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Abstract:

Objective: e increasing use of articial intelligence (AI) in various elds has increased the need for a large amount of data. A 
device with adequate computational power is required to manage the data and produce an output with high processing speed 
and satisfactory accuracy. Moreover, the use of several embedded-system devices for neural networks (NNs) is constrained by 
low processor and memory capacity. Several embedded-system devices with improved processor capabilities have been developed 
for NN data processing. Materials and method: In this study, the capabilities of an embedded-system device for NNs in health 
applications was analyzed; namely, the detection of X-ray images of patients with pneumonia using a convolutional neural 
network (CNN) was tested. Two-dimensional CNN architectures with various parameters, including color depth, layers, 
lters, kernels, and quantization, were employed. e outcome was expressed in terms of accuracy, inference time, RAM, and ash 
consumption. Results and discussion: e results revealed a signicant positive association between all output metrics and the 
number of lters. However, in some situations, the RAM and ash utilization of the embedded system exceeded its capacity, 
making it unusable. isnding indicates that the inference time and memory are inuenced by the number of layers, lters and 
quantization. Conclusion:us, the use of embedded-system devices for CNN can be done with proper hyperparameter tuning.
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Resumen:

Objetivo: el creciente uso de la inteligencia articial (IA) en diversos campos ha aumentado la necesidad de una gran cantidad de 
datos. Se necesita un dispositivo con la potencia de cálculo adecuada para gestionar los datos y producir un resultado con una alta 
velocidad de procesamiento y con una precisión satisfactoria. Además, el uso de varios dispositivos de sistemas integrados para redes 
neuronales (NN) se ve limitado por la escasa capacidad del procesador y de la memoria. Se han desarrollado varios dispositivos 
de sistemas embebidos con capacidades de procesador mejoradas para el procesamiento de datos de redes neuronales. Materiales y 
método: en este estudio se analizaron las capacidades de un dispositivo de sistema integrado para redes neuronales en aplicaciones 
sanitarias; en concreto, se probó la detección de imágenes de rayos X de pacientes con neumonía, mediante una red neuronal 
convolucional (CNN). Se emplearon arquitecturas CNN bidimensionales con diversos parámetros, como profundidad de color, 
capas, ltros, núcleos y cuantización. Los resultados se expresaron en términos de precisión, tiempo de inferencia y consumo de 
RAM y ash. Resultados y discusión: los resultados revelaron una asociación positiva signicativa entre todas las métricas de salida y 
el número de ltros. Sin embargo, en algunas situaciones, la utilización de RAM y ash del sistema embebido superó su capacidad, 
haciéndolo inutilizable. Este hallazgo indica que el tiempo de inferencia y la memoria se ven inuidos por el número de capas, ltros 
y cuantización. Conclusiones: así pues, el uso de dispositivos con sistemas embebidos para CNN puede realizarse con un ajuste 
adecuado de los hiperparámetros.
Palabras clave: clasicación de la neumonía, sistema de IA integrado, tiempo de inferencia, cuantización.

Introduction

Pneumonia is a lung infection caused by bacteria, viruses, mycobacteria or fungi [1]. Common symptoms 
found in pneumonia patients are coughing, fever, shortness of breath, nausea, and vomiting [2]. Pneumonia 
diagnosis is made by listening to the sound of breathing, which is usually heavy and rumbling. e next step 
is to use X-ray technology to capture photographs of the chest region to observe the lung area. e location 
of the infection in the lungs is determined from the collected images to determine the area and degree of 
dissemination. Additionally, a patient's blood is typically examined in a laboratory to establish the cause.

One of the main causes of pneumonia is pollution [3], and in recent years, pneumonia has been caused by 
the COronaVIrus Disease of 2019 (COVID-19 )virus [4]. Pneumonia is a malignant disease that can lead to 
death. Pneumonia patients range in age from children to elderly individuals. In developing countries, patients 
with pneumonia do not receive effective treatment. e lack of effective treatment potentially contributes 
to the high mortality rate associated with this disease [5]. However, in developing countries, diagnostic 
equipment is expensive. Devices with high computational capabilities are available only in large hospitals in 
large cities. erefore, a tool to assist doctors in detecting pneumonia that is inexpensive, does not require 
complex treatment, can be used easily, and allows the device to be used as a data source, which is the core 
concept of edge computing (EC), is needed.

