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Abstract 

 

Objective: To propose a methodological 

procedure that serves as a guide for applying 

techniques in the measurement uncertainty 

evaluation, such as GUM, MMC, and Bayes; 

in addition, to develop an application in a non-

trivial case study. Materials and methods: In 

this paper, a set of steps are proposed that 

allow validating the measurement uncertainty 

evaluation from techniques such as GUM, 

MMC, and Bayes; these were applied as a 

strategy to evaluate the uncertainty of an 

indirect measurement process that sought to 

determine the level of a fluid by measuring the 

hydrostatic pressure generated by it at rest on 

the bottom of a container. The results obtained 

with each technique were compared. Results 

and discussion: the use of the GUM was 

found to be valid for the case under study, and 

the results obtained by applying the Bayesian 

approach and the MC technique provided 

highly useful complementary information, 

such as the Probability Density Function 

(PDF) of the measurand, which enables a 

better description of the phenomenon. 

Likewise, the posterior PDF obtained with 

Bayes allowed us to approximate closer values 

around the true values of the measurand, and 

the ranges of the possible values were broader 

than those offered by the MMC and the GUM. 

Conclusions: In the context of the case under 

study, the Bayesian approach presents more 

realistic results than GUM and MMC; in 

addition to the conceptual advantage presented 

by Bayes, the possibility of updating the 

results of the uncertainty evaluation in the 

presence of new evidence. 
Keywords: Uncertainty estimation, GUM, 

Monte Carlo method, Bayesian inference, 

indirect measurement 

Resumen 

 

Objetivo: Proponer un procedimiento 

metodológico que sirva de guía para aplicar 

técnicas en la evaluación de la incertidumbre de 

medida, como son: GUM, MMC y Bayes; 

además, de desarrollar una aplicación en un caso 

de estudio no trivial. Materiales y métodos: En 

el presente artículo, se proponen un conjunto de 

pasos que permiten validar la evaluación de 

incertidumbre de medida a partir de técnicas 

como GUM, MMC y Bayes; estas se aplicaron 

como estrategia para evaluar la incertidumbre de 

un proceso de medición indirecta, donde el 

experimento de pruebas consistió en determinar 

el nivel de un fluido a través de la medición de 

presión hidrostática que genera el fluido en 

estado estacionario sobre la base de un 

contenedor. Se compararon los resultados 

obtenidos con cada técnica. Resultados y 

discusión: se encontró que el uso de la GUM es 

válido en el fenómeno caso de estudio, sin 

embargo, los resultados obtenidos aplicando el 

enfoque Bayesiano y el MMC ofrecieron 

información complementaria de mucha utilidad, 

como es la función de densidad de probabilidad 

(FDP) del mensurando, que permitió una mejor 

descripción del fenómeno. Asimismo, las FDP a 

posteriori obtenidas con Bayes permitieron 

aproximar a valores más cercanos en torno de los 

verdaderos valores del mensurando, y los 

intervalos de los posibles valores fueron más 

amplios que los que ofrecieron el MMC y la 

GUM. Conclusiones: En el contexto del caso de 

estudio se tiene que el enfoque bayesiano 

presenta resultados más realistas que GUM y 

MMC; además de la ventaja conceptual que 

presenta Bayes, de la posibilidad de actualizar 

los resultados de la evaluación de incertidumbre 

ante la presencia de nueva evidencia. 

Palabras clave: Evaluación de 

incertidumbre, GUM, Método de Monte 

Carlo, Inferencia Bayesiana, Medición 

indirecta
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Introduction 

 

The numerical value of a measurand can be determined directly or indirectly. In both cases, 

the result of said measurement must include the estimated uncertainty, which, according to 

the Guide to the Expression of Uncertainty in Measurement (GUM), is defined as the 

“parameter, associated with the result of a measurement, that characterizes the dispersion of 

the values that could reasonably be attributed to the measurand” [1]. Measurement 

uncertainty is affected by certain factors that depend on the measurand, the physical 

phenomenon involved, the measurement protocol, and the measurement characteristics of the 

equipment used, among others. The aim is to quantify the contribution of each selected factor 

to the global uncertainty associated with the measurand, including the possible relationships 

between the factors. A technical expert, usually a person engaged in instrumentation or 

metrology, is responsible for selecting the number of factors to consider and establishing 

their influence on the measurand. 

 

Traditionally, measurement uncertainty has been estimated using the GUM. However, it is 

not advisable to use this guide in some situations, such as: (i) when systems have very marked 

non-linearities or a complex behavior, i.e., when it is difficult to predict future dynamic 

evolution [2], and (ii) when the output quantity’s probability distribution is not normal or not 

easy to approximate to a normal one [3]. In these circumstances, the Monte Carlo (MC) 

method, based on the concept of propagation of distributions, is the preferred alternative [4]. 

This method assigns a Probability Density Function (PDF) to each input quantity. By means 

of random sampling, multiple values of these quantities are obtained, then inserted into the 

model, thus generating observations of the output quantity [5]. Based on these observations, 

a PDF for the output quantity (from which uncertainty is estimated) is constructed [6]. In [7], 

the authors quantified the uncertainty in measuring the volume of water delivered by a 

volumetric container using the GUM and the MC method. According to their results, the 

coverage interval of the GUM turned out to be slightly wider than that of the MC method at 

the same confidence level. Very similar results have been obtained with both techniques [8], 

although a strong dependence on the statistical nature of the measurements on the time series 

has been observed [9]. 

