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Abstract 

Modern production process is accompanied with 

new challenges in reducing the environmental 

impacts related to machining processes. The 

turning process is a manufacturing process widely 

used with numerous applications for creating 

engineering components. Accordingly, many 

studies have been conducted in order to optimize 

the machining parameters and facilitate the 

decision-making process. This work aims to 

optimize the quality of the machined products 

(surface finish) and the productivity rate of the 

turning manufacturing process. To do so, we use 

Aluminum as the material test to perform the 

turning process with cutting speed, feed rate, 

depth of cut, and nose radius of the cutting tool as 

our design factors. Product quality is quantified 

using surface roughness (R_a) and the 

productivity rate based on material removal rate 

(MRR). We develop a predictive and optimization 

model by coupling Artificial Neural Networks 

(ANN) and the Particle Swarm Optimization 

(PSO) multi-function optimization technique, as 

an alternative to predict the model response (R_a) 

first and then search for the optimal value of 

turning parameters to minimize the surface 

roughness (R_a) and maximize the material 

removal rate (MRR). The results obtained by the 

proposed models indicate good match between the 

predicted and experimental values proving that the 

proposed ANN model is capable to predict the 

surface roughness accurately. The optimization 

model PSO has provided a Pareto Front for the 

optimal solution determining the best machining 

parameters for minimum R_a and maximum 

MRR. The results from this study offer 

application in the real industry where the selection 

of optimal machining parameters helps to manage 

two conflicting objectives, which eventually 

facilitate the decision-making process of 

machined products 

 
 

 

Keywords: Multi-Objective Optimization, 

Artificial Neural Networks, turning process, 

Surface Roughness. 

Resumen 
La producción moderna afronta desafíos en la 

reducción del impacto ambiental relacionado con 

los procesos de mecanizado y, particularmente, el 

proceso de torneado utilizado en la creación de 

componentes de ingeniería. Debido a esto, se han 

realizado numerosos estudios en el tema, 

buscando mejorar y facilitar el proceso de toma de 

decisiones. El objetivo del presente trabajo es 

optimizar la calidad de los productos mecanizados 

y el índice de productividad del proceso de 

torneado. Para esto, realizamos un estudio donde 

el Aluminio fue el material de prueba y, la 

velocidad de corte, velocidad de avance, 

profundidad de corte y radio de punta de la 

herramienta fueron los factores de diseño. La 

calidad del producto fue medida mediante la 

rugosidad superficial (R_a) del material y la tasa 

de productividad según la tasa de remoción 

(MRR). Con dicha información desarrollamos un 

modelo predictivo y de optimización, mediante 

redes neuronales artificiales (ANN) y la técnica 

optimización multiobjetivo del Enjambre de 

partículas (PSO), para predecir la respuesta del 

modelo (R_a) primero y luego buscar el valor 

óptimo de los parámetros. Esto, buscando 

minimizar la R_a y maximizar la MRR. Los 

resultados obtenidos mostraron concordancia entre 

los valores predichos y experimentales, validando 

que el modelo de ANN es capaz de predecir la 

R_a con precisión. Además, el modelo de 

optimización PSO ha proporcionado un Frente de 

Pareto para la solución óptima que determina los 

parámetros de mecanizado que generan un R_a 

mínimo y MRR máximo. Los resultados de este 

estudio ofrecen aplicación en la industria real, 

donde la selección de los parámetros de 

mecanizado óptimos contribuye con la gestión de 

los objetivos en conflicto, facilitando la toma de 

decisiones en los procesos de los productos 

mecanizados. 

 

 

 

Palabras clave: Optimización Multi-

Objetivo, Redes Neuronales Artificiales, 

torneado, rugosidad superficial.
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Introduction and Background 

 

Manufacturing is one of the main wealth-generating actions as it involves the conversion of 

materials into end products [1]. According to the studies relevant to the machine tools used 

in turning and milling processes, more than 99% of the environmental impacts related to 

these manufacturing processes are due to their usage of electrical energy [2]. The most 

important objectives for manufacturing companies are majorly centered on the costs, time, 

environmental impacts, and quality. Consequently, it is vital to efficiently select the 

machining parameters that lead to cost savings and environmental friendliness [3].  

 

In this context, since manufacturing is a globalized and highly competitive industry, it is 

essential to increase productivity (reducing machining time) and, simultaneously, the 

quality of products. However, due to the characteristics of both the work and tools used, 

choosing the right parameter combination for the different properties of the materials used 

is a daily challenge. For this reason, a major challenge in metal cutting manufacturing 

processes is to minimize the manufacturing time and simultaneously maximize the quality 

or the enhanced material properties of the engineering components.  

 

Surface Roughness (𝑅𝑎) and Material Removal Rate (MRR) are commonly used as 

adequate indicators for determining the quality of the surface finish in the final product and 

the production efficiency in machining processes, respectively. The Literature includes 

extensive researches on the selection of various objectives in machining aiming for the 

optimization of machining parameters to achieve the optimal outcomes. As shown in Table 

1, the objective functions selected in machining processes are mainly focused on the four 

central aims of cost, time, quality, and environmental impacts. Product quality is commonly 

taken into account by the surface roughness and the cutting tool wear, machining time 

(productivity rate) by material removal rate, environmental impacts by the cutting force and 

power consumption, and the cost of machining is fundamentally affected by all of the 

aforementioned objectives. It is notable that these objectives are often in conflict with one 

another. In order to accomplish these objectives, as listed in Table 1, various machining 

parameters are considered such as the cutting speed, the depth of cut, and the feed rate, 

among others. The reason why these three variables are included in most of the models is 

that they are proved to have a direct influence on the outcomes of the process such as the 

𝑅𝑎, MRR, cutting force, energy, and power consumption. Additionally, the last column in 

Table 1 highlights the main contribution of the analysis on this topic. It is notable that in 

most of these studies, the approach includes two main stages: i) modelling in order to relate 

the parameters of machining to the objective functions, and ii) performing a multi-objective 

optimization technique that aims to obtain the range of optimal solutions. 
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Table 1. Studies related to the optimization of machining process parameters with various objectives 

and parameters. 
Article Parameters used Objective Function Remarks 

[4] 
D’Mello, Pai and 

Shetty, (2017) 

Cutting Speed, Feed Rate and Depth of 

Cut 

Surface and Depth of 

Roughness 

The Summation Wavelet – Extreme Learning Machine 

(SW-ELM) technique yields very good results in terms 

of prediction accuracy and runtime 

[5] 
Kumar & 

Chauham, (2015) 

Cutting Speed, Approach Angle and 

Depth of Cut 

Surface Roughness and 

Cutting Force 

The roughness of the surface changes linearly with the 

feed rate and inversely with the cutting speed 

[6] 
Mia and Dhar, 

(2016) 

Cutting Conditions, Cutting Speed, 

Depth of Cut and Part Hardness 
Surface Roughness 

High-pressure coolant reduced surface roughness 

through efficient cooling and lubrication 

[7] 
Basheer et al. 