Pneumonia has been identied in multiple studies employing patient X-ray images and various 
methodologies. Several image-processing techniques have been applied, such as integrated lters, enhanced 
contrast, edge detection [6], and texture analysis [7]. Another approach is to use the Earth Mover’s 
Distance (EMD) to identify the infected lungs and normal lungs using the distance between two probability 
distributions [8]. Furthermore, to assist this analysis with a computer-aided diagnosis system, several studies 
have been conducted, including machine learning (ML) [9], deep learning (DL) [10]–[13] and ensemble 
DL [8], [12], [14], to improve the performance of CNNs. is ensemble DL combines several well-
known CNN model outputs during the experimental phase. Another CNN technique based on semantic 
and instance segmentation, called the mask region-based convolutional neural network (Mask RCNN), 
was applied to pneumonia X-ray images [15]. However, all these CNN approaches require prediction, 
detection, and classication. On the hardware side, this condition calls for additional components, such as 
the graphical processing unit (GPU) processor, to accelerate and alter images in memory [16], [17]. In this
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study, computing was performed on computer, and the deployment of DL to an embedded-system device
that does not have GPUs.

Several previous studies have used microcontrollers for machine learning (ML). A support vector machine
(SVM), k-nearest neighbor (kNN), and decision tree were deployed to the STM32 Nucleo Board [18].
To provide an automatic intelligent system, kNN was applied to the TI CC1110F32 microcontroller [19].
However, running DL on embedded systems that have limited capacity is still complicated because DL
applications require quick and precise data processing owing to the vast volume of input data [20]. e
physical size [21], data processing speed [22], memory usage [23], and electric power consumption [24]
are important factors in the development of embedded systems for DL. Several efforts have been made to
make complex calculations more efficient and reduce memory usage in DL by making adjustments to the
DL architecture [25]–[28] or changing variable parameters from 32-bit oats to lower parameter types, also
known as quantization [29], [29], [30].

Currently, sizable data are commonly sent from edge devices and processed in the cloud. e results are
then sent back to the edge. However, this process is time-consuming. erefore, a device that performs
processing directly on the edge is currently under development, which would save time [31]. is study
offers a further option for CNN applications in embedded systems by performing a variety of analyses of
pneumonia X-ray images on a number of input and output characteristics to determine whether they can be
used in embedded systems designed specically for AI. is analysis was also intended to provide a general
overview of the issues that may arise when a CNN is implemented in an embedded system. e selected
application was a medical-related application because current medical devices are required to be portable
devices that can be used anywhere.

Methodology

Dataset

e collected dataset was uploaded to the Edge Impulse Studio. e Edge Impulse Studio is an integrated
development environment for creating models of neural networks until deployment to target hardware,
which already integrates Python programming languages and TensorFlow. X-ray images were taken from
datasets that were shared in previous research [32]. e dataset contained X-ray images in JPEG format, and
the images were divided into two categories: normal and pneumonia. e dataset that was randomly selected
for this study consisted of 360 images for the normal category and 360 images for the pneumonia category
(bacterial and viral types). Of the 720 images, 576 (80%) were used for the training dataset, and 144 (20%)
were used for the test dataset. Preprocessing started with scaling, where the images were sized to 96 × 96
pixels (t shortest). en, the images were normalized to a oat value using the following formula:

(1)

In the Edge Impulse Studio, to reduce the color depth, ITU-R BT.601 conversion (Y only) was performed
to convert RGB to grayscale; for red green blue (RGB) color, the RGB565 format was used. e color depth
was reduced, which produced 9,216 grayscale features and 27,648 RGB features, as shown in Figure 1. e
Uniform Manifold Approximation and Projection for dimension reduction (UMAP) algorithm (UMAP:
Uniform Manifold Approximation and Projection for Dimension Reduction — Umap 0.5 Documentation,
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n.d.) was used to visually analyze the appearance of the dataset to determine its distribution, as illustrated
in Figure 2.

FIGURE 1
Preprocessing for training dataset images

Source: Own elaboration.

FIGURE 2
Visualization of the image dataset using the UMAP algorithm: (a) grayscale and (b) RGB

Source: Own elaboration.

System

e hardware used was an Arduino Nano BLE 33, as shown in Figure 3. e Arduino Nano BLE 33 contains
a 64 MHz nRF52840 32-bit CPU, 1 MB of ash memory, and 256 KB of RAM. Arduino Nano BLE 33
was chosen because it can perform NN processing using TensorFlow and TinyML with a minimal hardware
environment.
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FIGURE 3
General diagram of the performance analysis of CNNs in the embedded AI system platform

Source: Own elaboration.

