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Abstract 

 

Objective: To propose a criterion to 

determine the sample size in stochastic 

simulations of MC (Monte Carlo) and 

MCMC (Markov chain Monte Carlo), 

guaranteeing certain precision estimating 

parameters. It is intended that the accuracy 

is guaranteed in a dimensionless way. 

Materials and methods: This paper 

proposes a criterion is proposed that seeks 

to meet the stated objective. In addition, a 

methodology for its application. Results 

and discussion: The application of the 

methodology is presented in 3 different 

contexts: MC simulation in which the 

sample of interest presents moderate 

variability, MC simulation in which the 

sample of interest presents excessive 

variability, and MCMC simulation. In all 

cases, adequate estimates of the number of 

MC and MCMC runs are obtained from 

relatively small samples. Furthermore, the 

application of the methodology represents 

only a marginal additional computational 

cost. Conclusions: The criterion presented 

in this paper allows for determining the 

sample size in stochastic simulations, 

guaranteeing dimensionless precision in 

estimating parameters. 

 

 
Keywords: Stochastic simulation, sample 

size, Monte Carlo, MCMC, coefficient of 

variation.

Resumen 

 

Objetivo: Proponer un criterio para 

determinar el tamaño de muestra en 

simulaciones estocásticas de MC (Monte 

Carlo) y MCMC (Markov chain Monte 

Carlo), garantizando una determinada 

precisión en la estimación de parámetros. 

Se busca que la precisión se garantice de 

forma adimensional. Materiales y 

métodos: El presente artículo propone un 

criterio buscando cumplir con el objetivo 

planteado. Además, de una metodología 

para la aplicación del mismo. Resultados y 

discusión: Se presenta la aplicación de la 

metodología en 3 contextos diferentes: 

Simulación de MC en que la muestra de 

interés presenta variabilidad moderada, 

simulación de MC en que la muestra de 

interés presenta variabilidad excesiva y 

simulación de MCMC. En todos los casos 

se obtienen adecuadas estimaciones del 

número de corridas MC y MCMC a partir 

de muestras relativamente pequeñas. 

Además, la aplicación de la metodología 

representa únicamente un costo 

computacional adicional marginal. 

Conclusiones: El criterio presentado en 

este artículo permite determinar el tamaño 

de muestra en simulaciones estocásticas, 

garantizando precisión adimensional en la 

estimación de parámetros. 

 
 

Palabras clave: Simulación estocástica, 

tamaño de muestra, Monte Carlo, MCMC, 

coeficiente de variación.
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Introduction  

 

The MC (Monte Carlo) simulation method is based on the principle of random sampling; it 

mainly allows: Generating values of a probability distribution of interest, performing 

numerical integration (commonly used for parameter estimation), or developing optimization 

processes [1], [2], [3], [4]. The MCMC (Markov chain Monte Carlo) simulation method is 

part of the MC family of methods. It is especially useful when we want to simulate values of 

a complex multidimensional probability distribution, and possibly its normalization constant 

is not explicitly known. This situation is common in the context of Bayesian statistics, 

without being the exclusive area of application of the method [5], [6], [1]. In general, the 

tools offered by the MC and MCMC methods help modeling physical, economic, biological, 

medical, and social phenomena, which makes these methods widely used in multiple areas 

of knowledge [7], [8], [9], [10], [11]. 

 

In the execution of MC simulations, or stochastic simulation (with or without MCMC), a 

fundamental decision determining the sample size (or a number of simulations to be 

performed). The importance of this decision stems from the fact that the sample size 

influences the estimation error of quantities of interest (QoI) and the precision of the 

estimates made. It could be thought of as a solution to reduce error by having a sample size 

as large as possible. However, each new simulation has a computational cost that will depend 

on the system’s complexity of the to be simulated. For this reason, there is an interest in 

constructing a criterion that would allow finding the optimal sample size necessary to 

guarantee a given precision in the estimation of parameters. 

 

In the development of stochastic simulation processes, a common practice is to set the sample 

size with values considered more or less “standard” (100 or 1000 or 10,000 or 1 ∙ 10^6 or 

others). These become “magical numbers” that, although accepted in many academic 

settings, do not guarantee precision in the estimation of parameters or in the control of the 

simulation error. This practice is fairly common, as can be seen for example in these recent 

publications: [11], [12], [10], [13], [9]. 

 

Although the theory is straightforward, applying the Central Limit Theorem (CLT) to build 

confidence intervals and classical sample sizes, surprisingly, there are not many published 

alternatives with the details to determine the sample size in an MC simulation quantitatively. 

For example, in [4] (p. 139), which is a widely known book in the area of stochastic 

simulation, the following procedure is proposed to set the simulation sample size: 

 

1. Choose an acceptable value 𝑑 for the standard deviation of the estimator of a 

parameter of interest.  

2. Generate a sample of the variable of interest of size at least 100.  
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3. Continue generating additional values, stop when 𝑘 values have been generated and 
𝑆

√𝑘
< 𝑑, where 𝑆 represents the sample standard deviation of the generated values. 

 

The method proposed by [4] can be considered arbitrary in setting the initial sample size to 

at least 100. Furthermore, the choice of the 𝑑 value is ambiguous.  

 

Some popular stochastic simulation books do not present an explicit criterion to determine 

the sample size in MC simulations, but limit themselves to proposing the use of the CLT and 

confidence intervals to evaluate the convergence of the estimators, with little emphasis on 

the details [1], [14]. 