(2008) 

Depth of Cut, Particle Size, and Nose 

Radius 

Surface Roughness and 

Material Removal Rate 

The best surface quality was obtained with the lowest 

feed rate value, the smallest particle size, and the 

largest tooltip radius 

[8] 
Beatrice et al. 

(2014) 

Cutting Speed, Feed Rate and Depth of 

Cut 
Surface Roughness 

The highly efficient feedback propagation algorithm as 

a method for network training 

[9] 
Abeesh et al. 

(2008) 

Feed Rate, Particle Size, Tool Nose 

Radius 
Surface Roughness 

The predicted responses of the ANN model are in very 

good agreement with the experimental data 

[10] 
Erzurumlu and 

Oktem (2007) 

Feed Rate, Cutting Speed, Axial–Radial 

Depth of Cut, Machining Tolerance 
Surface Roughness 

The ANN model leads to a slightly more accurate 

surface roughness prediction than a conventional model 

[11] Davim et al. (2008) Feed Rate, Cutting Speed, Depth of Cut 
Surface Roughness and 

Material Removal Rate 

ANN can capture any degree of non-linearity that exists 

between the process response and input parameters, and 

exhibits good generalization 

[12] 
Kant and Sangwan, 

(2015) 

Cutting Speed, Feed Rate, Depth of Cut 

and Tool Flank Wear 

Power Consumption 

and Surface Roughness 

The ANN model together with a genetic algorithm 

leads to a minimum surface roughness value of 0.099 

m. 

[13] 
Vishnu, Yohan and 

Sankaraiah, (2018) 

Tool Tip Radius, Cutting Speed, 

Advance Speed, Depth of Cut (Axial and 

Radial) 

Material Removal Rate 

and Surface Roughness 

The most dominant parameter for surface roughness is 

the feed rate, while the one with the least effect is the 

cutting speed 

[14] 
Ozel and Karpat, 

(2005) 

Cutting Speed, Feed Rate, Depth of Cut, 

Part Hardness, Cutting Time, Tool Tip 

Angle, Cutting Distance 

Surface Roughness and 

Tool Flank Wear 

There are two main effects that lead to surface 

roughness degradation: adhesion and plowing. The 

frictional interaction between the tool and the 

workpiece has a significant impact on surface quality 

[15] 
D’Mello, Pai and 

Puneet, (2017) 

Cutting Speed, Feed Rate and Depth of 

Cut 

Production Time and 

Surface Roughness 

They use metaheuristic algorithms. The results show 

that the bat algorithm produces better optimization, 

compared to the firefly algorithm and particle swarm 

optimization 

[16] 
Paturi and 

Devarasetti (2018) 

Cutting Speed, Feed Rate, Depth of Cut, 

Tool Tip Angle, Cutting Angle 

Surface Roughness and 

Tool Flank Wear 

Surface roughness has a decreasing tendency towards a 

increase in cutting speed, while changes in feed rate 

appear not to be significant 

[17] 
Nalbant et al. 

(2009) 
Coating Tools, Feed Rate, Cutting Speed Surface Roughness 

The results from the ANN are very close to the 

experiment-based results with an acceptable accuracy 

[18] Al-Ahmari (2007) 
Cutting Speed, Feed Rate, Depth of Cut, 

Tool Nose Radius 

Tool Life and Surface 

Roughness 

The ANN model is better than linear regression 

analysis techniques and RSM for predicting tool life 

and cutting force models 

[19] 
Sanjay and Jyothi 

(2006) 

Drill diameter, Cutting Speed, Feed 

Rate, Machining Time 
Surface Roughness 

ANN has shown that it is capable of generalization and 

is effective in surface roughness analysis 

[20] 

Dahbi, El 

Moussami and 

Ezzine, (2016) 

Depth of Cut, Cutting Speed, Feed Rate, 

and Tool Nose Radius 
Surface Roughness 

It is crucial to consider the effects of interactions 

between parameters for surface roughness optimization, 

for example, between feed rate and tool nose radius. 

[21] 
Sivaiah and 

Chakradhar, (2019) 

Cutting Speed, Feed Rate, Depth of Cut, 

Coolant Type 
Surface Roughness 

Results show that surface roughness is significantly 

affected by cutting speed (54.12%). 

[22] 
Cus and Zuperl 

(2006) 
Cutting Speed, Feed Rate, Depth of Cut Surface Roughness 

ANN provides a sufficient approximation to the true 

optimal solution for minimize surface roughness 

[23] 
Kohli and Dixit 

(2005) 

Cutting Speed, Feed Rate, Depth of Cut, 

Radial Vibration 

Surface Roughness and 

Material Removal Rate 

ANN is able to make an accurate prediction of surface 

roughness by utilizing a small-sized training and testing 

dataset 

[24] 
Ezugwu et al. 

(2005) 

Cutting Speed, Feed Rate, Depth of Cut, 

Cutting Time, Coolant Pressure 
Surface Roughness 

ANN gives a very good agreement between predicted 

and experimentally measured process parameters 

[25] 
Grzesick and Brol 

(2003) 

Feed Rate, Spindle Speed, Depth of Cut, 

Cutting Time, Cutting Force 
Surface Roughness 

ANN gives a close agreement between the real data and 

predicted values of surface finish within ±10% of the 

experimental values 

[26] 
Debnath, Reddy 

and Sok Yi, (2016) 

Cutting Speed, Feed Rate, Depth of Cut, 

Cutting Fluid Condition 

Surface Roughness and 

Tool Flank Wear 

Optimal cutting conditions for surface roughness are a 

high level of cutting speed, a medium level of cutting 

depth and a high-speed cutting fluid flow (LFHV). 

[27] Kant and Sangwan Cutting Speed, Feed Rate, Depth of Cut Surface Roughness The results indicate that the feed rate is the most 
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Article Parameters used Objective Function Remarks 

(2014) significant machining parameter for surface roughness, 

followed by depth of cut and cutting speed. 

