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Resumen: En este artículo se muestra un procedimiento geométrico
determinístico, la metodologíafractal-multifractal (FM) [Puente, 1992J, diri-
gido a la representación holística de series de tiempo geofísicas como proyec-
ciones desde funciones de interpolaciónfractales produciendo un conjunto de
1IJ'f3 series multifractales que incluyen tanto señales "caóticas" como
"estocásticas", Dicho resultado inesperado y aparentemente contradictorio,
dado el determinismo intrínseco de la representación, sugiere que el concepto
de las proyecciones podría ser útil para estudiar la complejidad de un variado
número de eventos naturales. Se presentan los ejemplos de la aproximación
FM que evidencian dicho comportamiento junto con un breve repaso de los
conceptos básicos del análisis no lineal de series de tiempo.

Abstraet: A deterministic geometric procedure, the Fractal-Multifractal (FM)
Methodology [Puente, 1992J, aimed at representing geophysical time series
wholistically as projections of fractal interpolating functions, is shown to pro-
duce a variety of 1!Jf3 multifractal series that include both "chaotic" and
"stochastic" signals. This unexpected and apparently contradictory result, given
the intrinsic determinism of the representation, suggests that the concept of
projections may be useful to study the complexity of a variety of natural records.
Outcomes of the FM approach showing this behavior are presented along with
a brief review of basic concepts on nonlinear time series analysis.
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1. Introduction

Nelson Obregón Neira y Carlos E. Puente

In many fields of science one measures quantities that fluctuate in time or in space
with no discemible pattems. Examples include magnetic and electric fields in plas-
mas, scalar quantities in fully-developed turbulence, weather and climatological
data, variation of biological population, and stock prices. [Rowlands and Sprott,
1992] A common problem in the study of the irregular and apparently random
motion of physical systems is to determine whether the system evolution is govemed
by some stochastic process (associated with a large number of active degrees of
freedom) or if it may be interpreted in terms of the action of a few excited modes
which have chaotic behavior. If a small number of excited modes dominates the
dynamics then an approach based on the concept of deterministic chao s may be
appropriate. In this case the motion may be described in terms of a system of a few
ordinary differential equations, and systems with an apparently very complex
behavior can be greatly simplified in terms of their physical description. [Provenzale
et al., 1991] This has led to the hope that such simple systems can model the real
world.

In this light, the detection of chaos as a possible mechanism underlying natural
time series has attracted considerable attention. [Packard et al., 1980;Takens, 1981;
Grassberger and Procaccia, 1983; Casdagli et al., 1991; Abarbanel et al., 1993]
This has resulted in a battery of tests aimed at discriminating between chaotic
(low-dimensional) and "random" (high-dimensional) behaviors which are applied
in this work to study the dynamical properties of some generated measures obtained
by the FM methodology.

2. A Review of Nonlinear Time Series Analysis

The recent interest in nonlinear dynamics, fractals, and chaotic systems has provided
new insights into the working of many physical systems as well as a rapidly growing
set of interpretative tools for nonlinear time series analysis. An assumption in such
analysis is that a dynamical system in the form of a set of differential equations or
discrete time maps in terms of a set of physical variables is responsible for the
observed time series. Methods for recovering the dynamics of the system in terms
of this single observable have been advanced. [Takens, 1981; Ruelle, 1994;
Abarbanel et al., 1993; Casdagli et al. 1991] The recovered dynamics may be used
to estimate invariants of the dynamics, as well as to make short term forecasts. If
the reconstructed dynamics of the system is high dimensional, the time series of a
single observed variable will be stochastic for all practical purposes, since a very
large number of variables or coordinates are needed to model system evolution.
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On the other hand, if only few factors or variables determine the fate of that varia-
ble, describing its dynamics from a finite time series may be possible.

The correlation dimension [Grassberger and Procaccia, 1983] has been studied
as a measure of complexity of a dynamical system and for distinguishing between
low order, deterrninistic chaos and a random process. A measure related to the
correlation dimension can be also be obtained using the nearest neighbor (NN)
method firstly introduced by Pettis et al. [1979] and reproduced in various forms
by other researchers. A geometrical method for dimension estimation has been
devised by Abarbanel [1992]. This method uses nearest neighbors for each
observation to check whether the trajectories of the underlying dynamics have
been properly unfolded at a given embedding dimension. Among other methods to
find the optimal embedding dimension is the "true vector field" approach of Kaplan
and Glass [1992].