 

Alternatively, measurement uncertainty can also be estimated via the Bayesian approach 

[10], which is considered more natural and suitable [11]. In this approach, the parameters 

associated with the input quantities are assigned a prior PDF that can be based on background 

knowledge of the phenomenon, trends reported in the literature regarding the phenomenon 

[12], or previously available data [13]. Non-informative prior PDFs can also be chosen if 

there is not much prior information on the input quantity, thus ensuring greater objectivity 

[14]. Using Bayes’ theorem, the prior PDFs are combined with data obtained from 

experiments; as a result, posterior distributions are yielded for each of the parameters 
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associated with the input quantities. Based on the model that links the input quantities with 

the output quantity and the posterior PDFs of the input quantities, the posterior PDF of the 

measurand is obtained, which is used to assess measurement uncertainty [15]. 

 

In [16], the authors outlined some advantages of the Bayesian approach over the GUM 

regarding coverage interval and probability. When there is poor or no prior information, the 

Bayesian approach works well, while the GUM can lead to insidious difficulties [17], [18]. 

When there are no dominant input quantities with Type A uncertainty and a low number of 

repetitions, the results obtained with the MC method, the GUM, or the Bayesian approach 

are quite similar. In the opposite scenario, the GUM gives underestimated expanded 

uncertainties (by up to 20–25%) compared to the other two techniques [19]. Although 

statistical and inference models (such as probabilistic copula regression, Bayesian kriging, 

combined regression models, and linear and logarithmic clusters [20]) provide the technical 

tools necessary to estimate and propagate measurement uncertainty, verifying the benefits of 

the Bayesian approach in estimating uncertainty in indirect measurements can lead to new 

analyses when data distribution can be updated if new information is available. 

 

This paper analyzes the advantages of using the Bayesian approach to evaluate measurement 

uncertainty, considering that, after studying a certain phenomenon, the resulting posterior 

distributions of the input quantities could be employed as their prior distributions in a future 

study in which new experimental measurements can be made. Additionally, the possibility 

of obtaining new, more refined posterior PDFs increasingly adjusted to the reality is 

discussed here. This would allow a better uncertainty phenomenon’s estimation because the 

results obtained with the Bayesian approach can be continuously updated when new data are 

collected [21]. 

 

Materials and methods 

Proposed methodological scheme 

 

The selection of the Bayesian method to estimate uncertainty in an indirect measurement 

must be delimited by elements that confirm its application. This confirmation must include 

various criteria to guarantee the accuracy and repeatability of the measurement results. These 

criteria result from comparing between the current regulations and the analysis carried out 

by technical experts. This section presents a general framework to estimate uncertainty and 

characterization and analysis of the different uncertainty estimation methods based on the 

reliability expected for an indirect measurement system. Here, experts’ knowledge 

contributes to validating the effectiveness of the technical criteria when propagating the 

reliability of the results obtained with the Bayesian approach. 
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Figure 1 shows the methodological scheme proposed in this study to establish the criteria 

delimiting the uncertainty estimation process. This scheme presents the main estimation 

elements, as well as their relationships in terms of information flow for estimating uncertainty 

and selecting the Bayesian method. 

 

Figure 1. Methodological scheme proposed for the selection of the Bayesian method 

 

 
Source: Own source 

 

 

The reliability and accuracy of its results in an indirect measurement must be evaluated to 

select the Bayesian approach. These aspects are dependent on and linked to the measurement 

conditions of the instrument used to measure the dependent quantity (multimeter). In this 

regard, the Bayesian method makes it possible to monitor and adjust the bias associated with 

the multimeter, thus establishing the criteria for tuning and estimating uncertainty in an 

indirect measurement system. 
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Since the methodological and conceptual scheme shown in Figure 1 constitutes a reference 

point to estimate uncertainty as per the selected method, the diagnosed problem and its main 

causal relationships should be outlined as a starting point. Therefore, Figure 2 illustrates the 

problem’s scheme for the case under study, which serves as input for the implementation of 

the uncertainty estimation methods, from which the best expression that defines the reliability 

of the measurement system is determined.  

 

Figure 2. Scheme of the diagnosed problem and its main causal relationships 

 

 
Source: Own source 

 

An organized experimental design was developed to conduct each analysis in this study. This 

design was, in turn, accompanied by a statistical analysis that supports the quality of the 

validity of the results and confirms the accuracy of applying the uncertainty estimation 

methods. 

 

The measurement uncertainty associated with the results provided by the multimeter (as an 

indirect measuring instrument) significantly depends on its precision, the bias observed after 

its calibration, and other related aspects such as drift, resolution, and intrinsic errors. For this 

reason, the characteristics having a significant correlation with the instrument, as well as 

those that do not cause atmospheric pressure changes that may affect the results of the 

transmitter were identified. 
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Figure 3 presents the phases that ensure the validity of the results, which contributes to the 

reliability in the selection, nature, and management of the information linked to each of the 

estimates obtained with the different methods. 

 

Figure 3. Experimental sequence to ensure the validity of the results 

 
Source: Own source 

 

Experiment overview 

 

The measurement system under study aims to indirectly measure the level of a fluid at rest 

in a non-volumetric container. In other words, the fluid height (ℎ) is the measurand or output 

quantity; and hydrostatic pressure (𝑃ℎ), fluid density (𝜌), and local gravity (𝑔) are the input 

quantities, as given by Equation (1) [22]. 