[28] Aouici et al. (2011) 
Cutting Speed, Feed Rate, Depth of Cut, 

Part Hardness 

Surface Roughness and 

Cutting Force 

The best suggested ranges of the parameters variables 

for industrial production are cutting speed (120-240), 

feed rate (0.08-0.16), depth of cut (0.15-0.45), part 

hardness (40-50). 

[29] 
Zuperl and Cus 

(2003) 
Cutting Speed, Feed Rate, Depth of Cut Surface Roughness 

ANN provides a sufficient approximation to the true 

optimal solution 

[30] Tansel et al. (2006) 
Cutting Speed, Feed Rate, Radial Depth 

of Cut 

Surface Roughness and 

Material Removal Rate 

The ANN model represents the data well and has a very 

small error for the training cases 

[31] Oktem et al. (2006) 
Cutting speed, feed rate, axial–radial 

depth of cut, machining tolerance 
Surface Roughness 

ANN presents a very good performance for surface 

roughness response value 
 

Source:  Own work elaboration. 

 

The modeling techniques for the prediction of the indicators (stage i) can be categorized as 

experimental models, analytical models, and artificial intelligence models. The most 

commonly used approaches are statistical regressions, genetic algorithms (GA), and 

artificial neural networks (ANNs). Statistical regressions are useful techniques for 

modeling and calculating the effect that variables and their interactions have on a response. 

However, they have the limitation of only being able to accurately describe linear 

relationships [5]. On the other hand, GAs are a series of organized steps that describe the 

process to be followed for an evolving population from which the best one will be chosen, 

according to some criteria [13]. However, the evaluation of GAs compared to ANNs on 

highly complex problems can become too expensive in terms of time and resources. Also, 

there might be cases where depending on the parameters used, the algorithm may not 

converge on an optimal solution or end in premature convergence with unsatisfactory 

results. For this reason ANNs have recently become the preferred model by most 

researchers looking to develop a model that establishes optimal machining conditions [32]-

[35]. On the other hand, ANNs are extensively used for modeling the machining processes 

because of their efficiency to establish optimal conditions [8]-[10], [13]-[15], [26]-[31]. 

Among the different studies shown in Table 1 that used this technique to model the 

machining process, it was found that the accuracy of ANN models usually falls between 

95% and 99%. This table shows the variables that were taken into account for the work, the 

applied objective functions, and some findings of the studies.  

 

Once the objectives are modeled as functions of the machining parameters (stage i), the 

procedure can be complemented by implementing a multi-objective optimization technique 

aiming for the optimal solution. Table 2 enumerates the previous studies on implementing 

different techniques in the optimization of machining processes. These studies have used 

evolutionary and metaheuristic techniques such as Particle Swarm Optimization (PSO) 

[36], [45], [49], Genetic Algorithm (GA) [39], [42], [55]-[58], Simulated Annealing (SA) 

[41], [43], [54] and Ant Colony Optimization (ACO) [38], [48], [51] in order to conclude 

about the appropriate selection of the cutting parameters in the nonlinear and 

multidimensional problems of the cutting process. All of those models are techniques 

inspired by nature and solve problems through processes that emulate the behaviors of 
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living organisms. For example, ACO is a probabilistic technique to solve computational 

problems that can be reduced to finding good paths through graphs while SA is an 

optimization method that mimics the slow cooling of metals, which is characterized by a 

progressive reduction in the atomic movements that reduce the density of lattice defects 

until a lowest-energy state is reached. Our of these techniques, PSO has comparably 

yielded better results [36], [39], [41], [43], [55]. Hence in this work we are going to use 

those techniques for our application. 

 

Another reason that supports the selection of the PSO method for this study over, for 

example, ACO is that the second one is more likely to be trapped in a local optimum. This 

behavior occurs because the structure of ACO tends to search the shortest road and the 

‘ants’ tend to follow the same path, while the PSO particles follow different paths and make 

their decisions based on both their own and collective learning. In PSO, this individual and 

collective learning is the key for improving the interactions between the individuals of the 

population as well as the progress of the solution, since the particles retain the knowledge 

of the best solutions found. 

 

Table 2. Studies related to the optimization techniques of cutting processes. 

Author, Year Parameters used 
Objective  

Functions 

Optimization 

Technique 
Remarks 

[36] 

Bharathi and 

Baskar 

(2010) 

Cutting Speed, Feed Rate and Depth 

of Cut  

Machining Time 

and Surface 

Roughness 

PSO 
PSO is capable of selecting appropriate machining 

parameters for turning operation 

[37] 
Farahnakian 

et al. (2011) 

Cutting Speed, Feed Rate and Depth 

of Cut 

Cutting Forces and 

Surface Roughness 
PSONN 

A very good training capacity of the proposed 

PSONN algorithm was found. 

[38] 
Yang et al. 

(2011) 

Number of passes, Depth of Cut in 

each pass, Cutting Speed and Feed 

Rate 

Production Cost ACO 

The proposed schemes may be a promising tool 

for the optimization of machining process 

parameters 

[39] 
Ganesan et 

al. (2011) 

Cutting Speed, Feed Rate and Depth 

of Cut 
Production Time PSO and GA PSO produces better results than GA 

[40] 
Razfar et al. 

(2010) 

Cutting Speed, Feed Rate, Depth of 

Cut and Engagement 
Surface Roughness PSO 

A good agreement is observed between the values 

predicted by the PSONNOS algorithm and 

experimental measurements 

[41] 

Zheng and 

Ponnabalam 

(2010) 

Feed Rate, Cutting Speed and Depth 

of Cut 
Production Cost PSO, GA and SA PSO performs better than GA and SA 

[42] 
Rao et al. 

(2010) 

Amplitude of ultrasonic vibration, 

frequency of ultrasonic vibration, 

mean diameter of abrasive particles, 

volumetric concentration of abrasive 

particles, and static feed force. 

Material Removal 

Rate 
GA 

The results of the presented algorithms are 

compared with the previously published results 

obtained by using GA 

[43] 

Bharathi and 

Baskar 

(2010) 

Number of passes, Cutting Speed, 

Feed Rate and Depth of Cut 

Production cost and 

Material Removal 

Rate 

PSO, GA and SA 
PSO give the best results compared to GA and SA 

in the three turning operations. 