 

In the case of MCMC simulations, most of the literature present criteria to guarantee the 

convergence of the chain made up of the simulated values. However, no specific criteria are 

presented to ensure precision in the estimates calculated under convergence conditions [5], 

[1]. One of the few alternatives is the criterion proposed in [15] to determine burn-in in 

MCMC simulations and the sample size necessary to guarantee precision in estimating a 

quantile of a function of the model parameters.  

 

The papers on this topic primarily represent applications in specific knowledge areas. In 

many of these papers, the methods they use to calculate the sample size are based on the 

confidence interval formula for the mean that follows from the CLT, and the expression of 

the width of the interval, the sample size is obtained. The variation of each method resides 

on which set of the following elements they assume fixed or known: The confidence level, 

the width of the interval, the admissible estimation error, and the coefficient of variation [16], 

[17], [18], [19], [20], [21], [22]. However, in most cases, it is not intuitive to determine a 

suitable value for the width of the interval or the allowable estimation error. Regarding the 

coefficient of variation, the situations in which it is known in advance are almost zero. 

Furthermore, the sample size calculation depends on this value, a circular estimation 

argument is incurred in the case of estimating the mean.  

 

This paper presents a criterion to determine the sample size of a stochastic simulation (with 

or without MCMC), which guarantees a certain precision (established by the user) in 

estimating the parameters. The important factor is that such precision is guaranteed in a 

dimensionless way based on the number of “significant figures” that the MC estimator has. 

That is, let 𝑎 ∈ ℝ+, expressing this number in scientific notation, we have the result presented 

in equation (1). 

 

 𝑎 = 𝑚𝑎 10
𝑞 = 𝑎1. 𝑎2𝑎3 …10𝑞 with 𝑎1 ≠ 0, 𝑞 ∈ ℤ. (1) 
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Indeed, 𝑚𝑎 is the mantissa of 𝑎, by convention 1 ≤ 𝑚𝑎 < 10 to guarantee a unique 

representation of 𝑎, 𝑎1. 𝑎2𝑎3 … is the decimal expansion of 𝑚𝑎 and 𝑞 the exponent. The user 

establishes how many significant numbers 𝑝 needs/wants to be correct with a probability 

close to 1 (> 0.9999) in an MC estimator of 𝑎. In that case, 𝑞 and 𝑎1 to 𝑎𝑝 would be correct, 

with a probability of 0.9999. An algorithm is proposed for the implementation of the 

criterion, simple and of negligible computational cost, through a preliminary estimation of 

the coefficient of variation (𝐶𝑉, the standard deviation divided by the expected value of a 

functional of interest). It should be mentioned that the mathematical contribution of the 

methodology proposed in this paper is rather marginal; as said before, it is well known how 

the sample size in an MC estimator should be proposed using the CLT. The value of this 

paper is in going through the details, using as a unique criterion the number of significant 

figures in an estimator, the overall practical utility of the resulting method, and its 

computational simplicity. 

 

This paper is organized as follows: First, the criterion proposed to determine the sample size 

is exposed, a methodology is proposed to implement the criterion, and considerations are 

presented to determine of the sample size in the case of an MCMC simulation. Later, multiple 

illustrative examples of the proposed methodology are developed. Finally, the conclusions 

are presented. 

 

Materials and methods  

Notation and definition of the criterion  

 

Let 𝑋 ∈ ℝn be a random variable with probability density function (or mass probability) 𝑓𝑋( ∙

 ), let also 𝑔: ℝn ⟶ ℝ+ be a positive functional. We considered the values presented in 

equation (2). 

 

 𝜇 =  𝔼[𝑔(𝑋)] and 𝜎2 =  𝕍[𝑔(𝑋)]. (2) 

 

It is desired to estimate 𝜇 from a MC simulation of 𝑋. Let 𝑋1, 𝑋2, … , 𝑋𝑇 be a sample of 

independent and identically distributed variables of 𝑓𝑋( ∙ ) obtained from MC simulation. 

Considering the estimator for 𝜇, we use the simple mean presented in equation (3). 

 

 

ℎ𝑇 =
1

𝑇
∑𝑔

𝑇

𝑖=1

(𝑋𝑖). (3) 
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By the central limit theorem [23] we have the result presented in equation (4). 

 

 
√𝑇

(ℎ𝑇 − 𝜇)

𝜎
  𝑑 ⃗⃗⃗⃗  𝒩(0,1). (4) 

 

Expressing 𝜇 in scientific notation as in (1), we have that μ is equal to what is shown in 

equation (5). 

 

 𝜇 = 𝑚𝜇 10𝑞 . (5) 

 

Now, taking the exponent of 𝜇, we consider ℎ𝑇 and σ expressed as is shown in equation (6). 

 

 ℎ𝑇 = 𝑚𝑇 10𝑞  and 𝜎 = 𝑚𝜎  10𝑞 . (6) 

 

Note that 𝑚𝑇 and 𝑚𝜎 are not necessarily the mantissas of the scientific notation convention 

described in (1). Then (2) can be rewritten as is presented in equation (7). 

 

 
 √𝑇

(𝑚𝑇 10
𝑞 − 𝑚𝜇 10

𝑞)

𝑚𝜎  10𝑞
= √𝑇

(𝑚𝑇 − 𝑚𝜇)

𝑚𝜎
  𝑑 ⃗⃗⃗⃗  𝒩(0,1). (7) 

 

 

Now, let 𝑝 ∈ ℕ be an established value, the interest is given in guaranteeing with high 

probability (close to 1) a precision of 𝑝 significant figures in the estimation of the mantissa 

of 𝑚𝜇, that is, that 𝑚𝜇 = 𝑚𝑇  if both quantities are rounded to 𝑝 significant figures. Which 

happens if the inequality presented in equation (8) is satisfied. 