 

ℎ =
𝑃ℎ

𝑔𝜌
 (1) 

 

Local gravity, which is assumed to be constant in this model, was estimated following the 

ME-017 procedure published by the Centro Español de Metrología (Spanish Metrology 

Center) (abbreviated CEM in Spanish) [23]. Under the experiment’s conditions, 𝑔 =

9.775768
𝑚

𝑠2. A Waterpilot FMX21 HART (Highway Addressable Remote Transducer) 

transmitter consisting of an oil-free ceramic measuring cell was employed. Prior to testing, 

its zero and span were adjusted as per the physical conditions of the fluid container, which 

influence the delimitation of the minimum and maximum intervals of both the inlet pressure 

(0–5 bar), which corresponds to the fluid height inside the tank (0–50 cm), and the output 

electrical signal (4–20 mA). 
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Since the test fluid used for the experiment was drinking water, the density-compensated 

level measurement and integrated temperature measurement (using a PT100 sensor) 

functions had to be activated. Five reference levels and ten replicate measurements per level 

were considered, for a total of fifty measurements taken randomly. During the measurements, 

the following performance characteristics were verified: 

 

- Temperature of the medium: -10–70°C (14–158°F) 

- Measurement range: 0–20 bar/200 m H2O (0–300 psi/600 ft H2O), in such a way as 

to guarantee a deviation of ± 0.2% over the entire measurement scale 

- Controlled ambient temperature: 20°C ± 3°C 

- Constant inlet and outlet flow rate to ensure that the fluid level remains at rest 

- Use of calibrated measuring equipment 

 

Once the measuring equipment was in working order, its characteristic operating curve was 

estimated to identify zero, linearity, and angularity errors or any other type of error that may 

affect the measurement result. Figure 4 illustrates the operating principle of the pressure 

transmitter in terms of the relationship between the output quantity and the input quantities. 

 

 

Figure 4. Graphical representation of the physical model 

 

 
 

Source: Technical specifications of the Waterpilot FMX21 pressure transmitter [24] 

 

 

As the transmitter loses linear behavior at pressure values below 0.05 bar, its use is restricted 

to pressures between 0.1 and 20 bar. The total volume inside the container was divided into 

five levels representing the heights measured by a Vernier instrument with a resolution of 

0.05 mm. The average density of the fluid, which was calculated using the gravimetric 
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method using a class II balance and a class A glass graduated cylinder with a 10-ml hexagonal 

glass base, was 992.29 
𝑘𝑔

𝑚3. 

 

It was necessary to evaluate repeatability and ensure there were no outliers regarding the 

factors influencing the measurement results (i.e., operators’ expertise, environmental 

conditions, procedure, main or auxiliary measuring tools, and measurement time) to consider 

the resulting measurements valid for this study. The results obtained during the experiment 

were, thus, confirmed by analyzing two factors: measurement time and personnel in charge 

of the measurement. Such confirmation aimed to prevent the null hypothesis, which states 

equality in the results of the experiments carried out at different times and by different 

personnel, from being rejected. Additionally, the measuring equipment was used per the 

manufacturer’s operating specifications.  

 

Those characteristics related to the multimeter and associated with uncertainty due to 

precision, calibration, drift, resolution, and instrument errors (inherent) were established as 

the inputs or factors leading to variations in the uncertainty of the measurand.  

 

This study’s measurement uncertainty estimation analysis includes comparing the results 

obtained with the Bayesian approach with those obtained with the GUM and the MC method. 

The outcome of such a comparison would make it possible to test the null hypothesis (H0) 

that the Bayesian approach provides more useful information than the other two methods. In 

addition, it would contribute to the study of the reliability of the measurement process and, 

above all, to improving uncertainty estimation.  

 

Estimating measurement uncertainty using the Guide to the Expression of Uncertainty 

 

Once the physical model was defined, the factors influencing the uncertainty of the 

measurand were evaluated. Figure 5 outlines the deterministic model proposed by the GUM. 

For the case under study, this model represents the statistical analysis of the series of 

observations that comprise the repeatability of the measurement system, as well as the 

characterization, quantification, and dispersion of the sources of uncertainty that propagate 

and are associated with the resulting deviation of the indirect measurement.  
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Figure 5. Sequence to estimate measurement uncertainty according to the Guide to the Expression of 

Uncertainty  

 
Source: Own source 

 

 

The statistical analysis was carried out using, as a reference point, the standardized ME-017 

procedure set forth by the CEM [23]. Hence, the uncertainty estimates are given in units of 

pressure and, according to the existing proportionality between hydrostatic pressure and fluid 

level, the results are presented in units of length. Likewise, uncertainty due to variation in the 

pressure gauge reading, or Type A uncertainty (Ua), was estimated, with this being the 

component that defines the standard variation in the meter reading under process repeatability 

conditions. The expression used to calculate Type A uncertainty is given by Equation (5). 

 

𝑈𝑎 =  
𝑅𝑃

𝐿𝐸 − 𝑙𝐸
 .

1

√𝑛
 
√

∑ [𝑙𝑖 −  
∑ 𝑙𝑖

𝑛
𝑖=1

𝑛 ]𝑛
𝑖=1

𝑛 − 1
, 

(5) 

 

where 𝑅𝑃 is the instrument’s measurement range given in units of pressure; 𝐿𝐸, the highest 

value of the electrical range; 𝑙𝐸, the lowest value of the electrical range; 𝑙𝑖, the indication 

value of the multimeter for a given nominal pressure; and 𝑛, the number of measurements 
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considered. According to the GUM, this is the only source of uncertainty considered to be of 

Type A. 