[44] 
Xi and Liao 

(2009) 
Feed Rate and Cutting Speed 

Machining Time, 

Machining 

Accuracy and 

Machining Cost 

ACO and GA 
The optimized cutting parameters values are better 

to meet the user's optimization goals 

[45] 
Escamilla et 

al. (2009) 

Cutting Speed, Feed Rate and Depth 

of Cut 
Surface Roughness PSO 

PSO optimization can be successfully applied to 

multi-objective optimization of titanium’s 

machining process 

[46] 
Ciurana et 

al. (2009) 

Laser Fluence, Position of Focal 

Plane, Laser Spot Size, Translation 

Distance between subsequent laser 

pulses 

Surface Roughness 

and Volume Error 
PSO 

The proposed models and swarm optimization 

approach are suitable to identify optimum process 

settings 

[47] Prakasvudhi Cutting Speed, Feed Rate and Depth Surface Roughness PSO CNC and milling can achieve the desired surface 
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Author, Year Parameters used 
Objective  

Functions 

Optimization 

Technique 
Remarks 

sarn et al. 

(2009) 

of Cut and Productivity  roughness and also maximize productivity 

simultaneously 

[48] 
Srinivas et 

al. (2009) 

Feed Rate, Cutting Speed and Depth 

of Cut 

Production Cost and 

Machining Time 
ACO 

In multi-pass turning the best solution in each 

generation is obtained by comparing the unit 

production cost and the total non-dimensional 

constraint violation among all of the particles 

[49] 
Li et al. 

(2008) 
Spindle Speed and Feed Rate 

Cutting Force, Tool-

life, Surface 

Rougness and 

Cutting Power 

PSO 

PSO in optimizing process parameters can 

converge quickly to a consistent combination of 

spindle speed and feed rate 

[50] 
Duran et al. 

(2008) 

Cutting Speed, Power, Feed Rate and 

Depth of Cut 
Tool Geometry PSO 

The selection of the appropriate cutting tool 

geometry is possible in real world environments 

[51] 
Chen and Li 

(2008) 
Depth of Cut, Feed Rate and Grit Size 

Material Removal 

Rate 
ACO 

The proposed algorithm is an effective method for 

grinding process optimization problem 

[52] 
Zhao et al. 

(2008) 
Spindle Speed and Feed Rate Cutting Forces PSO 

The machining process with constant cutting force 

can be achieved via process parameters 

optimization based on virtual machining 

[53] 

Liu and 

Huang 

(2008) 

Feed Rate and Cutting Speed Cost performance PSO 
PSO is relevant for solving complicated nonlinear 

problem 

[54] 
Zuperl et al. 

(2007) 
Feed Rate and Cutting Speed Cutting Forces GA and SA 

Compared with GA and SA, the proposed 

algorithm can improve the quality of the solution 

while speeding up the convergence process 

[55] 
Huang et al. 

(2007) 
Spindle Speed, Feed Rate and Width Tool wear 

MPSO, BP-NN, WNN 

and GA 

The MPSO-trained WNN has a superior 

performance than BP-NN, conventional WNN, 

and GA-based WNN 

Source: Yusup et al. [58]. 

 

The PSO algorithm was originally developed by Kennedy and Eberhart [38] to solve 

continuous optimization problems [57]. In this model, the swarm is composed of volume-

less particles with stochastic velocities, each of which represents a feasible solution. Then, 

the algorithm moves through all particles evaluating the objective functions until it finds 

the optimum in the solution space. The advantages of PSO are that it requires 

uncomplicated mathematical operators; therefore, it is computationally economical in terms 

of both memory requirements and speed according to Yusup [58]. Another advantage of 

PSO, as discussed in Karpat & Özel [59] is that the information sharing mechanism among 

the particles in PSO is significantly different from the chromosomes in GAs. In GAs, the 

entire group moves toward an optimal solution area, while in PSO only the global best or 

local best solution is reported to the other particles in a swarm. Therefore, evolution only 

looks for the best solution and the swarm tends to converge to the best solution quickly and 

efficiently. 

 

Taking all these facts as a whole, it is clear that a lot of research has been done and some 

prediction models have been developed to minimize 𝑅𝑎 in machining processes. However, 

most of these models only take into account three cutting parameters, which are almost 

always cutting speed, depth of cut, and feed rate. One of the machining parameters that 

drastically affects the part quality is the cutting tool condition. The cutting tool condition is 

usually taken into account by the tool edge and nose radius, which deteriorates with the 

machining time and usage. However, tool nose radius is more influential in the turning 

process and —as in this work we are using the turning manufacturing process as our 
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experimental methodology— tool nose radius is considered as one of our decision variables 

of the process. In addition, most of those studies focus on predicting 𝑅𝑎 and MRR values 

based on established conditions but they do not pay attention to the development of models 

that suggest optimal cutting conditions according to the restrictions of the problem. 

Therefore, we consider herein the cutting velocity, feed rate, depth of cut, and tool nose 

radius as our parameters for decision 

 

We will use the turning machining process for data collection and develop/train an artificial 

neural network for the prediction of 𝑅𝑎 in machining processes, in which the cutting speed, 

depth of cut, feed rate, and nose radius are taken into account as the decision variables of 

the process. Next, the multi-objective optimization model PSO will be implemented in 

order to find the cutting conditions that minimize 𝑅𝑎 and simultaneously maximize MRR. 

This study seeks to achieve a better approximation to the multiple challenges faced by the 

manufacturing industry and to obtain more accurate and useful results when it comes to 

turning processes. 

 

Methodology  

The turning manufacturing process is performed on Aluminum. A full factorial design of 

experiments was executed to collect the data. Using these data, a predictive ANN model 

was developed in order to relate the machining parameters to the response variable (𝑅𝑎) of 

the turning process. Next, we formulated a multi-objective optimization model that would 

help in calculating the optimal cutting parameters for maximizing MMR and minimizing 

𝑅𝑎.  

 

A conventional lathe machine was used to perform the turning manufacturing process, 

which is one of the most common machining process (Figure 1). The design factors are the 

cutting parameters, i.e., cutting speed, depth of cut, feed rate, and the cutting tool nose 

radius (4 factors), each at three levels except for the nose radius that was taken at two levels 

(Table 3). Such factors and their levels result in a 2×3^3 factorial design that was replicated 

five times. 

Figure 1. Conventional lathe machine (turning process). 