 

  |𝑚𝑇 − 𝑚𝜇| < 0.5 ∙ 10−(𝑝−1). (8) 

 

 

To guarantee the result (4) are considered the calculations presented in equation (9). 

 

ℙ(|𝑚𝑇 − 𝑚𝜇| < 0.5 ∙ 10−(𝑝−1)) =  ℙ(−0.5 ∙ 10−(𝑝−1) < 𝑚𝑇 − 𝑚𝜇 < 0.5 ∙ 10−(𝑝−1)) 

                                                                 =  ℙ(−
√𝑇

2𝑚𝜎
10−(𝑝−1) < √𝑇

(𝑚𝑇 − 𝑚𝜇)

𝑚𝜎
 <

√𝑇

2𝑚𝜎
10−(𝑝−1)) 

                                                                 ≈  ℙ(−
√𝑇

2𝑚𝜎
10−(𝑝−1) <  Z <

√𝑇

2𝑚𝜎
10−(𝑝−1)), 

(9) 

 

the latter considering the result (3), with Z a random variable such that Z~𝒩(0,1). In this 

way, we have that ℙ(|𝑚𝑇 − 𝑚𝜇| < 0.5 ∙ 10−(𝑝−1)) ≈ ℙ(−𝑧 < 𝑍 < 𝑧) with 𝑧 =

√𝑇

2𝑚𝜎
10−(𝑝−1) a quantile of the Z distribution such that ℙ(−𝑧 < 𝑍 < 𝑧) ≈ 1. Taking 𝑧 = 4, 
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we have ℙ(−4 < 𝑍 < 4) > 1 − 1 ∙ 10−4 ≈ 0.9999. Then 𝑧 = 4 =
√𝑇

2𝑚𝜎
10−(𝑝−1) and √𝑇 =

8 𝑚𝜎 10(𝑝−1). 

 

Therefore, the minimum sample size that guarantees a precision of 𝑝 significant figures in 

the estimate of 𝑚𝜇 is the expression presented in equation (10). 

 

 𝑇∗ = 64 𝑚𝜎
2  102(𝑝−1). (10) 

 

Now, considering that CV =
𝜎

𝜇
=

𝑚𝜎 10𝑞

𝑚𝜇 10𝑞 =
𝑚𝜎

𝑚𝜇
, that is, 𝑚𝜎 = CV 𝑚𝜇, we have that 𝑇∗ =

64 CV
2 𝑚𝜇

2 102(𝑝−1). But 𝑚𝜇 < 10, being a mantissa, then 𝑇∗ < 64 CV
2 102 102(𝑝−1), with 

which the result presented in equation (11) is obtained. 

 

 𝑇∗ < 64 CV
2 102𝑝. (11) 

 

A standard case is when CV <
1

4
, in this case the expression (5) is equivalent to the expression 

presented in equation (12). 

 

 
𝑇∗ < 64 (

1

4
)
2

 102𝑝 = 4 ∙ 102𝑝. (12) 

 

Now, assuming that we have 𝑇 independent simulations of a functional of interest, to 

determine the precision that this number of runs guarantees in the estimation of 𝑚𝜇, we can 

start from the expression (5), make 𝑇 = 64 CV
2 102𝑝 and from this equality obtain 𝑝, the 

resulting expression is shown in equation (13). 

 

 𝑝 = 0.5 log10(𝑇) − log10(8CV). (13) 

 

Thus, the 𝑝 that is calculated by means of expression (6) represents an upper bound for the 

precision that can be guaranteed in the estimation of 𝑚𝜇 of the functional with 𝑇 simulations. 

Thus, we may fix a precision 𝑝 and calculate the required 𝑇∗ or with a given current number 

of samples 𝑇 calculate the actual number of significant figures 𝑝 in an estimator. 

 

In general, the coefficient of variation CV =
𝜎

𝜇
 cannot be estimated directly, since in this way 

a circular argument is incurred with respect to the main objective of guaranteeing precision 

in the estimation of 𝑚𝜇. It is then proposed to make a preliminary (rough) estimate of the CV 

in which all the sample information is not used. This preliminary estimation is proposed to 

be carried out by means of the Bland method [24], which is presented in Appendix A. 
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Correction for MCMC  

Let 𝑋1, 𝑋2, … be a reversible Markov chain. Let as is shown in equation (14). 

 

 𝛾𝑡 = 𝛾−𝑡 = Cov( 𝑔(𝑋𝑖), 𝑔(𝑋𝑖+𝑡)), (14) 

 

the autocovariance in the lag 𝑡 of the reversible time series 𝑔(𝑋1), 𝑔(𝑋2), … , [25] explain that 

for a stationary, irreducible and reversible Markov chain we have the result presented in 

equation (15). 

 
 

𝑇 𝕍(ℎ𝑇)  𝐶. 𝑆.⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗   𝜎2 = ∑ 𝛾𝑡

∞

𝑡=−∞

. (15) 

 

Furthermore, if  𝜎2 < ∞, we have the result equation (16). 
 
 

√𝑇
(ℎ𝑇 − 𝜇)

𝜎
  𝑑 ⃗⃗⃗⃗  𝒩(0,1). (16) 

 
That is, expression (7) represents the central limit theorem for the case of dependent samples 

constructed from a stationary, irreducible, and reversible Markov chain. In [26], a method to 

estimate 𝜎2 is proposed, which is presented in Appendix B. 

 

Thus, given the result presented in (7), the results proposed in the previous section are equally 

valid for samples constructed via MCMC. It should be noted that the definition and 

interpretation of 𝜎2 changes between the case of the simulation of an independent sample via 

MC to the case of the simulation of a dependent sample via MCMC. 

