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Abstract:

Objective: e objective of this paper is derived from a theoretical analysis of the application of support vector machines to the 
design and management of agri-food chains. is analysis is conducted using an empirical approach to predict of the level of 
integration in agri-food chains by support vector machines.
Materials and Methods: e methodology designed and utilized to process the research results, which consists of the training of 
support vector machines, is employed to predict the level of integration in an agri-food chain. is type of predictive application 
appears in the reviewed literature on the integration of agri-food chains.
Results and Discussion: e analysis is performed by comparing the proposed method with a neural network technique. e 
research results focus on predicting the level of integration in agri-food chains using vector machines.
Conclusions: e study provides a support vector machine model that is applied to other case studies and therefore allows for the 
prediction of outcomes. e paper also compares two techniques that share the goal of prediction, as applied in different contexts 
Keywords: supply chains, prediction, food and vectors.

Resumen:

Objetivo: El objetivo de este trabajo se deriva de un análisis teórico de la aplicación de las máquinas de vectores soporte al diseño 
y gestión de cadenas agroalimentarias. Este análisis se realiza mediante un enfoque empírico para predecir el nivel de integración 
en cadenas agroalimentarias mediante máquinas de vectores soporte.
Materiales y Métodos: La metodología diseñada y utilizada para procesar los resultados de la investigación, que consiste en el 
entrenamiento de máquinas de vectores soporte, se emplea para predecir el nivel de integración en una cadena agroalimentaria. 
Este tipo de aplicación predictiva aparece en la literatura revisada sobre integración de cadenas agroalimentarias.
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Resultados y Discusión: El análisis se realiza comparando el método propuesto con una técnica de redes neuronales. Los resultados
de la investigación se centran en la predicción del nivel de integración de las cadenas agroalimentarias mediante máquinas
vectoriales.
Conclusiones: El estudio proporciona un modelo de máquina de vectores soporte que se aplica a otros casos de estudio y, por tanto,
permite predecir resultados. El documento también compara dos técnicas que comparten el objetivo de la predicción, aplicadas
en contextos diferentes
Palabras clave: cadena de suministro, predicción, alimentos y vectores.

Introduction

Agri-food chain integration is currently a challenge because agri-food products are perishable and consumers
are highly demanding. Food chains are a strategic area of permanent interest[1]. An agri-food chain should
be understood as the processes that are carried out from supplies and raw materials to production and the
reception of products by consumers. is chain includes the stakeholders, the stages, factors and costs of
production, industrialization and the distribution of agricultural goods, covering both direct and indirect
activities [2].

Agri-food chains comprise production, processing and logistics entities that are focused on obtaining
products and services in the food industry. In general, a company or institution that is part of the agri-food
chain itself acts as its coordinator, which must be supported by a legal framework [3]. In agri-food chains,
the logistical problem lies in the coordination of supplies, from the inputs needed to secure the harvests as
primary production to the processing technology, packaging, and inputs needed for industrial production
(such as seasonings, additives, preservatives, binders, and cleaning products)[4].

Currently, chain integration is a key factor in enhancing the competitiveness of the chain and its
stakeholders [5]. Chain integration is an indispensable element for achieving shared goals and high
positioning. Consequently, studies of chain integration continue to be interesting, fundamental and
necessary. An important characteristic of agri-food chains is the varied and combined demand for their nal
products, accompanied by various services. End and intermediate consumers are continuously inuenced
by various variables that determine the amounts to be produced in each link of the chain. Analyzing their
behavior on the basis of mathematical models facilitates the planning of each entity or company and adjusts
its production [5].

ese elements, in addition to the traceability and agility necessary for products to last over time, oen
lead to the premature adoption of decisions. For this reason, it becomes necessary to use tools that enhance
prediction, considering the variables and parameters that inuence the management of each supply chain.
As a result, the objective of this paper is to predict the level of integration in agri-food chains using support
vector machines in three different contexts, namely, an agri-food chain of tomato sauce production in Cuba,
an agri-food chain of chocolate bars and an agri-food chain of cow milk; the latter two are located in the
Ecuadorian Amazon. e rst chain is established in the context of extensive production in a centralized
economy. e remaining two chains are established in the context of small farms linked to the achievement
of greater production and sales volumes.

e importance of this research lies in its methodological contribution, as it results in a support vector
machine model that can predict integration to facilitate decision-making in different contexts. ere is also a
social contribution, consisting of the possibility of making decisions in anticipation of the possible needs of
consumers. e direct antecedent of this research is related to the prediction of chain integration in Muñoz
et al. (2020), although neural networks are employed [6].

is document is structured as follows: Section 2 presents a theoretical analysis of the application of
support vector machines to agri-food chains, including a general description of the countries where the
integration model was applied (subject of study). Section 3 discusses the materials and methods employed
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to predict agri-food chain integration. e analysis results are shown in Section 4, while Section 5 presents
the discussion and conclusions of the research.