In order to review the concept of State Space Reconstruction from a scalar time
series consider that the system of interest is characterized by a d-dimensional state
space z. For an autonomous system the associated dynamics may be represented
as:

dz
(1) = F (z (t))

dt

Now, consider a univariate time series Cl' c2 ,c¡''' for one ofthe d state variables,
e, generated by such a system, with sampling rate at. The system can be written as
a higher order differential equation in terms of a single state variable e,

(2) d - f (c.é d-I)C - c,c, ,c

Packard et al. [1980] and Takens [1981] introduced the notion of state space
reconstruction from an observed scalar time series. A central idea here is the notion
of phase space, i.e. the space defined by c(t), and its derivatives c(t), c(t), ..., cd(t).
The phase space in the univariate variable e, is a surrogate for the state space
defined by z. The derivatives c(t), ..., cd(t),could be estimated numerically using a
finite difference approximation to the time series c(t). However, such estimates
induce an additional approximation error that grows with d. Noting that the
available time series is sampled at discrete times O, at, 2at, ... , kdt, one can
define a pseudo-phase space using del ay coordinates, i.e. by defining a delay
vector c

t
= (c(t), cu-t), ..., c(t-(m-1)'t)), where 't is an appropriately chosen delay

time, which is an integer multiple of at, and m is an integer embedding dimension.
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If the solution to the equations lies on an attractor (i.e. a set of points, manifold or
object in phase space that trajectories converge to after transients die out) of
dimension dA < d, then choosing the integer m > 2d A is a sufficient condition for
unfolding the attractor from the scalar time series c(t), t=l...n. Then subject to
generic assumptions on f and at, the underlying dynarnics for any lag 't, and forecast
period T, could be represented by a smooth (i.e. differentiable) map [Casdagli el

al., 1991]:

(3) c(t+T) = fT(c(t), cú-r), cú-Zt), ..., c(t-(m-1)'t)); fT: Reffi --7 Re

This equation provides a basis for reconstructing a state space of the underlying
dynarnics given a scalar time series, as well as for forecasting that scalar component;
provided the map or "regression" function f" can be described for appropriate
values of t and m. On the other hand, given enough data and a proper choice of the
delay r, a stationary stochastic process will be space filling for any m dimensional
phase space (or m delay coordinates).

A variety of prescriptions for choosing an appropriate r have been presented in
the literature. In general, if 1: is too small, the coordinates will not be independent
enough, that is to say that not enough time will have evolved for the system to have
explored enough of its state space to produce, in a practical numerical sense, new
information about its structure. [Abarbanel, 1996] In the case when 1: is selected
too large and the dynarnics are chaotic, all relevant information for phase space
reconstruction is lost since neighboring trajectories diverge, and averaging in time
and/or space is no longer useful. There seems to be agreement (e.g. [Grassberger
el al., 1991]) that there is no optimal method for choosing 1:. The goal is to end up
with a coordinate set that is independent such that each coordinate added to the
reconstruction set provides new information. Holzfuss and Mayer-Kress [1986]
suggest it using a value of delay time at which the autocorrelation function first
crosses the zero line. Tsonis and Elsner [1988] used a delay time greater than the
decorrelation time, which they defined as the time at which the correlation drops
to l/e. Graf and Elbert [1990] wrote that the delay time can be set equal to the
smallest lag for which the autocorrelation function is zero or to the first local
rninimum if that is earlier than the zero point. Another choice for the delay time is
the value that produces the first local rninimum in the mutual information function,
I. [Fraser and Swinney, 1986] This last method has the advantage that it considers
all kinds of relations, and not only the linear ones as in the autocorrelation function.
1 attempts to measure how dependent the values of Ct/1 are on the values of cl as a
function of the time lag 't.
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In the next section a dynamical study of some measures obtained by using the
FM methodology is presented.

3. The Fractal-Multifractal (FM) Methodology

Inspired by the paradigms set forward by chao s theory, a simple geometric model
which tries to represent (positive and normalized) natural time (or space) series in
a deterministic and compact way was introduced recently by Puente [1992]. This
model is based on the c1assic concept of derived distributions and assumes that
natural sets may be understood as projections off fractal functions, built transforming
simple multifractal measures (of relevance in fully-developed turbulence)
[Meneveau and Sreenivasan, 1991] via fractal interpolating functions which are
fixed points of affine mappings over two dimensions. [Barnsley, 1988] Given a
multifractal measure DX and a fractal interpolating function f, the procedure then
entails finding a derived measure DY = t' o DX, a fractional integration (over the- -
crossings off) ofthe parent measure DX. For an easier mental picture the readér is
referred to the famous caveman's tale by Plato (Republic), such that natur~rsets
become "shadows" (DY) coming from a "good" outside the cave (j) whichhas a
possibly non-uniform "illumination" (DX).

Figure 1shows two examples of derived measures generated by the procedure,
termed DYl and DY2, found transforming the same binomial multifractal measure
DX (having equallength scales and found via a cascade that splits the mass by its
60%) via two fractal interpolating functions f1 and f2 which interpolate the same
set of three points (dark circ1es at beginning, middle and end of functions domain)
and whose graphs have fractal dimensions of 1.263 and 1, respectively. Clearly,
DYl and DY2 possess different appearances and textures. As seen, usage of the
fractal interpolating function with higher dimension, f1, results in an integration of
the parent measure DX which appears to destroy much of its multifractality. Function
f2, on the other hand, yields a measure which inherits the multiple layers present in
DX. In this light, the purpose of this work is to show that the deterministic measures
DYl and DY2 possess indeed very different dynamic properties.