 

After estimating Type A uncertainty, the Type B uncertainty sources were established. Here, 

the indirect measurement was carried out by calculating the electrical current (mA in DC) at 

the output of the differential pressure transmitter. This value is proportional to the pressure 

exerted by the fluid on the bottom of the tank, which, in turn, depends on the fluid level inside 

it. For this reason, the energy meter’s contribution to uncertainty must be estimated using the 

multimeter’s calibration certificate, and this source must be considered to be of Type B, as 

follows: 

 

 

a) Type B uncertainty due to the calibration of the multimeter, 𝑢(𝛿(𝑚𝑒𝑎𝑠)𝐸): It 

corresponds to the measurement of the electrical signal, which, assuming a normal 

distribution, will be given by Equation (6) [23] 

 

𝑢(𝛿(𝑚𝑒𝑎𝑠)𝐸) =  
𝑅𝑃

𝐿𝐸 − 𝑙𝐸
 .

𝑈𝑐𝑒𝑟𝑡𝐸

𝑘
, 

 

(6) 

 

 

where 𝑘 is the coverage factor (Joint Committee for Guides in Metrology, 2008); and 

𝑈𝑐𝑒𝑟𝑡𝐸 , the uncertainty stated in the energy meter’s calibration certificate. If the 

measurement uncertainty of the multimeter (in mA) is not specified in its calibration 

certificate, the mathematical function of uncertainty reported by the calibration laboratory 

is used [23].  

 

b) Type B uncertainty due to the drift of the multimeter, 𝑢(𝛿(𝑑𝑒𝑟)𝐸): It is largely associated 

with the use conditions and maintenance of the measuring equipment. If the historical 

calibration data of the instrument are assumed to follow a rectangular distribution (which 

is expected in the variable under study), Equation (7) is applied [23]. 

 

 

𝑢(𝛿(𝑑𝑟𝑖𝑓𝑡)𝐸) =  
𝑅𝑃

𝐿𝐸 −  𝑙𝐸
 .

𝑑𝑟𝑖𝑓𝑡(𝐸)

√3
, 

 

(7) 

 

where 𝑑𝑟𝑖𝑓𝑡(𝐸) is the maximum difference in absolute value between the corrections 

obtained for the meter in two consecutive calibration certificates. When there is only one 

calibration record, the equipment manufacturer's specifications can be employed [23].   
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c) Uncertainty due to the instrument’s resolution, 𝑢(𝛿(𝑟𝑒𝑠)𝐸): It is due to the scale division 

of the transducer for each measurement, which will be at least that of the multimeter. If 

the data are assumed to follow a rectangular distribution, this uncertainty is estimated 

through Equation (8) [23]. 

 

 

𝑢(𝛿(𝑟𝑒𝑠)𝐸) =  
𝑅𝑃

𝐿𝐸 − 𝑙𝐸
 .

𝑟𝑒𝑠(𝐸)

2√3
, 

 

(8) 

 

where 𝑟𝑒𝑠(𝐸) is the resolution of the measuring instrument. 

 

d) Uncertainty due to the hysteresis of the meter, 𝑢(𝛿(ℎ𝑦𝑠𝑡)𝐸): It is considered an 

uncertainty factor because the measurement result can vary depending on whether the 

value of the variable to be measured is increased or decreased. For a rectangular 

distribution, this uncertainty is calculated as shown in Equation (9) [23]. 

 

 

𝑢(𝛿(ℎ𝑦𝑠𝑡)𝐸) =  
𝑅𝑃

𝐿𝐸 − 𝑙𝐸
 .

|𝐼𝑑𝑜𝑤𝑛 −  𝐼𝑢𝑝|

2√3
,  

 

(9) 

 

 

where 𝐼𝑑𝑜𝑤𝑛 corresponds to the mean of the values measured in a downward direction, 

while 𝐼𝑢𝑝 denotes the mean of the values measured in an upward direction.  

 

Given the stable environmental conditions in the laboratory and the repeatability of the 

density result in each stack of experiments oriented to estimate measurement uncertainty 

using the GUM, uncertainty due to fluid density was not considered here. As an uncertainty 

budget, Table 1 provides a summary of the factors considered in the measurement uncertainty 

estimation and their characteristics.  

 

Table 1. Uncertainty budget 

Source of 

uncertainty 
Estimate Standard uncertainty 

Probability 

distribution 

Sensitivity 

coefficient 

Variation in the 

meter reading 
𝛿(𝑉𝑎𝑟) 𝑈𝑎 Normal 1 

Multimeter 

calibration 
𝛿(𝑚𝑒𝑎𝑠)𝐸 𝑢(𝛿(𝑚𝑒𝑎𝑠)𝐸) Normal 1 

Multimeter drift 𝛿(𝑑𝑟𝑖𝑓𝑡)𝐸 

 

𝑢(𝛿(𝑑𝑟𝑖𝑓𝑡)𝐸) 

 

Rectangular -1 

Meter resolution 𝛿(𝑟𝑒𝑠)𝐸 𝑢(𝛿(𝑟𝑒𝑠)𝐸) Rectangular -1 

Meter hysteresis 𝛿(ℎ𝑦𝑠)𝐸 𝑢(𝛿(ℎ𝑦𝑠)𝐸) Rectangular -1 

 

Source: Own source 
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Once the Type A and Type B uncertainties were estimated, the combined uncertainty was 

calculated, which is defined by Equation (10) for the case under study.  