Applications of Support Vector Regression Machines (SVR)

is section analyzes the applications of support vector regression machines in supply chains, with the
objective of identifying the main gaps that made this study possible. Regarding the application of this
technique to agri-food chains, 123 articles were found in the Scopus database covering the period from 2003
to 2020 (Table 1).

TABLE 1.
Analysis of issues related to support vector machines in chains

Source: e Authors.
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Of these studies, 5.69% focus on the application of support vector machines to the problem of integration
in supply chains, which is the objective of this research. For example, [120-122] discuss the diagnosis and
collaboration relations of stakeholders in the supply chain, while [123] addresses their joint performance.
Although in recent years, studies have focused on forecasting demand, the studies of [124] also cover learning
methods for the design of new integration strategies in the proposed forecast system, ensuring a signicant
improvement in the supply chain. Nevertheless, the study of integration continues to be an important aspect
of decision-making in supply chains, mainly food and food byproduct chains.

Preliminary research works related to the subject of this study

Based on the applicability of support vector regression machines to different variables of the supply chain,
an integration gap was identied. en, the authors employed the methodology proposed by Sablón [4] to
assess the level of integration. is algorithm is applied to supply chains of various countries, products and
scopes (Figure 1).

FIGURE 1.
Countries where the level of integration methodology is applied to agri-

food chains 
Source: is graph was created on the basis of the results and

research articles by Sablón and his collaborators from 2013 to 2021.

Materials and methods

is section describes the integration calculation methodology as a traditional estimation model and the 
support vector regression techniques for integration prediction.

Methodology to calculate the level of integration

is methodology is explained in detail by Sablón et al. (2021) as a traditional estimation model. e 
following variables are calculated: strategy, information, planning, purchases, inventory, transportation and 
collaborative performance. ey are disaggregated into items evaluated by using a 5-point Likert scale, 
which is an ordinal scale, in which 1 point corresponds to the lowest rating and 5 points corresponds to the 
highest rating.
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On the basis of the chain integration level (IL), it is possible to identify the joint strategies and objectives 
of the agri-food chain under study. Consequently, the need arises to assess the prospects of this integration 
level to anticipate possible market changes, so it is proposed to make predictions by using support vector 
regression machines.

Methodology for the training of support vector regression machines

e authors use the support vector machine training methodology of [125] to predict the level of integration 
in agri-food chains. is methodology uses algorithms to create a support vector regression machine and 
determine its parameters.

Nonlinear Case

In the search for the general form of the regression function as a linear function, the following set is 
considered:                                                                                                                                       will be the function that 
establishes a correspondence between each input value x and a value in the feature space F, where F is a 
Hilbert space. This feature space can be high-dimensional or even infinite-dimensional. The function is 
expressed as follows (equation 1):

(1)

C = So margin cost parameter - (function used for training or as a training set)
x = Independent variables
w = Weight vector
f (x) = Objective function
ϕ = feature function
b = KKT (Karush-Kuhn-Tucker) complementary conditions
e primal problem, in this case, does not depend directly on the examples of the set but on its images by

the given function ϕ (equation 2).

(2)
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C = So margin cost parameter - (function used for training or as a training set)
ε = Margin parameter
x = Independent variables
y = Dependent variables
w = Weight vector
f(x) = Objective function

 = Dual variables
ϕ = Feature function

e complexity of this problem lies in the dimension in which the examples are located. Aer being
transformed by the function ϕ, the examples could become very high-dimensional, which would greatly
complicate providing a solution to the primal problem. en, the associated dual problem is formulated as
follows (equation 3):

(3)

C = So margin cost parameter - (function used for training or as a training set)
ε = Margin parameter
α = Lagrange multipliers
x = Independent variables
y = Dependent variables

 = Dual variables
ϕ = Feature function

Kernel trick

¿Could we solve this problem without explicitly recognizing the function ϕ? e answer is yes. Aer 
formulating the dual problem, it was observed that the objective function depends only on the inner product 
of the images of our examples. e kernel trick algorithm is widely employed in 
inner product calculation algorithms of the form       in the feature    space       
[126].
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e trick consists of the notion that, instead of calculating these inner products 
in     , what is actually used for the calculation, due to its possible high dimensionality, is to define a 
kernel function,                                   , which assigns a real value to each pair of input space elements X. 
That real value corresponds to the scalar product of the images of said elements in the new space

Where ϕ: X → to apply the kernel trick for this type of problem were [125].
e problem to be solved by applying the kernel trick. Once the kernel is set, it is used to solve the problem.

