed threshold, then the test sample is labeled a target; otherwise, it is labeled 
background. Further details on matrix A estimation and sparse representation 
are explicitly presented in previous works [23] and [24].
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2. Proposed model
A principal component transformation can be performed on the structured 
dictionary M ∈ RL×T such that an orthonormal basis Ψ is obtained from the set 
of NT training vectors. From [19], we know that the orthonormal basis Ψ can 
be formed by the set of eigenvectors of the correlation matrix C ∈ ℝL×L

 given by 
the following:

C = (M – E {M})(M – E{M})T = VSVT (3)

Such that Y = VT. Principal component analysis (PCA) is one of the most 
frequently used approaches for hyperspectral dimensionality reduction and 
compression in HIS because it preserves the meaningful information of the 
image in a few of its components. Such basis transformation was successfully 
performed for classification in [19]. Thus, the original sparse vector a repre-
senting the test pixel fi can be transformed into a new sparse vector q ∈ ℝL, 
which represents the pixel in the orthogonal basis Y. The observation pixel fi  
can now be expressed as:

fi 1,..., L 1,..., L

T
= i

(4)

Using the sparse representation of the pixels in the training basis Y, the 
compressive CASSI measurements can be rewritten as

y = H + (5)

Where y = H + = Ψ ⊗ I , I is a N2 × N2 identity matrix and ⊗ is the Kronecker 
product operator. Additionally, = 1,1{ } ,..., N 2 ,1{ } ,..., 1,L{ } ,..., N 2 ,L{ }

T

, where Θ{1, L] corre-
sponds to the i – th PCA coefficient of the i – th pixel. 

In Eq. (5), w is the noise of the system, and H is the CASSI sensing matrix. 
The proposed algorithm first finds an estimate of the sparse vector q directly 
from the FPA measurements y by solving the sparsity-constrained optimization 
problem given by

= argmin y H
2
+

1
(6)

Where the ℓ
1
 norm accounts for the sparsity constraint and the ℓ

2
 error 

norm finds the closest sparse vector to the optimal CASSI compressive 
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measurements. A variety of algorithms have been used in the literature to solve 
problems similar to the one stated in Eq. (6), such as the ℓ

1
-regularized least 

square solution via the interior point method [25] or, in this case, the gradient 
projection for sparse reconstruction (GPSR) [26]. Spatial inter-pixel correlation 
can be included in the optimization problem given in Eq. (6), by replacing the 
sparsifying basis y = H + = Ψ ⊗ I with y = H + = Ψ ⊗ 2 D

T , where 2 D
T  is the 2D wavelet 

basis dictionary used in [21].
The sparse target detection model proposed in this paper requires the 

detection algorithm introduced in Eq. (2) to operate over the subspace de-
scribed in Eq. (5) and Eq. (6). This process is depicted in Algorithm 1, where
F = I 2 D

T( )  , I ∈ ℝN2×N2 is an identity matrix, ⊗ is the Kronecker product 
operator, Θ is the sparse vector obtained in Eq. (6) and F = I 2 D

T( ) is the sparse matrix 
of all spectral bands in the basis Ψ.

Figure 3. Algorithm 1 Target detection from compressive measurements

Imput:	 Mt ∈ RL×N1 (spectral target signatures)
	 Mb ∈ RL×Nb (spectral background signatures)
	 Ψ ∈ RL×L (orthonormal basis)
	 ˆ  ∈ RL×N2

 (spectral background signatures)

Output:	 D (detection map)
	 Create Ψ bassed target and background dictionaries
	 Mt = ΨT Mt

	 Mb = ΨT Mb

	 Create Ψ bassed representation of the image

		  F = (I ⊗ ΩT
2D

) ˆ
	 for i=1 N2 do

		  F̂1 = f1, f2 ,..., fi ,..., fT

	 wit F̂1 = f1, f2 ,..., fi ,..., fT ∈ RL

	 solve the joint sparse optimization problem
		  minimize		  F̂i MA

F

		  subject to		  A
row,0

k0

	 calculate the minimal of the total residuals

		
D fi( ) = F̂i MbAb

F
F̂i M tAt

F

	 end for

Source: Authors’ own elaboration.
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The target detector is based on a joint sparse model to extract the contextual 
information in HSI. In particular, it is assumed that pixels for the same material 
in a region share a common sparsity pattern. Thus, similar neighboring pixels 
can be sparsely represented by a linear combination of a few shared atoms: 