 

In the MCMC case, to avoid incurring a circular argument when estimating the 𝐶𝑉, there are 

2 alternatives: First, estimate the integrated autocorrelation time (IAT) of the sample and, 

from this, extract the dependent sample into a pseudo-independent sample and on the latter, 

apply the procedure outlined in the next section. The second option is, given that the circular 

argument falls only on 𝜇 and that this parameter is estimated in the same way for independent 

and dependent samples, it is proposed to estimate 𝜇 by means of Bland's method [24] and 𝜎 

using Geyer's method [26]. For this last alternative applying the procedure proposed in the 

next section to estimate 𝑇∗ is valid, except for the change in the estimation of 𝜎.  
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Heuristic method to calculate 𝑻∗  

 

An iterative methodology is proposed to calculate the 𝑇∗ that guarantees a precision of 𝑝 

significant figures: 

 

1. Let 𝜏 = 2−2, 𝑙 = 0 and 𝑇𝑙 = 64 𝜏2 102. Generate via Monte Carlo simulation a 

sample of independent variables of the functional of interest of size 𝑇𝑙, and from this 

calculate 𝐶𝑉�̂� which represents the estimate of 𝐶𝑉 by means of the Bland method.  

2. While 𝐶𝑉�̂� > 𝜏 and 𝜏 ≤ 4, set 𝜏 = 2𝜏 y 𝑇𝑙 = 64 𝜏2 102. Generate a sample of 

independent variables of the functional of interest of size 𝑇𝑙, and from this calculate 

𝐶𝑉�̂�.  

3. If 𝜏 > 4 print the message "The procedure stops because the sample of interest has 

excessive dispersion" and stop the algorithm. If not, continue with the next step.  

4. Make 𝑇𝑙 = 64 𝐶𝑉�̂�
2
102 (with 𝐶𝑉�̂� the last estimator calculated by means of Bland's 

method). Generate a sample of independent variables of the functional of interest of 

size 𝑇𝑙, and from this calculate 𝐶�̂� =
𝑆

�̅�
 (traditional estimator). Make 𝑙 = 𝑙 + 1 and 

𝑇𝑙 = 64 𝐶�̂�
2
102𝑙.  

5. While 𝑙 < 𝑝, generate a sample of independent variables of the functional of interest 

of size 𝑇𝑙, and from this calculate 𝐶�̂� =
𝑆

�̅�
. Make 𝑙 = 𝑙 + 1 and 𝑇𝑙 = 64 𝐶�̂�

2
102𝑙.  

6. Return 𝑇∗ = 𝑇𝑝. 

 

With steps 1 and 2 of the algorithm the preliminary estimation of the 𝐶𝑉 is structured. The 

function of 𝜏 is to define a suitable upper bound for 𝐶𝑉. Initially, 𝐶𝑉 <
1

4
 is assumed, which 

represents the standard or regular case, if this assumption is not feasible (𝐶𝑉�̂� >
1

4
), 𝐶𝑉 <

1

2
 is 

assumed and so on, multiplying the bound by 2. The last scenario considered in the 

preliminary estimation is 𝐶𝑉 < 4. With steps 4 and 5 of the algorithm, the estimation of the 

𝐶𝑉 is refined, using all the available sample information.  

 

For greater efficiency, it is recommended that in each step of the algorithm that is required 

to generate a sample of independent variables of 𝑓𝑋( ∙ ), not to discard the values that have 

previously been generated. Taking into account that in this way, at no time, is the assumption 

of independence between the elements of the sample violated.  

 

If we have an independent sample of the functional of interest of size 𝑇 and on this we want 

to calculate the precision 𝑝 that is guaranteed in the estimation of 𝑚𝜇, the previous algorithm 

is still valid. It is only necessary that, in each of the steps, when talking about generating a 

sample of size 𝑇𝑙, it is taken from the available sample. In this case, the algorithm stops at 

the moment that 𝑇𝑙 > 𝑇 and the precision that is guaranteed is 𝑝 = 𝑙 − 1.  
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Python implementation  

 

The algorithm explained in the previous section was implemented in Python. Two functions 

were defined for both MC simulations and MCMC simulations: 

 

• One that calculates the sample size 𝑇∗ necessary to guarantee 𝑝 precision in 

estimating the mantissa of a functional of interest; the arguments that this function 

receives are the desired precision, the sample generation mechanism and the 

functional one; this function returns the value of 𝑇∗, a sample of size 𝑇∗ of the 

functional of interest, estimates in the initial and refinement stage of the coefficient 

of variation and the sample size, and gives an estimate of 𝜇 (calculated on the sample 

of size 𝑇∗) in scientific notation by rounding its mantissa to 𝑝 significant figures.  

 

• The other allows to calculate the precision that is guaranteed for a certain sample; the 

argument of this function is the sample to evaluate; this function returns the value of 

the number 𝑝 of significant figures that can be guaranteed with the sample, and an 

estimate of 𝜇 in scientific notation by rounding its mantissa with 𝑝 significant figures. 

 

The Python codes with the algorithm implementation along with the examples presented in 

this paper may be found on the GitHub platform, at the link: 

https://github.com/jdmolinam/Sample_Size_Criterion 

 

Results  

 

Three examples were developed to present the application of the algorithm proposed in 

different conditions. Example 1 presents the case in which the coefficient of variation of the 

functional of interest is less than 
1

4
. This can be considered a standard case of reasonable 

dispersion. In example 2, the functional has a greater dispersion since it has a coefficient of 

variation greater than 
1

4
. Finally, example 3 presents the algorithm application in the context 

of an MCMC simulation where the true value of the coefficient of variation of the functional 

of interest is not known in advance.  