 

Source: Own work elaboration. 
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Material and Experimental Technique 

 

The material used for the study was Aluminum Alloy 6063 (AA 6063), which was fully 

annealed by heat treatment in order to homogenize the material properties. To do this, the 

material was subjected to an average temperature of 415℃ for one hour. The samples were 

2-inch diameter Aluminum bars (Figure 2). Different cuts were on them made in order to 

reach a cutting length of 10 mm for all the samples. We selected AA 6063 to perform the 

experiments due to the extensive application of this material in the industry because of its 

properties such as lightness, good resistance-to-weight ratio, and high electrical and thermal 

conductance. Changing the factor levels according to Table 3, the factor treatment 

combinations resulted in 24 sample conditions repeated five times. The cutting tools used 

were VBGT160404-AK and VBGT160408-AK (Figure 3). The samples were then 

examined in order to measure the surface roughness. The surface roughness 𝑅𝑎 of the 

samples was measured using a rough meter model Mitutoyo on the surface as shown in 

Figure 4. This device gives the arithmetic value of the roughness of the mean surface (μm) 

of the machined surface based on ISO 4287-1997 standards (the unit of measurement is 

μm). 

 

Figure 2. AA 6063 sample bar. 

 
Source: Own work elaboration. 

 

Figure 3. Cutting tools. Figure 4. Rough meter. 

  
Source: Own work elaboration. Source: Own elaboration. 
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Data Collection 

  

As explained before, a complete factorial design was used to obtain the data using different 

combinations of the design factors cutting speed, depth of cut, and feed rate at three levels 

and the tool nose radius at two levels. Each treatment was replicated five times in order to 

account for the variability in the process. The levels are described in Table 3. The 

experimental values are listed in Table A1, in the Appendix. The values in this table are the 

averages of the five replications for each treatment combination of the considered design 

factors. 

 

Table 3. Parameters of turning process (design factors) and their levels. 

Symbol Parameter Units 
Levels 

1 2 3 

𝒗 Cutting speed rpm 640 1120 1584 

𝒅 Depth of cut mm 0.2 0.6 1.0 

𝒇 Feed rate mm/rev 0.04 0.08 0.12 

𝒓 Tool nose radius mm 0.4 0.8 - 

Source: Own work elaboration. 

 

 

Having collected all the results from the experiments, an Analysis of Variance (ANOVA) 

along with linear regression was performed in order to evaluate significance of the design 

factors (cutting parameters) for the observation surface roughness 𝑅𝑎. This analysis is 

presented in Table 4. The regression model (Equation 1) was implemented in RStudio1 and 

based on the obtained results we can conclude that all variables, under a significance level 

of 1%, are statistically significant. In addition, it was evident that the variable that has the 

greatest influence on 𝑅𝑎 is the feed rate, followed by velocity, then nose radius and, finally, 

the depth of cut.  

 

Table 4. ANOVA. 

Factor Df Sum Sq Mean Sq F Value Pr (>F) 

Cutting speed 1 1.635    1.635   70.050 3.36x10-15 

Depth of cut 1 12.222 12.222 523.750   < 2x10-16 

Feed Rate 1 0.160 0.160 6.845    0.0094 

Nose Radius 1 0.854 0.854 36.616 4.89x10-09 

Residuals 265 6.184 0.023                        

Source: Own work elaboration. 

 

 

 𝑅𝑎 = 𝛽0 + 𝛽1𝑣 + 𝛽2𝑑 + 𝛽3𝑓 + 𝛽4𝑟  (1) 
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Regarding the reliability of the results obtained from the linear regression model, we can 

highlight that the coefficient of determination (R2) of the model was 0.7063, while the 

adjusted coefficient of determination obtained was 0.7019. These values allow us to affirm 

that the estimations of the proposed regression could be adjusted with relative precision to 

the surface roughness variable. On the other hand, we can highlight that the VIF of the 

model is 3.4, which means that the model does not present multicollinearity problems. 

Additionally, it is noteworthy that the correlation coefficients have been calculated and 

resulted in values close to zero. Finally, when observing the coefficients (betas) deducted 

by the model, it is evident that the most influential variable is the feed rate (a change in that 

variable implies a change in the surface roughness, at least, 3 times greater than that 

produced by any change in any other variable), followed by the cutting speed, nose radius 

and, finally, depth of cut. 

 

Having found that the four variables explain (and the magnitude in which each one does it) 

the response variable 𝑅𝑎, the next step was to develop the Artificial Neural Network model. 

 

Artificial Neural Network 

 

Artificial neural network is a non-linear mapping system inspired by the functions of a 

human brain [56]. In order to predict 𝑅𝑎 a multilayer ANN model was chosen and the 

resilience Back Propagation algorithm was used to train the network due to its wide 

application [60]. The network was built with three layers, the input, the output and a hidden 

layer. Choosing such scheme, each neuron of the input layer can take only one value per 

iteration and this value is transferred to all neurons of the hidden layer, which are 

interconnected by synaptic weights to the output layer, assuring that every neuron of the 

hidden layer is connected to the output layer neuron. The ANN with one hidden layer was 

selected due to the greater interpretability as well as the reduction in the error (the error is 

supposed to decrease with lower numbers of layers). The input neurons are the type of 

cutting speed, depth of cut, feed rate, cutting speed, and the tool nose radius whereas the 

output neuron is the surface roughness. 

 

 

The ANN was implemented in RStudio. The software randomly selected the weights of the 

network connections and was trained with 243 experimental data and was subsequently 

validated and tested with 27 additional experimental data. Also, the transfer function used 

to calibrate the weights was the Sigmoid Function as Follows: 

 

 
𝑆(𝑥) =

1

1 + 𝑒−𝑥
  

(2) 
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With the data obtained from the experiments, the ANN was trained and the appropriate 

network structure was found by varying the number of nodes in the hidden layer. The 

decision criterion was choosing the network structure with the lowest mean square error 

(MSE) as in Equation 3 with 𝑅�̂�  equal to 0.9436 and n 27. According to the results, the best 

structure was 4-7-1, resulting in an error of 0.5042 which was used here. It should be noted 

that the structures 4-6-1 with an MSE of 0.5682 and 4-4-1 with an MSE of 0.5757 were the 

second and third ones closest to minimum MSE. The graphical representation of the 

Network’s structure is shown in Figure 5. Finally, it is important to highlight that a bias was 

added to both the hidden layer and output layer, so the network could have more flexibility 

in calibrating the weights. 

 

 
𝑀𝑆𝐸 =

1

𝑛
∑(𝑅𝑎 − 𝑅�̂�)

2
𝑛

𝑖=1

  
(3) 

 

Figure 5. Graphical representation of the network structure. 