Convolutional Neural Network (CNN)

As depicted in Figure 4, the CNN consists of three constituent layers: the convolutional layer, pooling layer
and fully connected (FC) layer. In the convolutional layer, the convolution process is performed on the basis
of the previous layer using the kernel to display a feature map [33], which can be described as follows:

(2)

where x is the output of the current layer, xI-1  is the previous layer, k is the kernel and b is the bias.

FIGURE 4
Architecture diagram of the 2D CNN, which consists of
3 convolution and pooling layers and 1 flattening layer

Source: Own elaboration.
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e pooling layer reduces the resolution of the input in the previous layer, thereby reducing the spatial
size of the representation. Reducing the resolution is intended to speed up the computation. e required
parameters are the lter size, stride, and max or average pooling.

Quantization

Quantization was applied to the CNN model to facilitate deployment on low-resource embedded systems.
Quantization means reducing the precision of a model's weights and activation. In this study, 32-bit oating-
point numbers were quantized for the weights and activations into 8-bit integers by posttraining quantization
(PTQ). Quantization reduces the model size and memory access and improves the computational efficiency
of low-precision enabled embedded hardware. e quantization process is illustrated by the equation below:

(3)

where q is the quantized value, r is the input in real-valued form, S is a scaling factor, and Z is an integer
zero point.

A linear symmetric PTQ was employed to quantize the model parameters and activations. is method
assumes that the value range is zero-centered; therefore, the need for a zero point is eliminated. Consequently,
the implementation complexity is low, and the computational complexity is reduced. Quantization begins
with the calculation of a scale factor, which is used to calculate the quantized values. Scale S was calculated
via the following expression:

(4)

where max and min are the maximum and minimum values of the parameter (such as weights or biases),
respectively, and b is the bit width used for quantization.

Metrics

In this study, the parameters used included accuracy, quantization, inference time, RAM utilization, and ash
usage. e proportion of accurate estimates throughout the entire dataset is the DL accuracy, and the formula
is as follows:

(5)
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where TP=True Positive, TN=True Negative, FP=False Positive and FN=False Negative. e number of
positive data correctly identied by the model was denoted by TP, the number of negative data correctly
identied by the model was denoted by TN, the number of positive data incorrectly identied by the model
was denoted by FP, and the number of negative data incorrectly identied by the model was denoted by
FN. e accuracy reects the overall performance of the model. Another metric used was quantization. In
this study, two types of numbers were evaluated: int 8 and oat 32. e inference time is the amount of
time it takes for a model to study test data and generate a prediction, and it typically excludes the training
time. However, the amount of RAM and ash memory required to accomplish data processing and matching
depends on their usage.

Experimental setup

Several experiments were conducted using a 2D CNN by varying the hyperparameters of the CNN. Various
combinations of parameters, such as color depth (Grayscale and RGB), number of layers (2 and 3), number
of lters (4, 8, 16, 32, 64 and 128), size of kernels (1, 2, 3 and 4) and number types (int 8 and oat 32),
were applied. Grayscale and RGB images were chosen to determine the effect of color on the inference time.
Moreover, the selection of the number of lters, which is a power of 2, and the kernel size are used to determine
the effects of the number of lters and kernel size complexity on accuracy, inference time, and memory
usage, considering that the memory on the board is limited. Because the models are deployed in resource-
constrained hardware and require real-time performance, the use of 8-bit quantized and 32-bit unoptimized
models needs to be considered. Furthermore, the results of these adjustments to the parameters, including
accuracy, inference time, and the utilization of RAM and ash memory, were evaluated.

TABLE 1
Training settings

Source: Own elaboration.

Results

Numerous output measures were obtained from the training outcomes. The output can also be displayed as 
a number using a 2-dimensional visual graph, as illustrated in Figure 5. e gure shows the data that 
were properly guessed as well as the wrongly guessed data. is visualization makes the analysis easier by 
providing a broad perspective of the position of the data, if shown on a graph.
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FIGURE 5
Examples of visualization of the full training dataset: (a) 16/32, 2 layers, grayscale,

3 layers, grayscale, kernel size of 3; (b) 16/32, 2 layers, RGB, kernel size of 3
Source: Own elaboration.

e CNN architecture, which consists of two layers and three kernels with grayscale color depth, and tests
with various lter pairings are presented in Figure 6. e ndings demonstrate that increasing the number
of lters in each layer improved the accuracy from 86.1% to 94.8%. Moreover, the inference time exhibited
exponential growth. is demonstrates that as the number of lters increases, the computational complexity
of the CNN architecture likewise increases, thereby lengthening the inference time. e RAM and ash
usage also increased as the number of lters increased for int 8, as shown in Figure 6a. e inference time
signicantly increased when the number was changed to 32, as shown in Figure 6b. Additionally, it results in
a large increase in RAM and ash memory. is reveals that lter 32/64 for both types of numbers and 16/32
for oat 32 use more RAM than does 256 K, which means that they cannot be deployed to NANO BLE 33.