 

 

 

 

https://github.com/jdmolinam/Sample_Size_Criterion
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Monte Carlo simulation with 𝑪𝑽 <
𝟏

𝟒
 

 

Let 𝑋 = (𝑋1,  𝑋2,  𝑋3) ∼ 𝒩3(𝜇𝑋  ,  𝛴), with 𝜇𝑋 = (3,  3,  3) and Σ = 𝕀3. Under these conditions 

we have that the 𝑋𝑖 are independent of each other and 𝑋𝑖 ∼ 𝒩(𝜇𝑖 ,  1), for 𝑖 = 1,2,3. 

Therefore, the probability density function of 𝑋 is as is presented in equation (17). 

 

 𝑓(𝑋) = ∏[
1

√2𝜋
 exp (−

1

2
(𝑥𝑖 − 𝜇𝑖)

2)]

3

𝑖=1

= (2𝜋)−
3
2 exp (−

1

2
∑(

3

𝑖=1

𝑥𝑖 − 𝜇𝑖)
2) .

 (17) 

 

 

Considering the functional 𝑔: ℝ3 ⟶ ℝ, such that 𝑔(𝑋) = ∑ 𝑋𝑖
3
𝑖=1 , we have for 𝜇 the 

expression (18), 
 
 

 𝜇 = 𝔼[𝑔(𝑋)] = 𝔼 [∑𝑋𝑖

3

𝑖=1

] = ∑𝔼(𝑋𝑖) = 9

3

𝑖=1

 (18) 

 

and for 𝜎2 the expression (19).  

 

 

 𝜎2 = 𝕍[𝑔(𝑋)] = 𝕍 [∑𝑋𝑖

3

𝑖=1

] = ∑𝕍(𝑋𝑖) = 3

3

𝑖=1

. (19) 

 

 

Therefore, 𝜇 = 9 ⋅ 100 = 𝑚𝜇 10
0, that is, 𝑚𝜇 = 9 y 𝑞 = 0. Furthermore, CV =

𝜎

𝜇
=

√3

9
≈

0.1925. 
 
 

Now, we proceed to calculate an upper bound for the sample size 𝑇∗ that guarantees precision 

in the estimation of 𝑚𝜇 of 𝑝 = 3 significant figures. Developing the iterative process 

proposed above, it was found 𝑇∗ =  2,335,380, Figure 1 shows the different sample sizes 

and estimates of the 𝐶𝑉 considered in the estimation process of 𝑇∗. A random sample was 

generated by MC simulation of size 𝑇∗, and from this, ℎ𝑇 = 9.0003 ⋅ 100 was obtained, that 

is, 𝑚𝑇 = 9.0003. Thus, remembering that 𝑚𝜇 = 9 we have that |𝑚𝑇 − 𝑚𝜇| = 0.0003 <

0.5 ⋅ 10−2 = 0.005. In addition, if we round both 𝑚𝜇 and 𝑚𝑇 to 3 significant figures, we 

have 𝑚𝜇 = 𝑚𝑇 ≈ 9.00. Therefore, the precision of 𝑝 = 3 significant figures in the estimate 

of 𝑚𝜇 is confirmed.  
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Monte Carlo simulation with 𝑪𝑽 >
𝟏

𝟒
 

 

 

Let 𝑋 = (𝑋1,  𝑋2,  𝑋3,  𝑋4) with 𝑋1,  𝑋2,  𝑋3,  𝑋4 independent and identically distributed so that 

𝑋𝑖 ∼ Exp(𝜆 = 1), for 𝑖 = 1,⋯ ,4. Therefore, the probability density function of 𝑋 is as is 

presented in equation (20). 

 

𝑓𝑋(𝑋) = ∏[exp(−𝑥𝑖)]

4

𝑖=1
 

 

 = exp(−∑𝑥𝑖

4

𝑖=1

). 

 

(20) 

 

Considering the functional 𝑔: ℝ4 ⟶ ℝ+, so that 𝑔(𝑋) =
1

4
∑ 𝑋𝑖

4
𝑖=1 , we have for 𝜇 the 

expression (21), 
 
 

𝜇 = 𝔼[𝑔(𝑋)] = 𝔼 [
1

4
∑𝑋𝑖

4

𝑖=1

] =
1

4
∑𝔼(𝑋𝑖) =

1

4
4𝜆−1 = 1

4

𝑖=1

 (21) 

 

and for 𝜎2 the expression (22). 

 

 
𝜎2 = 𝕍[𝑔(𝑋)] = 𝕍 [

1

4
∑𝑋𝑖

4

𝑖=1

] =
1

16
∑𝕍(𝑋𝑖) =

1

16
4𝜆−2 = 0.25

4

𝑖=1

. (22) 

 

Therefore, 𝜇 = 1 ⋅ 100 = 𝑚𝜇 10
0, that is, 𝑚𝜇 = 1 y 𝑞 = 0. Furthermore, CV =

𝜎

𝜇
=

√0.25

1
=

0.5. 