(Equation 4):

(4)

with the prediction function (equation 5):

(5)

ε = Margin parameter
α = Lagrange multipliers
x = Independent variables
y = Dependent variables
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f(x) = Objective function
Dual variables

ϕ = Feature function
C = So margin cost parameter - (function used for training or as a training set)

=Hilbert space or feature space
b = KKT (Karush-Kuhn-Tucker) complementary conditions
K = Kernel
xi,x = Arguments

Kernel function

An inner product in the feature space has an equivalent kernel in the input space:

[126] 
e peculiarity of kernel functions leads to the denition of the function

     as nitely positive semidenite if it is symmetric, and the matrices composed of any nite 
set of space X will be positive semidenite. is denition does not require that X be a vector space.

eorem:: The function K∶ X ×X → R, may be either continuous or have a finite domain. It is broken
down into (equation 6):

either continuous or have a nite domain. It is broken down into (equation 6):

(6)

K = Kernel
ϕ = Feature function
x,z = Arguments with a given feature function ϕ in a Hilbert space     applied to the 0 arguments and 
followed by an evaluation of the inner product in     if and only if K is finitely positive semidefinite. 

Given the function K that satisfies the previous condition, that is, that it is finitely positive semidefinite, 
the corresponding space     is referred to as the Hilbert space reproduced by the kernel [127]. (equation 
7):

Kernel types Polynomial

(7)

Gaussian Radial Basis Function
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(8)

K = Kernel
x, x', z = Arguments
d = Kernel degree
s = Dimension of the original input space
R = Dimension
K = Kernel
x, x' = Arguments
γ = Shape parameter, which has three parameters. Optimal parameters (C, ε y γ) are not known.

Exponential Radial Basis Function

(9)

K = Kernel
x, x' = Arguments
σ = Real Variable
γ = Shape parameter, which has three parameters. Optimal parameters (C, ε y γ) are not known (equation

10).

Multilayer or Sigmoid Perceptron

(10)

K = Kernel
x, x' = Arguments
σ = Real Variable
γ = Shape parameter, which has three parameters. Optimal parameters (C, ε y γ) are not known.
e application of the procedure described above is performed in the RStudio IDE (integrated

development environment) program of Neuralnet. First, the integration level (IL) is calculated by the
traditional method in three different contexts, and then, the results are predicted using support vector
machines. Aerward, the results are compared. (equation 11).

Results

e support vector regression machine forecasting procedure is applied to the three chains under study, to
identify the differences in the application for integration estimation.



Ingeniería y Universidad, 2023, vol. 27, ISSN: 0123-2126 / 2011-2769

Application 1: Agri-food chain of tomato sauce

e agri-food chain under study comprises six links and 22 stakeholders and is classied into the following
entities: suppliers of inputs for agriculture and the industry; farmers grouped in cooperatives; food
processing entities located in different territories; warehouses of the focal company and the aforementioned
stakeholders; the tomato importer that acquires the products that cannot be supplied by the national
industry; the focal company that in this case is also the commercial chain; the points of sale, which are
the stores of the retail network; and the end customers. is is a national chain with an average level of
collaboration. Input suppliers provide machinery and raw materials, and there is only one stakeholder within
the study area. Tomato is the main raw material used for the production of tomato puree and its by-products,
which poses a problem centered around 85% availability and 50% variety of the main product.

Aer identifying the chain stakeholders, the authors applied the checklist to evaluate the level of
integration. Additionally, the value of applying the checklist was analysed in addition to the input and output
variables. e real values and the estimates, accounting for 30% of the data used to test the model, which
include negative estimators, constitute preliminary results whose ranges must be adjusted. e execution
time of the learning algorithm of the support vector machines is 3 seconds. is result demonstrates the
performance of the second in relation to time. e estimated results of the resulting variable (Table 2) show
that the vector model makes better estimates of the input variables in the rst layer.

To evaluate the support vector machine model, 30% of the data, which were not part of the machine
training data, were utilized. e model was applied, and the values were estimated through the process
explained above. e estimators were compared with the real values, and the Spearman correlation coefficient
was calculated to establish that the data have similar values and are the closest to 1 or -1. Regarding correlation,
the result for this chain is 0.04783165, which is low (Figure 2).
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TABLE 2.
Results of the NI resulting variable of the tomato supply chain

Source: e Authors.
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FIGURE 2.
Regression coefficient

Source: e Authors.