FIGURE 6
2D CNN, grayscale, 2 layers, kernel size of 3 (a) int 8 and (b) float 32

Source: Own elaboration.

e RGB color depth, which has three times as many features as grayscale features do, yields nearly the
same results, as shown in Figure 7. e accuracy, inference time, RAM, and ash utilization increased as
the number of lters increased. e inference time, RAM, and ash utilization were clearly greater than the
grayscale color depth. is is understandable because of the large number of inputs. However, there is no
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change in the accuracy between the number types int 8 and oat 32. e RAM utilization in the 4/8 lter
for oat 32 is quite close to the NANO BLE 33 RAM's maximum capacity; therefore, it is not advised to use
it in this situation according to the RGB input. It is clear from the additional lters in this section that more
RAM is needed than the amount of RAM on the NANO BLE 33.

FIGURE 7
2D CNN, RGB, 2 layers, kernel size of 3 (a) int 8 (it demonstrates that because filter 32/64
uses more RAM than 256K does, and it cannot be deployed to NANO BLE 33) (b) float 32.

(It shows that in all cases, this model cannot be deployed since RAM usage is more than 256K)
Source: Own elaboration.

e addition of one layer to the architecture with color depth grayscale also increases the accuracy and
other output parameters, as shown in Figure 8. ere is an insignicant increase and even a decrease in
accuracy when layers are supplemented with a 128 lter. e other output parameters were also increased.
Compared with the grayscale architecture using two layers, the inference time is longer. However, the use of
RAM and ash memory is similar. ere is a signicant difference in the inference time, RAM and ash usage
when quantization is used without optimization. Similar to adding a layer to the grayscale input, this is seen
in various situations but cannot be used with NANO BLE 33 because it uses more RAM than is provided.
For example, on oat number 32 for type int 8, lter 32/64/128 and all other lters aside from lter 4/8/16.
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FIGURE 8
e 2D CNN, grayscale, 3 layers, and kernel size of 3 demonstrates that because the 32/64 filter uses
more RAM than the 256K filter does, it cannot be deployed to NANO BLE 33 (a) int 8 (b) float 32

Source: Own elaboration.

Figure 9 shows the output using the RGB input and three layers. e same tendency, that is, an increase
in all parameters, was also observed when the RGB input was used. In contrast to the grayscale input for
quantization, this had a smaller impact. With the same number of screens and grayscale inputs, it is clear
from the unoptimized number that the inference time varies signicantly. However, compared with the
grayscale input with the same number of layers, the RAM and ash utilization did not noticeably change.
e RGB input and the three layers exhibit nearly identical patterns for RAM utilization that exceeds the
RAM capacity and cannot be used with NANO BLE 33.

FIGURE 9
e 2D CNN, RGB, 3 layers, and kernel size of 3 demonstrates that because the 32/64 filter uses

more RAM than the 256K filter does, it cannot be deployed to NANO BLE 33 (a) int 8 (b) float 32
Source: Own elaboration.

e accuracy and use of RAM and ash memory improved little or not at all aer the kernel size was
increased. ere was an even decrease in the accuracy when the kernel size was 4. However, the inference time
appears to have signicantly increased for both the quantized and unoptimized values, as shown in Figures
10 and 11. e use of a kernel size of 3 resulted in the best performance. Additionally, the use of RAM has
no effect on the type of number without optimization (oat 32).
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FIGURE 10
Various kernel sizes of 2D 16/32 filter CNN, grayscale, 2 layers (a) int 8 (b) float 32

Source: Own elaboration.+

FIGURE 11
Various kernel sizes of 2D of 16/32 filter CNN, RGB, 2 layers (a) int 8 (b) float 32

Source: Own elaboration.

Discussion

Reducing inference time and memory usage is essential for embedded AI system applications, such as
agricultural and health surveillance edge devices placed in resource-constrained areas, to improve energy
usage and increase battery life. erefore, by adjusting the hyperparameters on the basis of the needs of a
given task, resource usage can be optimized without reducing the performance of the device.