 

 

𝑢𝑦 = [ 𝑢(𝛿(𝑉𝑎𝑟))2+ 𝑢(𝛿(𝑚𝑒𝑎𝑠)𝐸)2 +  𝑢(𝛿(𝑑𝑟𝑖𝑓𝑡)𝐸)2 + 𝑢(𝛿(𝑟𝑒𝑠)𝐸)2 +

 𝑢(𝛿(ℎ𝑦𝑠)𝐸)2]
1

2  
(10) 

 

The sources of uncertainty driven by the factors influencing the measurement, such as 

hydrostatic pressure (𝑃ℎ), fluid density (𝜌), and local gravity (𝑔), are synergistically 

considered in Equation (10) because they are embedded in the analysis of the instrument used 

to measure the dependent quantity (multimeter), which gives increasing importance to the 

indirect measurement. It should be noted that the covariances of correlated arguments 

between the factors were estimated, and the result was zero. When any interaction between 

the factors or sources of uncertainty was observed, the random selection of the correlated 

parameters or factors at different levels was verified. Then, the expanded uncertainty was 

calculated using Equation (4). It was necessary to estimate the effective degrees of freedom 

that guaranteed the validity of the coverage factor (with 𝑘 = 2) and a confidence level of 

95.45% using the Welch–Satterthwaite equation (3).  

 

Estimating measurement uncertainty using the Monte Carlo and adaptive Monte Carlo 

methods 

 

Figure 6 illustrates the sequence to estimate measurement uncertainty using the MC method. 

This method employs probabilistic schemes and mathematical models to mimic the random 

behavior of a measurement system, thus making it possible to analyze the risks that 

uncertainty estimation poses to itself.  

 

Like the GUM, the MC method draws upon a previously defined physical model (which links 

the output quantity with the input quantities), as expressed in Equation (1), to assign PDFs to 

the input quantities. 
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Figure 6. Sequence to estimate measurement uncertainty via the Monte Carlo method 

 

 
Source: Own source 

 

 

The estimated uncertainty of the measurand was discriminated by five reference levels of 

fluid height (8 cm, 16 cm, 24 cm, 32 cm, and 40 cm) considering the experimental conditions 

of this study. Although, in theory, hydrostatic pressure (𝑃ℎ) and fluid density (𝜌) are directly 

proportional [22], a hypothesis in which they are assumed as independent is proposed in this 

study because the fluid used for the experiment was drinking water and, during the process, 

its density did not change significantly. The global average density of the fluid employed for 

the experiment was 992.29 
𝑘𝑔

𝑚3, with a sample standard deviation of 1.72 
𝑘𝑔

𝑚3 and a coefficient 

of variation of around 0.17%, which is considerably small. To validate the hypothesis of 

independence between 𝑃ℎ and 𝜌, Hoeffding’s test [25] was used through the statistical 

software R [26]. In (11) are presented the hypotheses to be verified with such test:  

                                     

𝐻0 ∶ 𝐹(𝑃ℎ , 𝜌) =   𝐺(𝑃ℎ)𝐻(𝜌)   vs.  𝐻1 ∶ 𝐹(𝑃ℎ , 𝜌) ≠   𝐺(𝑃ℎ)𝐻(𝜌), 

 
(11) 

where 𝐹(𝑃ℎ , 𝜌) denotes the joint Cumulative Distribution Function (CDF) of 𝑃ℎ and 𝜌; and 

𝐺(𝑃ℎ) and 𝐻(𝜌), the marginal CDFs of 𝑃ℎ and 𝜌, respectively. With 𝐻0, the aim is to validate 

that 𝑃ℎ and 𝜌 are independent. After performing the test globally (considering all 

observations values and discriminating by reference level), 𝐻0 could not be rejected in all 

cases, which is why it is concluded that 𝑃ℎand 𝜌 can be assumed as independent. 
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Moreover, a hypothesis was formulated to verify that the input quantities marginally followed 

a normal distribution. To test this hypothesis, the Shapiro–Wilk test [27] was applied globally 

using all the data for 𝜌 and discriminating observations by reference level for 𝑃ℎ. The null 

hypothesis that the data followed a normal distribution was not rejected in all cases. For 𝜌, 

50 data were available, while, for 𝑃ℎ, the computation was made using 10 data from each 

reference level. 

 

Subsequently, the values of the input quantities were generated via random sampling using 

R [26]. The respective PDFs of the input quantities for each reference level were entered into 

this software, and the number of iterations (𝑀) was set to 1 × 106. The generated values of 

the input quantities were evaluated in the model that links the output quantity with the input 

quantities, thus obtaining, for each reference level, 𝑀 values for the output quantity. With 

this, the mean, standard deviation, coverage interval, and PDF of the measurand were 

calculated at each reference level. 

 

In addition to estimating uncertainty with the MC method, experiments were also conducted 

using a technique derived from this method and known as adaptive MC. This latter seeks to 

define the number of iterations necessary for each reference level to guarantee the 

stabilization of the results. The number of significant figures was set to 2 to define the 

numerical tolerance. In addition, given the magnitude of the standard deviation of the 

measurand at each level, numerical tolerance (𝛿) was set to 0.05 cm. After applying the 

adaptive MC technique in each reference level of the measurand, results were found to 

stabilize, in all cases, with a number of iterations below 1 × 106.  