 

Now, we proceed to calculate an upper bound for the sample size 𝑇∗ that guarantees precision 

in the estimation of 𝑚𝜇 of 𝑝 = 3 significant figures. Developing the iterative process 

proposed above, it was found 𝑇∗ =  15,965,508, figure 1 shows the different sample sizes 

and estimates of the 𝐶𝑉 considered in the estimation process of 𝑇∗. A random sample was 

generated by MC simulation of size 𝑇∗, and from this, ℎ𝑇 = 1.0001 ⋅ 100 was obtained, that 

is, 𝑚𝑇 = 1.0001. Thus, remembering that 𝑚𝜇 = 1 we have that |𝑚𝑇 − 𝑚𝜇| = 0.0001 <

0.5 ⋅ 10−2 = 0.005. In addition, if we round both 𝑚𝜇 and 𝑚𝑇 to 3 significant figures, we 

have 𝑚𝜇 = 𝑚𝑇 ≈ 1.00. Therefore, the precision of 𝑝 = 3 significant figures in the estimate 

of 𝑚𝜇 is confirmed. 
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Figure 1. Values of 𝑻 and estimates of 𝑪𝑽 considered in the estimation process of 𝑻∗, for examples 1 

and 2*  

 
*On the left the results of example 1 and on the right those of example 2. The asterisks represent the estimates of 𝑪𝑽 in the initial stage and 

points the estimates in the refinement stage 

Source: Own source 

 

MCMC simulation: Bayesian estimation in the Lotka–Volterra model  

 

This example was developed around the Lotka–Volterra system of equations, which 

describes the dynamics of two populations of animals: one predator and one prey. The system 

was considered under the conditions presented in equation (23). 

 

 𝑑𝑢1

𝑑𝑡
= 𝑢1(1 − 𝑢2), 

𝑑𝑢2

𝑑𝑡
= 𝑢2(𝑢1 − 1). 

 

(23) 

Where 𝑢1(𝑡) and 𝑢2(𝑡) represent the population (thousands of specimens) at time t of the 

prey and predator species respectively. 𝑢1(0) = 𝑢1
0 and 𝑢2(0) = 𝑢2

0 are unknown. The 

parameters that characterize the model are 𝜃 = (𝑢1
0 ,  𝑢2

0) and of these, the parameter of 

interest is 𝑢1
0. Thus, the functional to consider is 𝑔(𝜃) = 𝑢1

0. 

 

An inverse Bayesian problem is posed [27], in which the available data have the structure 

presented in equation (24). 

 

 𝑦𝑖 = 𝑢1(𝑡𝑖 , 𝜃) + 𝜀𝑖 ,   𝑖 = 1,… , 𝑛, (24) 
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with 𝜀𝑖 ∼ 𝒩(0, 𝜎2). Thus, 𝑦𝑖|𝜃 ∼ 𝒩( 𝑢1(𝑡𝑖, 𝜃) ,  𝜎2). For the simulation of the data was set 

𝜃 = (0.5 ,  2), 𝜎 = max{𝑖=1,⋯,𝑛}( 𝑢1(𝑡𝑖, 𝜃) ) ⋅ 0.1, 𝑛 = 5 with observations taken on the times 

{0.75, 1.5, 2.25, 3.0, 3.75}. The prior distribution presented in equation (25) was considered. 

 

 𝜃 ∼ 𝑈([0.5 − 𝑒 ,  0.5 + 𝑒] × [2 − 𝑒 ,  2 + 𝑒]), (25) 

 

with 𝑒 = 0.2. In this way, we have as is shown in equation (26). 

 

 
𝑓(𝜃) = 𝑓(𝑢1

0, 𝑢2
0) =

1

0.16
 𝕀[0.3 ,0.7](𝑢1

0)𝕀[1.8 ,2.2](𝑢2
0). (26) 

 

Let 𝑌 = (𝑦1, … , 𝑦𝑛) be the vector of observations, the likelihood function is characterized by 

the expression (27). 

 

 
𝑓(𝑌|𝜃) = (2𝜋𝜎2)− 

𝑛
2exp(−

1

2𝜎2
∑(

𝑛

𝑖=1

𝑦𝑖 − 𝑢1(𝑡𝑖, 𝜃))2). (27) 

 

 

Thus, the posterior distribution is determined by Bayes’ theorem, that is: 𝑓(𝜃|𝑌) ∝

𝑓(𝑌|𝜃)𝑓(𝜃). 

 

Under the conditions of this example, the parameter on which we want to guarantee precision 

in our estimation is 

 

 𝜇 = 𝔼(𝑢1
0 | 𝑌). (28) 

 

The MCMC algorithm t-walk [28] was used to generate values of the posterior distribution. 

Initially, 10,000 iterations were run, from which it is stated that with a burn-in of 500 

iterations, the chain made up of the simulated values reaches the stationary state. 

 

Now, we proceed to calculate an upper bound for the sample size 𝑇∗ that guarantees precision 

in estimating 𝑚𝜇 of 𝑝 = 2 significant figures. The proposed procedure was developed with 

the exception of making the preliminary estimation of the coefficient of variation by 

estimating the mean with the Bland method and the standard deviation of the dependent 

sample with the Geyer method. 𝑇∗ = 942,270 was obtained. Figure 2 shows the posterior 

distributions obtained from an MCMC sample size 𝑇∗. 

 

Additionally, Table 1 shows the precision guaranteed for each of the examples in the case in 

which there is a sample of size 𝑇 (independent in examples 1 and 2, obtained via MCMC in 
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3) of the functional of interest. The precision calculation was made using the proposed

heuristic algorithm, assuming CV unknown.

Figure 2. Histograms of the posterior distributions of 𝒖𝟏
𝟎 and 𝒖𝟐

𝟎* 

*On the left the posterior distribution of 𝒖𝟏
𝟎, on the right that of 𝒖𝟐

𝟎. The red lines at 𝒖𝟏
𝟎 = 𝟎. 𝟓 and 𝒖𝟐

𝟎 = 𝟐 represent the values of the 

parameters used to generate the synthetic data. 