To determine the signicance of the correlation between the output parameters, a correlation test was
performed using Pearson correlation, and the results are shown in Table 2. e table shows that the
correlations between accuracy and inference time and between RAM and ash usage are positive in the range
of 0.5–0.9, which means that an increase in the number of lters on the layer increases accuracy, indicating
a very strong positive correlation with other parameters.

e lowest correlation is seen in the use of accuracy vs. the use of ash on grayscale, type number int 8,
and layer 3 (e.g., r=0.558671), and the highest correlation is seen on grayscale, type number oat 32, and
three layers (e.g., r=0.928159). In layer 2, the correlation results of the 8-bit quantized numbers and 32-bit
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unoptimized numbers are not signicantly different. In layer 3, there is a signicant difference between 32-
bit unoptimized and 8-bit quantized numbers. However, the use of the 32-bit unoptimized model also results
in fairly large memory usage on embedded systems; therefore, it is necessary to consider its use on embedded
systems that have a small memory capacity. In this case, the use of an 8-bit model suggests high performance
at low computational and energy costs.

TABLE 2
Correlation of increasing lter number with various parameters using Pearson correlation

Source: Own elaboration.

Previous research has also examined the application of medical image recognition in embedded systems
using CNNs, which also reveals that computational and memory limitations should be considered, as shown
in Table 3. e use of embedded systems has been studied by researchers using CNN architectures or models
specically designed to be deployed in embedded systems with limited capacity [34]. Moreover, the use of
embedded systems such as minicomputers results in relatively fast inference times in medical applications
[35], but it consumes more RAM. Another approach is to use a special random-access memory (RAM)
architecture for a CNN to improve energy efficiency [36]. As an alternative, a eld programmable gate array
(FPGA) [37] has been used to perform specic classication tasks using CNNs with the aim of optimizing
image augmentation and preprocessing data with hardware limitations. e inference time was signicantly
faster, and the memory usage was relatively small. However, the use of FPGA requires special programming
skills.
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TABLE 3
Comparison of CNN implementation on medical devices

Source: Own elaboration.

Currently, several microcontroller devices can be used for relatively uncomplex AI applications at relatively
low cost. However, for relatively complex health applications that require high accuracy, minicomputers and
FPGA, which are relatively expensive, are still required. Another critical factor is the availability of electricity
in remote areas or whether the device is placed as a monitoring device. e solution that can be provided is to
use solar cells or other renewable energy sources, such as wind. erefore, a quantized model was developed
to reduce the electricity consumption of the devices. Likewise, devices must be equipped with an intuitive
interface, minimal maintenance and setup requirements, and a sturdy and robust casing to protect the device
from various conditions. Devices should also be equipped with a manual in the local language so that it can
be understood by users.

For future work, further research can be performed using advanced quantization techniques, such as
mixed-precision [38], to improve accuracy with low memory usage. Another alternative is to use network
pruning techniques [39] by eliminating redundant lters. Future research can also be conducted utilizing a
more intricate multiclass classication, various NN architectures, or a moving object to determine whether
embedded systems are capable of performing calculations with a higher level of complexity. In addition, real-
world validation is needed for various applications in the medical eld. is research can contribute to the
creation of inexpensive, portable and intelligent medical equipment.

Conclusions

In this study, the application of DL for pneumonia detection was analyzed using X-ray images from an
AI-based embedded system. Several input parameters, such as the number of layers, lters, kernels and
input features, were varied to determine how these changes would affect the output parameters, such as
accuracy, inference time, and RAM and ash usage. is was achieved by considering the limited memory
and microprocessor capabilities of the embedded systems.

e results showed that, in some cases, an increase in lter number can increase accuracy, but this comes
at the cost of increased inference time, RAM and ash usage. erefore, it is necessary to focus on the
correct conguration of the input parameters according to the capabilities of the embedded system without
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neglecting the output parameters. e use of the 32-bit unoptimized model also results in fairly large memory
usage on embedded systems, so it is necessary to consider its use on embedded systems that have a small
memory capacity.

In medical applications that require real-time and efficient decision-making, accuracy and inference time
are critical. e two variables must be considered when selecting and determining a model. is is because
medical applications are highly sensitive to various environmental conditions. Model optimization with
quantization or other techniques is essential for creating a precise AI-based pneumonia detection tool for use
in low-resource clinical environments.
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