F̂ = f1, f2 ,..., fT (7)

Where F̂ ∈ ℝL is the sparse representation of pixels in a spatial neighborhood 
formed by T neighboring pixels of the i-th test pixel. From the estimated 
matrix F̂, the joint sparsity problem can be formulated as

minimize       F̂i MA
F

subject  to       A
row,0

k0

(8)

Where Ᾱ is a joint sparse matrix with only K non-zero rows, K
0
 denotes the 

sparsity level of Ᾱ and || ∙ ||F denotes the Frobenius norm. Once the sparse matrix 
Ᾱ is obtained, the label of the test pixel fi is determined using the minimal 
total residual. 

D fi( ) = F̂i M b Ab

F
F̂i M t At

F
(9)

Where Ᾱb and Ᾱt consist of the Nb and Nt rows in Ᾱ that are associated with 
the background and target sub-dictionaries  M b and M t, respectively.

3. Computer simulations and results
The performance of the proposed sparsity model in target detection is evaluated 
from compressive CASSI measurements obtained from two spectral images. 
The first image is the self-test dataset from the RIT-CIS-DIRT project [27], and 
the data of this image, as shown in Figure 2, were collected as a component of 
a field experiment conducted in July 2006, near the small town of Cooke City, 
MT, USA. The hyperspectral imagery was collected using the HyMap sensor 
operated by HyVista, with approximately 3-meter ground resolution. The sensor 
generates 128 bands across the reflective solar wavelength region of 0.45-2.5 
µm, with contiguous spectral coverage (except in the atmospheric water vapor 
bands) and bandwidths between 15 and 20 µm. A small fabric panel was used 
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as target, and its reflectance spectra were measured by a Cary 500 spectropho-
tometer in the laboratory.

The second image is the EO1H0070552014301110PF-SG1-01 spectral 
image, as shown in Figure 3, collected by the EO-1 Hyperion sensor on October 
28, 2014, in the region of Mogotes, Santander, Colombia. The spectral imagery 
has approximately 30-meter resolution, and only a small patch of the whole 
image is used in the experiments. The image is composed mostly of cultivated 
and ready-to-cultivate fields. The sensor is capable of resolving 220 spectral 
bands (from 0.4 to 2.5 µm) with a 30-meter resolution. In both images, the 
model of the multishot CASSI system [16] is used to obtain a set of FPA com-
pressive measurements using different numbers of shots corresponding to an 
approximate percentage of the sensed information of the image. 

Figure 3. Detection output of  the tested algorithms

Original image Ground truth Proposed algorith m
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Source: Authors own elaboration. 

The target detector proposed in Algorithm 1 is used over the F representation 
of the image. The sparse vector Θ that solves the problem formulated in Eq. (6) 
is obtained using the GPSR algorithm proposed in [26].
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The sparsity-constrained problem in Eq. (6) is solved using the SOMP algo-
rithm, with a fixed sparsity level K

0
 = 4 and a joint sparsity neighborhood with 

T = 9. The estimated matrix Ᾱ is later used to calculate the score matrix D, whose 
entries determine the probability that the pixel area is a target, as shown in Eq. (9).

The proposed algorithm is compared with three target detection algorithms 
for hyperspectral images, i.e., Adaptive Matched Subspace Detector (AMSD), 
Orthogonal Subspace Projection (OSP), and Constrained Energy Minimization 
(CEM), which are available in the Matlab signal-processing toolbox. These 
algorithms were used without compression using 100% of the spectral data.