 
Source: Own work elaboration. 

 

To compare the results obtained with the ANN, the values observed for 𝑅𝑎 were plotted 

against the estimated values of the response variable. As can be seen in Figure 6, the values 

estimated by the network had, for the most part, a huge similarity with the values observed 

for 𝑅𝑎. In addition, when performing a correlation analysis between both variables, a value 
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greater than 0.9 was obtained, which confirms the similarity and validity of the values 

estimated by the network as compared to the values observed for 𝑅𝑎. 

 

Figure 6. Real vs Predictive Ra values. 

 
Source: Own work elaboration. 

 

Regarding the comparison of the results obtained from the linear regression model and the 

artificial neural network, it is noteworthy that the MSE calculated with the predicted values 

by the linear regression model is 25 times greater than the MSE of the artificial neural 

network. These results support the selection of the artificial neural network as a model for 

the prediction of 𝑅𝑎. 

 

Multi-Objective Optimization Model 

 

The general formulation of multi-objective optimization problems can be written as shown 

in Equations 4, 5 and 6: 

 

Minimize (or maximize) 

 𝑓(Χ) = {𝑓1(Χ), 𝑓2(Χ), 𝑓3(Χ), … , 𝑓𝑘(Χ)}  (4) 

 

Subject to 

 𝑔𝑗(Χ) ≤ 𝑏𝑗 ,          𝑓𝑜𝑟 𝑗 = 1,2, … , 𝑚  (5) 
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 ℎ𝑗(Χ) = 𝑏𝑗 ,          𝑓𝑜𝑟 𝑗 = 𝑚 + 1, 𝑚 + 2, … , 𝑚 + 𝑝.  (6) 

 

 

In these equations 𝑓𝑖(Χ) denotes the 𝑖th objective function, whereas 𝑔𝑗(𝑋) and ℎ𝑗(𝑋) 

indicate constraints and decision variables. Also, the machining parameters and the tool 

geometry are shown with the vector Χ = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ ℝN.  

 

When the objective functions conflict with each other, it does not exist an exact solution for 

the studied problem. However, the problem will have many alternative solutions. Those 

potential solutions are called Pareto Front [61]. Pareto Optimal Front is a set Χ =

{𝑥1
∗, 𝑥2

∗, … , 𝑥𝑛
∗ } composed of all the non-dominated solutions that comprise the Pareto Front 

of non-dominated solutions, which means that the Pareto Front is a vector of objective 

functions 𝑓(Χ∗), and is non-dominated if and only if it does not exist another vector 𝑓(Χ), 

that satisfies 𝑓(Χ) ≤ 𝑓(Χ∗). 

 

Although there are numerous methods to solve the multi-objective optimization problem in 

this study, PSO is deemed as the appropriate technique applicable to machining processes 

[46]. In PSO, each particle is represented by a position, the velocity vectors are defined by 

the number of decision variables in the problem and the modification of the position of a 

particle is conditioned by previous position information. According to these principles, 

each particle needs to know its best position ever and the best position achieved in the 

group. These principles can be formulated as in Equations 7 and 8: 

 

 𝑣𝑖
𝑘+1 = 𝑤𝑣𝑖

𝑘 + 𝑐1𝑟𝑎𝑛𝑑1(𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖
𝑘) + 𝑐2𝑟𝑎𝑛𝑑2(𝑔𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖

𝑘)  (7) 

 

 𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝑣𝑖
𝑘+1  (8) 

 

where 𝑣𝑖
𝑘 is the velocity of an agent 𝑖 at iteration 𝑘, 𝑥𝑖

𝑘 the current position of an agent 𝑖 at 

iteration 𝑘, 𝑝𝑏𝑒𝑠𝑡𝑖 is the personal best position of an agent 𝑖, 𝑔𝑏𝑒𝑠𝑡𝑖 is the best position in 

the neighborhood, 𝑟𝑎𝑛𝑑 is a random number between 0 and 1, 𝑤 is the weighting function, 

and 𝑐𝑗 for 𝑗 = 1,2 is the learning rate.  

 

Accordingly, the detailed four steps to follow in PSO are:  

 

Step 1. Specify population size. Then, the initial positions and velocities of all the agents 

are generated randomly. Immediately, the objective function values for each agent are 

calculated. Finally, 𝑝𝑏𝑒𝑠𝑡 is set as the current position of each particle and after that the 

best objective function value among the agents is set as 𝑔𝑏𝑒𝑠𝑡 and this value is stored. 
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Step 2. Now the new position of the agents in the solution space is determined by using 

equations (7) and (8). Therefore, the particles begin to move toward the space with the best 

objective function value, 𝑔𝑏𝑒𝑠𝑡. 

 

Step 3. The objective function value is calculated for the new positions of each particle. If 

an agent achieves a better position, the 𝑝𝑏𝑒𝑠𝑡 value is replaced by the current value. As in 

Step 1, the gbest value is selected among pbest values. If the new gbest value is better than 

the previous one, the gbest value is uploaded. 

 

Step 4. Repeat Steps 1, 2, and 3 until the iteration number reaches the limit planned. 

 

Taking all the foregoing as a whole, the optimization model developed for this study is then 

explained in the next subsections. 

 

In summary, our proposed methodology can be illustrated by the flow chart in Figure 7. 

 

Figure 7. Graphical representation of the study procedure. 

 
Source: Own work elaboration. 

 

Model Formulation 

 

For the PSO model we consider the four cutting conditions as our decision variables where 

𝑥1 is the cutting velocity, 𝑥2 is the feed rate, 𝑥3 is the depth of cut, and 𝑥4 is the tool nose 

radius. 

  

Our interest is to optimize a model with two objective functions; the first one is minimizing 

the surface roughness of the material, and the second one maximizing the Material 

Removal Rate. These objectives were formulated using Equations 9 and 10. 

 

 
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑅𝑎 =

1

1 + 𝑒−𝑣
  

(9) 
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 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑀𝑅𝑅 = 𝑥1 ∗ 𝑥2 ∗ 𝑥3 (10) 

 

where 𝑣 is the function obtained from the ANN. This equation is the result of the product of 

all the input variables and the calibrated weights of the network for each layer as follows:  

 

 

𝑣 = ∑ (∑ 𝑥𝑘𝑤𝑘𝑗 + 𝑤𝑏𝑗

2

𝑘=1

) 𝑤𝑗𝑖

7

𝑗=1

+ 𝑤𝑏𝑖  
(11) 

 

Equation 10 defines the 𝑀𝑅𝑅, the amount of material removed from the workpiece per 

unit. It can be calculated from the volume of the material removal or from the weight 

difference before and after machining. With the cutting parameters MRR could be 

calculated as the multiplication of cutting speed, feed rate and depth of cut. 