Source: Own source 

Table 1. Precision 𝒑 that is guaranteed with different sample sizes in each of the examples* 

Sample Size 

𝑪𝑽 <
𝟏

𝟒
𝑪𝑽 >

𝟏

𝟒

MCMC 

(IAT = 50, 𝑪𝑽 = 𝟏. 𝟐 )

𝒑 

250 1,700 9,500 1 

25,000 170,000 950,000 2 

2,500,000 17,000,000 95,000,000 3 

* In the case 𝑪𝑽 <
𝟏

𝟒
the different accuracies are guaranteed with smaller sample sizes, for the case 𝑪𝑽 >

𝟏

𝟒
larger samples are required and in

the MCMC case much more. Thus, arbitrarily choosing the sample size with “magical numbers” in general is an error, which is exacerbated if we have

a 𝑪𝑽 >
𝟏

𝟒
 or usually for MCMC simulations. Note the well-known, and commonly neglected, 100 times increase in sample size with one significant

figure increase in precision, resulting from the 
𝟏

𝟐
 convergence rate in the CLT. 

Source: Own source 
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Conclusions 

In many cases, the problem of determining the sample size in stochastic simulations is 

approached superficially using “magical numbers”, or using techniques that do not offer 

guarantees, such as the control of the simulation error or precision in the estimation of 

parameters. This represents a severe problem, especially if we have a 𝐶𝑉 >
1

4
 or if an MCMC

simulation is performed where the IAT is greater than 1, which is the case in most common 

non-trivial cases.  

The criterion presented in this paper allows determining the sample size in stochastic 

simulations, guaranteeing dimensionless precision in estimating parameters. The importance 

of this result does not lie in its mathematical contribution but its practical value. 

The heuristic methodology presented in this paper for applying the criterion in each 

application example proved to be efficient as it does not require large initial samples to make 

a good preliminary estimate of 𝐶𝑉 and 𝑇∗. Furthermore, this methodology does not add a

great computational cost to the overall simulation process. The authors consider that 

implementing this methodology in commonly used statistical software such as R and Python 

would become a very useful tool. 
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Appendix A. Method for the preliminary estimation of the 𝑪𝑽

Given the interest in making a preliminary estimation of the 𝐶𝑉, the Bland method [24] is

considered, which allows for estimating the mean and variance of a sample of independent 

and identically distributed variables without using the total sample information. The method 

is explained below. 

Let 𝑋 be a random variable in ℝ+, with probability density function (or mass probability)

𝑓𝑋( ⋅ ), let 𝑋1, 𝑋2, ⋯ , 𝑋𝑛 be a sample of independent and identically distributed variables of

𝑓𝑋( ⋅ ) and let 𝑋(1), 𝑋(2), ⋯ , 𝑋(𝑛) the order statistics of the sample. The following quantities

are considered: 𝑎 = 𝑋(1), 𝑞1: the first sample quartile, 𝑚: the sample median, 𝑞3: the third

sample quartile, and 𝑏 = 𝑋(𝑛). Considering that the sample mean and variance are determined

by the expressions presented in equation (29). 

𝑋 =
1

𝑛
 ∑𝑋𝑖

𝑛

𝑖=1

  ,    𝑆2 =
1

𝑛 − 1
 ∑(

𝑛

𝑖=1

𝑋𝑖 − 𝑋)2 , (29) 

and for simplicity it is assumed 𝑛 = 4𝑄 + 1, with 𝑄 ∈ ℤ+, that is, 𝑄 = (𝑛 − 1)/4, for the

estimation of the sample mean, the inequalities presented in equation (30) are taken into 

account. 

𝑎 ≤ 𝑋(1)  ≤ 𝑎

𝑎 ≤ 𝑋(𝑖)  ≤  𝑞1,  (𝑖 = 2,⋯ ,𝑄)

𝑞1 ≤ 𝑋(𝑄+1)   ≤  𝑞1

𝑞1 ≤ 𝑋(𝑖)  ≤  𝑚,  (𝑖 = 𝑄 + 2,⋯ ,2𝑄)

𝑚 ≤ 𝑋(2𝑄+1) ≤  𝑚

𝑚 ≤ 𝑋(𝑖)  ≤  𝑞3,  (𝑖 = 2𝑄 + 2,⋯ ,3𝑄)

𝑞3 ≤ 𝑋(3𝑄+1) ≤  𝑞3

𝑞3 ≤ 𝑋(𝑖)  ≤  𝑏,  (𝑖 = 3𝑄 + 2,⋯ , 𝑛 − 1)

𝑏 ≤ 𝑋(𝑛)  ≤  𝑏.

(30) 

Adding all the previous inequalities and dividing by 𝑛 we obtain 𝛼𝑝  ≤   𝑋  ≤  𝛽𝑝, where 𝛼𝑝 

is defined as shown in equation (31), 

𝛼𝑝 =
𝑎 + 𝑞1 + 𝑚 + 𝑞3

4
+

4𝑏 − 𝑎 − 𝑞1 − 𝑚 − 𝑞3

4𝑛
(31)
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and 𝛽𝑝 as is shown in equation (32).

𝛽𝑝 =
𝑞1 + 𝑚 + 𝑞3 + 𝑏

4
+

4𝑎 − 𝑞1 − 𝑚 − 𝑞3 − 𝑏

4𝑛
. (32) 

Then, we have the result presented in equation (33). 

𝑋 ≈
𝛼𝑝 + 𝛽𝑝

2
= 𝑋𝐵. (33) 

To estimate the sample variance, the inequalities presented in equation (34) are taken into 

account. 