 

Estimating measurement uncertainty using the Bayesian approach 

 

Figure 7 presents the Bayes’ theorem for estimating uncertainty in measurement systems 

based on intrinsic knowledge. Equation (12) shows how the posterior distribution of the 

parameters of interest is calculated within this figure, where the estimation of the 

measurement uncertainty is based. 
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Figure 7. Sequence to estimate measurement uncertainty using the Bayesian approach 

 
Source: Own source 

 

 

The Bayesian method must also draw upon the physical model that links the output quantity 

with the input quantities. Experimental data that are representative of the phenomenon and 

validated should be available. In addition, assigning prior distributions requires familiarity 

with the conditions and characteristics of the phenomenon under study. In particular, for the 

case under study, the estimation of measurement uncertainty via the Bayesian approach must 

be discriminated by the reference level of fluid height. First, we consider the likelihood 

function presented in (13).  

 

                                    𝑃ℎ ~𝑁(𝜇𝑃ℎ
 , 𝜎𝑃ℎ

2)    and    𝜌 ~𝑁(𝜇𝜌 , 𝜎𝜌
2), (13) 

 

 

where 𝑃ℎ and 𝜌 are independent. By assuming local gravity as constant, we obtain that 

𝑔𝜌 ~𝑁(𝜇𝑔𝜌, 𝜎𝑔𝜌
2), with 𝜇𝑔𝜌 = 𝑔𝜇𝜌 and 𝜎𝑔𝜌 = 𝑔𝜎𝜌, and that each observation value of the 

fluid height, ℎ𝑖 =  
𝑃ℎ

𝑔𝜌
 has a distribution with probability density function, as is presented in 

(14) [28]. 
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𝑓ℎ𝑖
(ℎ𝑖) =

𝑏(ℎ𝑖)𝑑(ℎ𝑖)

𝑎3(ℎ𝑖)√2𝜋𝜎𝑃ℎ
𝜎𝑔𝜌

[Φ (
𝑏(ℎ𝑖)

𝑎(ℎ𝑖)
) − Φ (−

𝑏(ℎ𝑖)

𝑎(ℎ𝑖)
)] +

𝑒−
𝑐
2

𝑎2(ℎ𝑖)𝜋𝜎𝑃ℎ
𝜎𝑔𝜌

, 

 

(14) 

where Φ(∙) is the cumulative standard normal distribution function; and 𝑎(ℎ𝑖), 𝑏(ℎ𝑖), 𝑐, and 

𝑑(ℎ𝑖), the substitution blocks given by the equations presented in (15).  

 

 

𝑎(ℎ𝑖) = √
ℎ𝑖

2

𝜎𝑃ℎ
2 +

1

𝜎𝑔𝜌
2                 𝑏(ℎ𝑖) =

𝜇𝑃ℎ ℎ𝑖

𝜎𝑃ℎ
2 +

𝜇𝑔𝜌

𝜎𝑔𝜌
2  

(15) 

𝑐 =
𝜇𝑃ℎ

2

𝜎𝑃ℎ
2 +

𝜇𝑔𝜌
2

𝜎𝑔𝜌
2                           𝑑(ℎ𝑖) = exp (

𝑏2(ℎ𝑖)−2𝑎2(ℎ𝑖)

2𝑎2(ℎ𝑖)
) 

 

 

Let 𝜃 = (𝜇𝑃ℎ
, 𝜇𝑔𝜌, 𝜎𝑃ℎ

, 𝜎𝑔𝜌) and ℎ = (ℎ1, … , ℎ𝑛) be the vectors of the parameters of interest 

and observations, respectively. Since the observations are independent of each other (because 

each observation value represents a replica of the experiment), the likelihood function 

𝑓(ℎ|𝜃), would be written as Equation (13). 

 

𝑓(ℎ|𝜃) = ∏ 𝑓ℎ𝑖
(ℎ𝑖)

𝑛

𝑖=1

 (16) 

 

 

Subsequently, prior distributions must be assigned to the parameters related to the input 

quantities. Given that the density of water is, in theory, expected to be 1000
𝑘𝑔

𝑚3 and that there 

is no considerable variability in the density of the fluid used (drinking water), we assume that 

𝜇𝜌~𝑁 (1000 
𝑘𝑔

𝑚3  , (50
𝑘𝑔

𝑚3)2); therefore, 

 

𝜇𝑔𝜌~𝑁 (1000
𝑘𝑔

𝑚3 × 𝑔, (50
𝑘𝑔

𝑚3 × 𝑔)2), with 𝑔 = 9.775768
𝑚

𝑠2. 

 

In addition, we set 𝜎𝜌 < 100
𝑘𝑔

𝑚3 and assume that 𝜎𝜌~𝑈 (0 , 100
𝑘𝑔

𝑚3) and 

𝜎𝑔𝜌~𝑈 (0 , 100
𝑘𝑔

𝑚3 × 𝑔). 
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For the parameters related to hydrostatic pressure, we consider that 𝑃ℎ = 𝑔𝜌ℎ; hence, for 

each level with a reference value (ℎ𝑟𝑒𝑓) in meters, we assume that 𝜇𝑃ℎ
~𝑁(𝜇1, 𝜎1

2), with 𝜇1 =

1000𝑔ℎ𝑟𝑒𝑓 Pa and 𝜎1 =
1000𝑔(ℎ𝑟𝑒𝑓+0.01)−1000𝑔(ℎ𝑟𝑒𝑓−0.01)

2
= 10𝑔 Pa, where 𝑔 is the value of 

gravity; Pa, the unit in pascals, with the following conversion formula: 1 𝑃𝑎 = 1
𝑘𝑔

𝑚𝑠2; and 𝑈, 

the uniform distribution. We state that 𝜎𝑃ℎ
< 20𝑔 Pa, on the understanding that if a fluid 

density value is established, the variation in the hydrostatic pressure measurement will not 

generate a fluid height value that differs by more than 2 cm from the real value. In this case, 

we assume that 𝜎𝑃ℎ
~𝑈(0 , 20𝑔 𝑃𝑎). 