 

To assure that the model formulation is within the feasible range of machining, the 

following constrains are included in the optimization model: 

 

 0.5 𝜇𝑚 ≤ 𝑅𝑎 ≤ 4 𝜇𝑚  (12) 

 

 600 𝑟𝑝𝑚 ≤ 𝑥1 ≤ 2000 𝑟𝑝𝑚 (13) 

 

 0.02 𝑚𝑚/𝑟𝑒𝑣 ≤ 𝑥2 ≤ 0.12 𝑚𝑚/𝑟𝑒𝑣 (14) 

 

 0.2 𝑚𝑚 ≤ 𝑥3 ≤ 1 𝑚𝑚 (15) 

 

 0.2 𝑚𝑚 ≤ 𝑥4 ≤ 1.2 𝑚𝑚 (16) 

 

Equation 12 was included in the model because surface roughness values higher than 4 𝜇𝑚 

are not acceptable and those lower than 0.5 𝜇𝑚 are deemed as not feasible. On the other 

hand, the ranks established in Equations. 13-16 are set based on the suggestion rates for 

those cutting conditions in order to guarantee stable machining conditions. The model was 

implemented in RStudio and the results obtained are presented in the section below. 

 

Results and Discussion 

 

The results from the ANN showed precise predictions of the surface roughness due to the 

small MSE obtained for the network structure 4-7-1 with a bias in each layer (0.5042). 

Also, using the ANN model, it was possible to infer that the equation to predict 𝑅𝑎 based 

on the four cutting conditions evaluated is:  
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𝑅𝑎 =

1

1 + 𝑒−(−4.36−3.62𝑥1+6.75𝑥2+2.02𝑥3+20.73𝑥4) 
(17) 

 

From this equation it is possible to conclude that the parameter with greatest influence on 

𝑅𝑎 is the tool nose radius, followed by the feed rate, the cutting velocity and, finally, depth 

of cut. 

 

The response surface plotted using Equation 17 are shown in Figure 8. The average surface 

roughness is plotted as a function of the two most significant design factors, the cutting tool 

edge radius and the feed rate. 

 

 

Figure 8A. Surface and contour plots of average surface roughness vs. tool nose radius & feed rate. 

 

Contour plot of Ra vs. tool nose radius & feed rate. 

 
Source: Own work elaboration. 
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Figure 8B. Surface plot of Ra vs. tool nose radius & feed rate. 

 
Source: Own work elaboration. 

 

Another way of analyzing the results obtained from the ANN is to plot the experimental 

values and the predicted values of 𝑅𝑎. This plot is presented in Figure 9. In this graph, we 

observe the small difference between actual values (red line) and predicted values (black 

line) in Figure 10, where the biggest difference between the actual value and the prediction 

is almost 0.2 𝜇𝑚. 

 

Figure 9. Comparison of experimental values to predicted values of surface roughness. 

 
Source: Own work elaboration. 
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Figure 10. Graphical representation of errors. 

 
Source: Own work elaboration. 

 

With the results from the ANN using Equation 17, the multi-objective optimization model 

was implemented in the software RStudio. To develop this model, 100 particles were 

created, taking into account the restrictions mentioned in the previous section. For each 

particle, the two objective functions evaluated were calculated as well as the Pareto Front, 

as shown in Figure 10. As we can see, the results show that the surface roughness 𝑅𝑎 has a 

tendency to increase as the 𝑀𝑅𝑅 is decreasing. This affirmation can be checked with the 

best values of Ra and MRR whose results are listed in Table 5 and Table 6, respectively. 

 

 

Table 5. Optimal solution when aiming to minimize 𝑹𝒂. 

𝑹𝒂 MRR 𝒗 𝒅 𝒇 𝒓 

0.095 𝜇𝑚 1232.77 𝑚𝑚3/𝑚𝑖𝑛 1995.84 𝑟𝑝𝑚 0.02 𝑚𝑚 0.2 𝑚𝑚/𝑟𝑒𝑣 0.3 𝑚𝑚 

Source: Own work elaboration. 

 

Table 6. Optimal solution when aiming to maximize 𝑴𝑹𝑹. 

𝑹𝒂 MRR 𝒗 𝒅 𝒇 𝒓 

0.994 𝜇𝑚 38201.6 𝑚𝑚3/𝑚𝑖𝑛 1995.84 𝑟𝑝𝑚 0.12 𝑚𝑚 1 𝑚𝑚/𝑟𝑒𝑣 0.3 𝑚𝑚 

 

Source: Own work elaboration. 

 

Using the results obtained in the previous tables and the other 98 results from the 

evaluation of the objective functions with the other particles created, it was possible to find 

the Pareto Front. It is shown in Figure 11. This Pareto Front indicates that any combination 

above the curve can be obtained by assigning certain cutting conditions. According to this, 

any point below the Pareto Front is considered infeasible or, in other words, below the 

Pareto Front there is no combination of the cutting conditions that can guarantee those 𝑅𝑎 

and 𝑀𝑅𝑅 values. 
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Figure 11. Pareto Front. 

 
  

Source:  Own work elaboration. 

 

Figure 12. Comparison of Pareto Front to Experimental Results. 

 
Source: Own work elaboration. 

 

In order to verify the feasibility of the obtained results, the experimental results were 

overlaid on the Pareto Front plot. As shown in Figure 12, all the values obtained throughout 

the experiments are above the border, thus confirming the feasibility of the data and the 

proper construction of the Pareto Front. Finally, to validate the obtained optimal solution 

from the Pareto Front, we created the two solutions listed in Tables 5 and 6. To do so, we 

used the cutting conditions as listed in these tables using the cutting tool with 𝑟 = 0.3 𝑚𝑚 

and measured the roughness to compare it to the model results. The results of roughness 

when aiming for minimum 𝑅𝑎 resulted in  𝑅𝑎
𝑒𝑥𝑝 = 0.109 𝜇𝑚, which provides a good match 

with the model result of 𝑅𝑎 = 0.095 𝜇𝑚. Furthermore, we created the sample of optimal 

conditions where the objective is to obtain maximum 𝑀𝑀𝑅 while relaxing 𝑅𝑎. Using the 

cutting conditions of Table 6 we conducted the experiment and measured the roughness 

resulting in 𝑅𝑎 = 1.188 𝜇𝑚, which is a great match with the theoretical result of 𝑅𝑎 =

0.994 𝜇𝑚 as listed in Table 6. It should be noted that in both cases we created the sample 

to validate the theoretical results through measuring 𝑅𝑎  since 𝑀𝑀𝑅 can be obtained using 
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the equation. Consequently, we believe that the results of the Pareto Front can be reliably 

used depending on the desired objective in the industry.  