The results analyzed both visually and quantitatively using the receiver op-
erating characteristic (ROC) curves, as shown figures 4 and 5. The ROC curve 
describes the probability of detection (PD) as a function of the probability of 
false alarms (PFA). To calculate the ROC curve, we pick thousands of thresholds 
between the minimum and maximum of the detector output. The target or back-
ground labels for all pixels in the test region are determined at each threshold. 
The PFA is calculated by using the number of false alarms (background pixels 
determined as target) over the total number of pixels in the test region, and the 
PD is the ratio of the number of hits (target pixels determined as target) and 
the total number of true target pixels.

Figure 4. ROC curve of  the tested algorithms
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Figure 5. ROC curve of  the tested algorithms
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3.1. RIT-CIS-DIRT dataset: Cooke City
The first spectral image used to test the performance of the classifier is the Cooke 
City self-test [27]. In the following simulations, the number of bands is reduced 
to 90 (3rd-46th, 49th, 51st-62nd, 66th, 69th-72nd, and 86th-122nd) by elim-
inating 38 absorption and low-SNR bands. This image has a spatial resolution 
of 3 m per pixel and a spatial dimension of 800×200 pixels.

The proposed algorithm was tested by varying two specific parameters: the 
compression level that we expect to achieve and the transmittance level of the coded 
apertures. The numerical results in Table 1 show the area under the curve (AUC) 
of the detector under the selected transmittance level and compression rate.

Table 1. AUC of  the proposed method under different configurations

PD in function of  the compression rate and the transmittance level
Compression rate

Transmittance level

40% 30% 20% 15%
50% 0.853417 0.807505 0.813288 0.812644

40% 0.976642 0.857213 0.841170 0.842186

30% 0.954088 0.899378 0.848412 0.833338

20% 0.989259 0.954751 0.883528 0.883329

10% 0.980153 0.930168 0.943981 0.883216

Source: Authors own elaboration.
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The detection results for the proposed algorithm and the comparative results 
from other detection algorithms are shown in Figure 6. For additional clarity, 
the ROC curves of the algorithms are displayed in Figure 4.

Figure 6. Detection output of  the tested algorithms
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Based on these results, it is reasonable to conclude that the proposed method 
achieves a performance similar to that of the target detection algorithms used 
in traditional spectral imaging.

3.2. Hyperion image
The spatial dimension used for this spectral image is 32×32. A set of 10 target 
pixels were taken from the image to be used as training samples. A set of 206 
pixels also taken from the image were used as test pixels to be assigned as target 
or background. As in the previous experiments, the GPRS algorithm was used 
to solve Eq. (6).

Results of simulations performed in this image using the proposed algorithm 
are shown in Table 2 in the same fashion of the first experiment, numerical 
results show the AUC under different levels of compression and transmittance, 
the overall scores over 85% might be explained due to the spatial resolution 
of the image and the spectral correlation.
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Table 2. AUC of  the proposed method under different configurations

PD in function of  the compression rate and the transmittance level
Compression rate

Transmittance level

 40% 30% 20% 15%
50% 0.999781 0.998797 0.998907 0.996612
40% 0.996502 0.999234 0.999672 0.998688
30% 0.997158 0.999016 0.998251 0.965136
20% 0.996612 0.994863 0.993661 0.991366

Source: Authors own elaboration.

Conclusion
This work proposes a spectral image target detector that directly labels each 
spectral pixel as either target or background from a set of compressive CASSI 
measurements. This detector uses the sparsity of spectral pixels in a given training 
basis. The sparse vector representing each pixel in the training basis is recovered 
from the CASSI measurements and is then used to determine whether or not 
the test pixel is a target pixel. The inter-pixel correlation in HSI is incorporated 
using a joint sparsity model, where the pixels in a small neighborhood in the 
test image are represented by a linear combination of a few common training 
samples weighted with a different set of coefficients for each pixel. The result-
ing sparse representations are used directly for target detection. The proposed 
detection method achieves a probability of detection of 98.92% if only 40% of 
the spectral information is used. A transmittance level between 10% and 30% 
produces the most accurate results.
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