 

Assuming independence between the parameters, 𝑓(𝜃) is equal to the product of the prior 

marginal PDFs. Thus, the posterior distribution of 𝜃 could be written as is presented in (17). 

 

 

𝑓(𝜃|ℎ)  ∝   𝑓(ℎ|𝜃)𝑓(𝜃) 

 

(17) 

 

 

For the experimental testing of the case under study, values for 𝑓(𝜃|ℎ) were generated via 

the Markov Chain Monte Carlo (MCMC) method using the t-walk algorithm [29]. A total of 

1.1 × 106 values were produced, with an initial burn-in of 1 × 105 values. Finally, by 

replacing the generated values of 𝜃 in the model that links the output quantity with the input 

quantities, the posterior PDF of the measurand was obtained. 

 

Results  

Results obtained with the Guide to the Expression of Uncertainty in Measurement 

 

Figures 8 and 9 show the directly proportional relationship between pressure (represented by 

the transmitter’s output signal in mA) and fluid height.  
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Figure 8. Fluid level (cm) vs. current (mA)  

 
Source: Own source 

 

 

Figure 9. Fluid level (cm) vs. pressure (bar).  

 
Source: Own source 

 

Using Equation (5), the Type A uncertainty, which indicates the standard variation in the 

pressure transmitter reading under process repeatability conditions, is calculated, thus 

obtaining the result presented in (18). 

 

𝑈𝑎 = 8.0 × 10−5 𝑏𝑎𝑟 (18) 

 

As the first source of Type B uncertainty, the energy meter’s calibration, whose coverage 

factor is removed to obtain a value as real as possible. Applying Equation (6), we get the 

result presented in (19). 

 

                              𝑢(𝛿(𝑚𝑒𝑎𝑠)𝐸) = 9.1 × 10−8  bar 
(19) 

 

Another source of Type B uncertainty is the drift of the multimeter, 𝑢(𝛿(𝑑𝑟𝑖𝑓𝑡)𝐸), which is 

estimated using Equation (7). Considering the information provided by the manufacturer 
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regarding the accuracy of the equipment for electrical current measurements (± 0.8 mA DC, 

which is equivalent to 0.128 mA), we obtain the result presented in (20). 

 

                              𝑢(𝛿(𝑑𝑟𝑖𝑓𝑡)𝐸) = 3.3 × 10−5 bar 
(20) 

 

To estimate the uncertainty due to the multimeter’s resolution, Equation (8) is employed, 

where 𝑟𝑒𝑠(𝐸) corresponds to the resolution of the electrical indication for the meter, which, 

in this case, is 0.01 mA DC. We get the result presented in (21). 

 

                              𝑢(𝛿(𝑟𝑒𝑠)𝐸) = 9.0 × 10−6 bar 
(21) 

 

Using Equation (9), the uncertainty due to the hysteresis of the meter 𝑢(𝛿(ℎ𝑦𝑠𝑡)𝐸), is 

calculated, thus obtaining the result presented in (22). 

 

𝑢(𝛿(ℎ𝑦𝑠𝑡)𝐸) =  8.7 × 10−5 𝑏𝑎𝑟 
(22) 

 

Then, the combined uncertainty and the expanded uncertainty are estimated using Equations 

(10) and (4), respectively. Thus, we get the results presented in (23). 

 

𝑢𝑦 = 1.2 × 10−4 𝑏𝑎𝑟     and      𝑈𝑦 = 2.5 × 10−4 𝑏𝑎𝑟  (23) 

 

Table 2 presents the results of estimating measurement uncertainty using the GUM, which 

were discriminated by the reference level of fluid height and expressed in height units. Here, 

SD corresponds to the standard deviation. In addition, the proportionality between fluid 

height and pressure was established (see Figure 9) by dividing the uncertainty estimate in the 

pressure measurement by the product of the average density of the fluid for a given reference 

level and local gravity. All this was done considering the necessary unit conversions to 

convert the results to centimeters (cm). 

 

Table 2. Results of estimating measurement uncertainty using the Guide to the Expression of 

Uncertainty in Measurement 

 

Source: Own source 

 

Level (cm) Mean (cm) SD (cm) 
95% confidence 

interval 
Amplitude (cm) 

8 8.10 0.140 (7.830  ;  8.377) 0.55 

16 16.13 0.138 (15.851  ;  16.413) 0.56 

24 24.17 0.125 (23.923  ;  24.414) 0.49 

32 32.15 0.121 (31.912  ;  32.387) 0.48 

40 40.16 0.119 (39.922  ;  40.390) 0.47 
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As observed in Table 2, the mean values of the measurand were close to the nominal values 

(consistently above 0.1 cm) in all cases. In addition, the standard deviation estimates 

fluctuated around 0.2 and 0.1 cm at the different levels, and the confidence intervals always 

contained the nominal value of the reference level. 