 

Conclusions 

 

In a competitive and globalized industry like manufacturing, it is essential to increase 

productivity and, at the same time, the quality of products. In this paper, a study to predict 

the optimal cutting conditions for machining processes was conducted. To that end, we 

made a full factorial experiment design including four factors: cutting speed, depth of cut, 

feed rate, and tool nose radius. A predictive ANN model was built to calculate the 𝑅𝑎 

values given the proposed cutting conditions, where, to determine the network structure we 

aimed for the lowest MSE. 

 

Next, we developed a multi-objective optimization model that would allow calculating 

optimal cutting parameters intended to maximize the 𝑀𝑀𝑅 and minimize 𝑅𝑎, resulting in a 

Pareto Front. The model obtained a front of feasible solutions that is presented in Figure 11. 

It is concluded that to minimize the 𝑅𝑎, it is suggested to use 𝑣 = 1995.84 𝑟𝑝𝑚, 𝑑 =

0.02 𝑚𝑚, 𝑓 = 0.2 𝑚𝑚/𝑟𝑒𝑣 and 𝑟 = 0.3 𝑚𝑚. On the other hand, to maximize 𝑀𝑅𝑅, it is 

suggested to use 𝑣 = 1995.84 𝑟𝑝𝑚, 𝑑 = 0.12 𝑚𝑚, 𝑓 = 1 𝑚𝑚/𝑟𝑒𝑣 and 𝑟 = 0.3 𝑚𝑚. These two 

sample conditions were created experimentally and resulted in good match with the 

theoretical results of the optimization model. The obtained results indicate that the 

validated Pareto Front solution presents a viable alternative in identifying optimum 

machining parameters. 

 

In this context, many works in the literature have been focused on various objectives to be 

optimized in the machining manufacturing process such as the ones considered in the 

present paper. However, they have mostly overlooked the effect of the tool edge radius on 

achieving the desired quality. What differentiates our work form previous efforts is mainly 

the consideration of the cutting tool nose radius as one of the decision factors of the study 

in addition to the depth of cut, feed rate, and velocity. Furthermore, combining the ANN 

with PSO is another added value of this work as compared to the previous studies. 

 

While many studies have focused on building a robust prediction model for machining 

conditions and many others on optimizing these conditions, there are very few studies that 

have focused their efforts on developing and/or combining methodologies that propose 

solutions for before, during, and after the machining process. This work aims to provide 

such solutions by combining predictive and optimization models, by studying and 

proposing alternatives for the entire machining process. 
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Appendix 

 

Table A1. Experimental Data. 

# 

Cutting 

Speeed 

(rpm) 

Feed 

(mm/rev.) 

Depth of cut 

(mm) 

Nose Radius 

(mm) 

Average 

Response 

1 640 0.04 0.2 0.8 0.5954 

2 640 0.04 0.6 0.8 0.499 

3 640 0.04 1 0.8 0.5832 

4 640 0.08 0.2 0.8 0.772 

5 640 0.08 0.6 0.8 0.763 

6 640 0.08 1 0.8 1.044 

7 640 0.12 0.2 0.8 0.8362 

8 640 0.12 0.6 0.8 0.957 

9 640 0.12 1 0.8 1.0676 

10 1120 0.04 0.2 0.8 0.6482 

11 1120 0.04 0.6 0.8 0.5512 

12 1120 0.04 1 0.8 0.7072 

13 1120 0.08 0.2 0.8 0.8212 

14 1120 0.08 0.6 0.8 0.7868 

15 1120 0.08 1 0.8 0.7344 

16 1120 0.12 0.2 0.8 1.0738 

17 1120 0.12 0.6 0.8 0.9262 

18 1120 0.12 1 0.8 0.8502 

19 1584 0.04 0.2 0.8 0.947 

20 1584 0.04 0.6 0.8 0.725 

21 1584 0.04 1 0.8 0.797 

22 1584 0.08 0.2 0.8 1.035 

23 1584 0.08 0.6 0.8 1.013 

24 1584 0.08 1 0.8 1.064 

25 1584 0.12 0.2 0.8 1.227 

26 1584 0.12 0.6 0.8 1.188 

27 1584 0.12 1 0.8 1.117 

28 640 0.04 0.2 0.4 0.568 

29 640 0.04 0.6 0.4 0.5672 

30 640 0.04 1 0.4 0.6362 

31 640 0.08 0.2 0.4 0.8246 

32 640 0.08 0.6 0.4 0.764 

33 640 0.08 1 0.4 0.8466 
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# 

Cutting 

Speeed 

(rpm) 

Feed 

(mm/rev.) 

Depth of cut 

(mm) 

Nose Radius 

(mm) 

Average 

Response 

34 640 0.12 0.2 0.4 1.2548 

35 640 0.12 0.6 0.4 1.2668 

36 640 0.12 1 0.4 1.2986 

37 1120 0.04 0.2 0.4 0.6182 

38 1120 0.04 0.6 0.4 0.6312 

39 1120 0.04 1 0.4 0.979 

40 1120 0.08 0.2 0.4 0.7588 

41 1120 0.08 0.6 0.4 0.9932 

42 1120 0.08 1 0.4 0.9128 

43 1120 0.12 0.2 0.4 1.2468 

44 1120 0.12 0.6 0.4 1.3734 

45 1120 0.12 1 0.4 1.3542 

46 1584 0.04 0.2 0.4 0.6486 

47 1584 0.04 0.6 0.4 0.74 

48 1584 0.04 1 0.4 0.6436 

49 1584 0.08 0.2 0.4 1.0362 

50 1584 0.08 0.6 0.4 0.998 

51 1584 0.08 1 0.4 0.978 

52 1584 0.12 0.2 0.4 1.3122 

53 1584 0.12 0.6 0.4 1.4328 

54 1584 0.12 1 0.4 1.683 

 

Source: Own work elaboration. 

 

 

 

 
1 See https://rstudio.com/products/rstudio/ 