Application 2: Agri-food chain of chocolate bars

e chocolate chain of the Ecuadorian Amazon consists of ve links, nine industries and four collection
centers. is chain is centered around the production of chocolate bars of various concentrations, but the
study was delimited to the geographical area of the Ecuadorian Amazon, which is where sowing, harvesting
and gathering take place. Processing and sales do not occur in this region. e chain under study has a
basic level of integration that demands research on logistics, product design, legal agreements between two
stakeholders, certied suppliers, and industries that respect product brand and brand development.

e estimated results of the resulting variable are shown in Table 3. ese estimators were compared with
the actual values, and the Spearman correlation coefficient was calculated. Regarding correlation, the result
for this chain is 0.85172292, which is high (Figure 3).
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TABLE 3.
Results of the NI resulting variable of the chocolate supply chain

Source: e Authors.
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FIGURE 3.
Regression coefficient of the chocolate supply chain.

Source: e Authors.

Application 3: Agri-food chain of cow milk

e supply chain in Puyo city, which is located in the Pastaza province of the Ecuadorian Amazon region,
comprises thirteen stakeholders grouped into four links: suppliers, producers, sellers and consumers (13
stakeholders). e level of integration is low, and the most decient variable is the evaluation of stakeholder
performance. In the chain under study, the stakeholders that show the greatest weaknesses are the livestock
farmers and markets (sellers). e estimated results of the resulting variable are shown in Table 4. e
estimators were compared with the real values, and the Spearman correlation coefficient was calculated.
Regarding correlation, the result for this chain is 0.94989064, which is high (Figure 4).
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TABLE 4.
Results of the NI resulting variable of the milk supply chain

Source: e Authors.

FIGURE 4.
Regression coefficient of the milk chain

Source: e Authors.

e results reveal that the tomato chain has a low correlation coefficient, and the proposed model is not
good for prediction in this case (Table 5) due to the few values included in the study.
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TABLE 5.
Correlation coefficient results.

Source: e Authors.

Discussion

e study of integration in supply chains and its prediction were analysed in an article by Muñoz [6]. e
difference between this article and the previously mentioned article lies in the use of a different technique
for integration prediction. In the article by Muñoz, neural networks were applied, while in the previously
mentioned article, support vector machines were utilized. In both cases, the proposed application was viable
for solving the problem, as shown in Table 6.

TABLE 6.
Results of the correlation coefficients of the two methods

Source: e Authors.

e support vector regression machine (SVM) and neural network (NNET) models have a good
predictive capacity when training the learning models. In the case of the chocolate bar chain, the NNET
correlation coefficient was 0.8867229, while the SVM coefficient was calculated at 0.8500268. In this case,
the NNET coefficient is better than that of the SVM. In the case of the milk chain, it was observed that
the SVM correlation coefficient is 0.9814307, which is a strong positive correlation that is superior to the
NNET correlation coefficient, which is 0.6533274. On the other hand, in the case of the tomato chain, the
correlation coefficient results are not very good in either of the two models because few data records are
available.

Irrespective of this nding, the results of both techniques were compared by using the Wilcoxon signed-
rank test, which is a nonparametric test. As a result, the test statistic was 0.5476, and the null hypothesis was
not rejected. ere are no signicant differences between the machine learning methods when comparing
the integration estimates of the chains under study. e number of NI estimates in the analysed chains does
not vary between the two prediction methods, namely, the support vector machines and neural networks,
and a 95% condence interval was applied for the mean of the estimates, according to the method (Figure 5).



Douglas Andrés Verduga-Alcívar, et al. Support Vector Machines for Predicting the Level of ...

FIGURE 5.
Comparison of significant differences between support vector

machines and neural networks for the prediction of chain integration
Source: e Authors.

It was observed that the 95% condence intervals overlap, thus conrming that the methods do not exhibit
signicant differences.

Conclusions

In the current context, the techniques for the prediction of integration in agri-food chains are necessary
for decision-making in different scenarios, considering the characteristics of the targeted products, namely,
food and its byproducts. erefore, this research was carried out using actual data for the application of an
integration prediction checklist. e results demonstrated the predictive capacity of support vector machines
in three agri-food chains in different contexts, in addition to the capacity to generate an SVR prediction
model, with the correct kernel and hyperparameter conguration, and the achievement of greater accuracy
than the standard multiple linear regression solution.

e study concluded that SVR calculation does not depend solely on the dimension of the input
space. erefore, it is suitable to solve a high-dimensional problem without having to address the curse of
dimensionality, which proves its generalization. In addition to the conguration of parameters, the SVR
model also depends on the training dataset, and there is no permanent solution for this task. is nding
is specically evidenced by the low Spearman correlation value in the cow milk chain. For future research,
the authors propose to compare the results of applying support vector machines in different agri-food chains
that may be of interest.
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