 

Results obtained with the Monte Carlo and adaptive Monte Carlo methods  

 

Table 3 reports the parameters estimated for 𝑃ℎ per reference level (a mean of 992.29 
𝑘𝑔

𝑚3 and 

a standard deviation of 1.72 
𝑘𝑔

𝑚3 were assigned for 𝜌). Table 4 shows the mean, standard 

deviation, and coverage interval estimates, while Figure 10 illustrates the PDF of the 

measurand for each reference level. 

 

Table 3. Parameters assigned for 𝑷𝒉 per reference level 

 

 

 

 

 

 

 

 

Source: Own source 

 

Table 4. Results of estimating measurement uncertainty using the Monte Carlo method 

 

Source: Own source 

Results obtained with the Bayesian approach 

 

Table 5 presents the results obtained based on the posterior PDF of the measurand for each 

reference level. 

 

Level (cm) 
𝑷𝒉 (Pa) 

Mean Standard Deviation (SD) 

8 786.38 13.91 

16 1565.5 15.47 

24 2341.88 24.09 

32 3118.94 19.82 

40 3896.88 19.97 

Level (cm) Mean (cm) SD (cm) 
95% confidence 

interval 
Amplitude (cm) 

 

8 8.110 0.144 (7.827 ; 8.392) 0.565  

16 16.158 0.162 (15.841 ; 16.476) 0.635  

24 24.195 0.252 (23.702 ; 24.690) 0.988  

32 32.186 0.212 (31.771 ; 32.602) 0.831  

40 40.197 0.218 (39.770 ; 40.623) 0.853  
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Table 5. Results of estimating measurement uncertainty via the Bayesian approach 

 

Level (cm) Mean (cm) SD (cm) 
95% confidence 

interval 
Amplitude (cm) 

8 8.08 0.41 (7.50  ;  8.716) 1.21 

16 16.06 0.58 (15.261  ;  16.685) 1.42 

24 24.07 0.71 (23.399  ;  24.952) 1.55 

32 32.07 0.81 (31.185  ;  32.905) 1.72 

40 40.08 0.89 (39.694  ;  41.504) 1.81 

 

Source: Own source 

 

As shown in Table 5, the mean values of the measurand at each reference level of fluid height 

were close to the nominal value of the corresponding level, with a difference between the 

estimate and the reference value below 0.8 cm. In all cases, the standard deviation was below 

1 cm, and the amplitude of the coverage intervals was always less than 2 cm. In addition, the 

coverage interval contained the reference value in each reference level. Finally, Figure 10 

compares the PDFs of the measurand for each reference level, obtained with the Bayesian 

approach and the adaptive MC method. 

 

Figure 10. Comparison between the PDF of the measurand obtained with the adaptive Monte Carlo 

method and that obtained with the Bayesian approach 

 

 
Source: Own source 
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Conclusions 

 

This paper aimed to validate a methodology (illustrated in Figures 1, 2, and 3 above) that can 

be used as a guide to applying techniques showing a good performance in estimating 

measurement uncertainty (e.g., the GUM, the MC method, and the Bayesian approach). This 

methodology provides conceptual elements that make it possible to understand and analyze 

the functional contribution of several techniques when applied to a non-trivial case study that 

has been little examined in the literature. 

 

In particular, the results of estimating uncertainty in an indirect measurement system via the 

Bayesian approach were compared with the estimates obtained with the GUM and the MC 

method. The case under study sought to calculate the fluid level by measuring its hydrostatic 

pressure at rest on the bottom of a container. According to the findings, there are differences 

between the uncertainty estimates obtained with the methods implemented and discussed 

here, which serve as criteria when deciding which to use. The GUM, for instance, provides 

estimates for calculating the mean and standard deviation of a measurand, in addition to its 

confidence interval. For their part, the MC and Bayesian techniques offer complementary 

information (such as the PDF of a measurand) that may be more useful in a given case. 

Through this PDF, the analysis can be expanded by estimating the mean, the standard 

deviation, the median, the mode, the quantiles, the symmetry, and the coverage interval of 

the measurand. The difference between the PDF obtained with the MC method and that 

obtained with the Bayesian approach is that this latter technique offers a posterior PDF that 

can be updated if new information is available. 

 

Furthermore, based on the adaptive MC method, the application of the GUM in the case 

under study was found to be adequate, which is explained by the fact that the model that links 

the output quantity with the input quantities follows a simple behavior. In other words, the 

PDF of the measurand was found to be symmetric and bell-shaped in each reference level, 

which was also observed when both the MC and Bayesian approaches were applied. This 

confirms the assumption that the GUM is based when it is assumed that the PDF of the 

measurand is normal or approximately normal. 

 

A contribution derived from the structure of the experiments presented in this study (such as 

the application of the GUM, the MC method, and the Bayesian approach in a non-trivial 

phenomenon with industrial applicability and not frequently addressed in the literature) was 

to demonstrate the ability of the Bayesian approach to provide results closer to an accurate 

measurement compared to those offered by the GUM and the MC method. This numerical 

precision of the Bayesian approach was attributed to the fact that the PDFs of the measurand 

obtained for each reference level assigned the highest probability to the interval that 

contained the nominal or actual value. Additionally, one of the theoretical advantages of the 
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Bayesian approach is the possibility to update or refine the inference model as new data are 

available. Moreover, with this approach, the intervals of possible values for the measurand 

are wider than those offered by the MC method and the GUM. 
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