The graphs of fractal interpolating functions, being fixed points of suitable
affine mappings, may be obtained point by point via iterations. [Barnsley, 1988]
For the functions depicted in Figure 1 such mappings are:

(4)
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Figure 1. Construction of deterministic measures D Y1 and D Y2.
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(5) «. e) = e :)e) + (~)

with fl having d, = 0.7 and d; = 0.5, and f2 using d, = 0.4 and d2 = 0.5. The
stationary measures, over x and y, correspond to histograms gathered during the
iterations exercise [Elton, 1987], and yield the shown figures when wI and w2 are
chosen independently from time to time in proportions of 60% and 40%,
respectively. In order to fulfill series length requirements, both derived measures
analyzed were sampled having 216 values. To accomplish this task, the two affine
mappings were iterated 800 x I()6 times, starting at the point (1/2, 1), to define
equally-spaced histograms of visited locations in y.

4. Dynamical Properties of Derived Measures

Figure 2 shows some of the most relevant statistics for both derived data sets. As
seen, both sets may be termed "pink noises" as they yield power-law power spectra,
S(f -~),over four cyc1es.As expected, DY2 (right) is inherently less correlated that
DYI (left), as reflected in scaling exponents P of 1.09 and 1.42, respectively. The
mass exponents t for both records show that usage of a fractal interpolating function
having a dimension larger than one, i.e. fl, indeed filter more readily the
intermittency present in the parent multifractal measure DX.The entropy dimension
(D1) values for both sets discriminate between them, with the less correlated series
having a smaller entropy dimension. All these facts are reflected in Table 1 for
time delays defined via first local minima iflm) of both the autocorrelation p('t)
and the average mutual information function J(t), and decay time to e-Ion p('t) for
both records.

Table 1.Time delays for phase-space reconstruction

DYl DY2

I(flm) 133 20

p(flm) 245 26

prc') 4860 472
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Figure 2. SampIe statistics for detenninistic mea sures DYl (Ieft) and DY2 (right).
(i) Power spectrum S(f), (ii) mass exponents (t(q», and (iii) percentage of faIse
neighbors (%FNN) for altemative deIays t as a function of embedding dimensions m.
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The bottom of Figure 2 summarizes the analysis of false near neighbors
performed on both sets in an attempt to c1assify their inherent dynamics. Those
figures inc1ude results for a variety of time delays which inc1ude the values based
on the average mutual information function as reported in Table 1. As seen, the
more correlated measure DY1 results in a stable embedding containing 5 or 6
coordinates, and hence could be termed low-dimensional. Analysis of maximum
Lyapunov exponent for such attractor reveals indeed that DY1may be c1assified as
"chaotic." The more erratic DY2, on the other hand, does not show stabilization on
thepercentage offalse near neighbors and hence may be termed dynamically high-
dimensional. These results are confirmed when correlation dimension analysis
(not shown) is performed. The presence of a positive Lyapunov exponent for these
attractors additionally reveals that DY2 would be c1assified by current methods as
"stochastic."

The stabilized embedding dimension for DY1 and the lack of stabilization
for DY2 appear to be related to the observation that stochastic processes with
1/1' power spectra yield stabilization in correlation dimension at a finite value of
D = 2/([3-1) [Osbome and Provenzale, 1989], i.e. [3of 1.42 gives D = 4.76 and [3
close to 1 gives D which diverges. However, the data sets employed in this work
are not random at all and usage of false near neighbors in addition to correlation
dimensions suggest that the results are not anomalous but real for the generated
records.

Notice that iris not trivial to have power-law power spectra on arbitrary derived
measures nor for them to be even chaotic. In fact, generic (parent) deterrninistic
multifractals or uniforms do not have power-law power spectrum scaling. And if
fractal interpolating functions of increased dimensions are used, the derived
measures tend to absolutely continuous distributions and limiting Gaussians [Puen-
te, et al, 1996] whose dynamic properties yield only negative Lyapunov exponents.
What the results suggest is the possibility of defining a wholistic language to
approach the complexity of a vast c1ass of natural sets via projections of
deterrninistic functions whose parameters, when set in suitable ranges, yield derived
measures whose dynamic behavior may be "chaotic" or "stochastic."

5. Final remarks

The vast range of derived measures that may be generated via the geometric
procedure and the unexpected results presented herein hint that Plato's caveman
metaphor may be the basis for developing a new vision to understand the intricacies
of many data sets which otherwise would be c1assified as complex and "random".
A detailed analysis (inc1uding an extensive statistical analysis) on the data sets
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that may be generated via the geometric procedure, the Fractal-Multifractal (FM),
is also presented in [Obregón, 1998].
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