𝑎𝑋(1) ≤ 𝑋(1)
2   ≤ 𝑎𝑋(1)

𝑎𝑋(𝑖) ≤ 𝑋(𝑖)
2   ≤  𝑞1𝑋(𝑖),  (𝑖 = 2,⋯ ,𝑄)

𝑞1𝑋(𝑄+1) ≤ 𝑋(𝑄+1)
2  ≤  𝑞1𝑋(𝑄+1)

𝑞1𝑋(𝑖) ≤ 𝑋(𝑖)
2   ≤  𝑚𝑋(𝑖),   (𝑖 = 𝑄 + 2,⋯ ,2𝑄)

𝑚𝑋(2𝑄+1) ≤ 𝑋(2𝑄+1)
2 ≤  𝑚𝑋(2𝑄+1)

𝑚𝑋(𝑖) ≤ 𝑋(𝑖)
2  ≤  𝑞3𝑋(𝑖),  (𝑖 = 2𝑄 + 2,⋯ ,3𝑄)

𝑞3𝑋(3𝑄+1) ≤ 𝑋(3𝑄+1)
2 ≤  𝑞3𝑋(3𝑄+1)

𝑞3𝑋(𝑖) ≤ 𝑋(𝑖)
2  ≤  𝑏𝑋(𝑖),  (𝑖 = 3𝑄 + 2,⋯ , 𝑛 − 1)

𝑏𝑋(𝑛) ≤ 𝑋(𝑛)
2  ≤  𝑏𝑋(𝑛).

(34) 

Adding all the previous inequalities and with simple algebra we see that 𝛼𝑠  ≤ ∑ 𝑋𝑖
2𝑛

𝑖=1   ≤

 𝛽𝑠, where 𝛼𝑠   is defined as shown in equation (35),

𝛼𝑠 =
1

8
[ 8𝑏2 + (𝑛 + 3)(𝑎2 + 𝑞1

2 + 𝑚2𝑞3
2) + (𝑛 − 5)(𝑎𝑞1 + 𝑞1𝑚 + 𝑚𝑞3 + 𝑞3𝑏) ] (35) 

and 𝛽𝑠 as is shown in equation (36).

𝛽𝑠 =
1

8
[ 8𝑎2 + (𝑛 + 3)(𝑞1

2 + 𝑚2 + 𝑞3
2 + 𝑏2) + (𝑛 − 5)(𝑎𝑞1 + 𝑞1𝑚 + 𝑚𝑞3 + 𝑞3𝑏) ]. (36) 

It is proposed, ∑ 𝑋𝑖
2𝑛

𝑖=1 ≈  
𝛼𝑠+𝛽𝑠

2
= 𝛾𝑠. And taking into account the expression (37).

𝑆2 =
1

𝑛 − 1
[∑𝑋𝑖

2

𝑛

𝑖=1

− 𝑛𝑋
2
] (37)
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Then, we have the result (38). 

𝑆2 ≈
1

𝑛 − 1
(𝛾𝑠 − 𝑛𝑋𝐵

2
) = 𝑆𝐵

2. (38) 

Thus, based on Bland's method, the expression presented in equation (39) is proposed as 

preliminarily estimation of the CV.

CVB̂ =
𝑆𝐵

𝑋𝐵

 . (39) 

Normally, a minimal sample size will be needed to obtain an initial rough estimate of CV

using the above estimator. In the context of the algorithm proposed in this paper, this works 

well to constrain the estimation problem with an initial bound for CV using a small trial

sample and establish the required sample size. 



Criterion to Determine the Sample Size in Stochastic Simulation Processes 

INGENIERÍA Y UNIVERSIDAD: ENGINEERING FOR DEVELOPMENT | COLOMBIA | V. 26| 2022 | ISSN: 0123-2126 /2011-2769 (Online) | Pag. 21 

Appendix B. Method to estimate the variance of a MCMC sample 

This appendix presents Geyer's method [26], to estimate the variance of an MCMC sample 

at stationary state. Considering a reversible Markov chain 𝑋1, 𝑋2, … , Let as is shown in

equation (40). 

𝛾𝑡 = 𝛾−𝑡 = Cov( 𝑔(𝑋𝑖), 𝑔(𝑋𝑖+𝑡)), (40) 

the autocovariance in the lag t of the stationary time series 𝑔(𝑋1), 𝑔(𝑋2),⋯. This quantity

can be estimated from the empirical autocovariance presented in equation (41). 

�̂�𝑛,𝑡 = �̂�𝑛,−𝑡 =
1

𝑛
∑(

𝑛−𝑡

𝑖=1

 𝑔(𝑋𝑖) − ℎ𝑛  )( 𝑔(𝑋𝑖+𝑡) − ℎ𝑛  ). (41) 

In [26] it is shown that for a stationary, irreducible and reversible Markov chain, 𝛤𝑚 = 𝛾2𝑚 +

𝛾2𝑚+1 is a strictly positive, strictly decreasing and strictly convex function of 𝑚. Also,

�̂�𝑛,𝑚 = �̂�𝑛,2𝑚 + �̂�𝑛,2𝑚+1. Based on these results, in [26] the estimator for 𝜎2 presented in

equation (42) is proposed. 

�̂�2 = �̂�0 + 2 ∑ �̂�𝑛,𝑖

2𝑚+1

𝑖=1

= − �̂�0 + 2∑�̂�𝑛,𝑚

𝑚

𝑖=0

 , (42) 

where 𝑚 is chosen as the largest integer such that the expression (43) is satisfied 

�̂�2 = �̂�0 + 2 ∑ �̂�𝑛,𝑖

2𝑚+1

𝑖=1

= − �̂�0 + 2∑�̂�𝑛,𝑚

𝑚

𝑖=0

 , (43)




