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Abstract
In this article a methodology for a medical diagnostic 
decision support system to assess knee injuries is proposed. 
Such methodology takes into account that these types of 
injuries are common and arise due to different causes. 
Therefore, the physician’s diagnostic and treatment may 
lead to expensive and invasive tests depending on his 
medical criteria.
This system uses a surface Electromyographic (sEMG) 
and goniometric signals that are processed with signal 
analysis methods in time-frequency space through a 
spectrogram and a wavelet transform. Artificial neural 
networks are used as a learning technique by having a 
multilayer perceptron.
EMG signals were measured in four external and inter-
nal muscles associated to the joint through flexion and 
extension assessments. These tests also registered the 
goniometric measures of the sagittal plane. This system 
shows above 80% of effectiveness as a performance mea-
sure that makes it an objective measure leading to help 
the physician in his diagnosis.

Keywords: 
Knee injury; sEMG; ANN; goniometry; Wavelet Trans-
form 

Resumen
En este artículo se propone una metodología para el 
diagnóstico de lesión de rodilla, patología común y de 
múltiples causas. El diagnóstico y el tratamiento de las 
lesiones de rodilla se realizan por medio de valoraciones por 
parte de un profesional en el área, quien según su criterio 
puede solicitar exámenes invasivos y/o de alto costo. El 
sistema propuesto emplea señales electromiográficas de 
superficie (EMGS) y señales de goniometría, evaluadas con 
métodos de análisis de señales en el dominio del tiempo-
frecuencia como el espectrograma y la transformada wave-
let. Como técnica de aprendizaje de máquina se emplean 
redes neuronales artificiales, por medio de un perceptrón 
multicapa. Las señales EMGS fueron tomadas en cuatro 
músculos internos-externos asociados a la articulación, 
por medio de exámenes físicos de flexión y extensión, en 
los cuales se registró, además, la goniometría en el plano 
sagital. Con este sistema se obtuvieron rendimientos 
superiores al 80 % en la efectividad como medida de 
desempeño, por lo cual esta propuesta se constituye en 
una solución objetiva que puede darle más elementos de 
juicio al profesional para el diagnóstico.

Palabras clave: 
Lesión de rodilla; EMGS; RNA; goniometría; transfor-
mada wavelet
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1. Introduction
The knee injuries are due to different causes such as accidents that can have 
an occupational origin i.e military or sports [1]. There are also injuries due to 
degenerative diseases including knee osteoarthritis (OA). Regardless of the type 
of knee injury, a distortion leading to movement limitation may be present [2], 
therefore, physiotherapy and rehabilitation treatments are needed. These treat-
ments may require the use of different elements such as prostheses, wheelchairs, 
crutches, orthoses, exoskeletons in order to overcome the limitation to a certain 
extent. These include pain reduction, normalize mobility, build muscle, etc, and 
therefore, improve the quality of life. A study that reports 17,397 patients suf-
fering 19,530 sports injuries in a 10 year span has been published. It showed 
that 6,434 (37%) had 7,769 injuries (39.8%) related to the knee joint [1].

Techniques for diagnosing and assessing the knee condition include interpreta-
tion of joint symptoms (presence of pain, functional loss or swelling), scanning 
and physical inspection of the knee by using varus stress test, the Lachman test 
at 30°, posterior drawer test at 90°, slump test, or the McMurray test. How-
ever, these treatments depend on the criteria of the rehabilitation professional. 
Radiographic examination is another technique for assessing knee condition, 
although, it is not decisive in the diagnosis. Both arthroscopy and biopsy are 
invasive techniques, the former allows joint assessment through photography, 
and the later allows biochemical analysis and Magnetic resonance that although 
effective is quite expensive [3]. Finally, electromyography (EMG) measures and 
records the signals of muscle activation [4], and plays a fundamental role in the 
diseases assessment, along with other clinical processes since they show typical 
signs of the existence of some form of myopathy [5]. Some studies [6] and [7] 
may show EMG signals associated to speed, acceleration or dynamic analysis 
of the joints.

There are several muscles involved in the biomechanics of the knee and they 
serve to perform different movements. Such movements may become altered due to 
any pathology. The flexion-extension movement measure has shown some pairs of 
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muscles directly involved in such movement, for example the rectus femoris muscle 
(RF) that is the knee extensor and flexor hip, the vastus medialis muscle (VM), that 
serves extension, biceps femoris muscle (BF) as well as Semitendinosus muscles (ST) 
that are involved in knee flexion, the medial or lateral rotation and hip extension [8].

EMG has been used to diagnose neuromuscular [9] disorders and kinematics 
has been used to explore the joint anatomically [10]. Both EMG and kinemat-
ics through EMG signals and goniometry respectively lead to analyze muscle 
activation of movements including [11] squat [12], standing and sitting [13]. 
The question arises linking EMG analysis and kinematics. Could this proposal be 
used to diagnose the functional status of the knee and support medical diagnosis 
regarding treatment and outcome in case of injury, if considering characterization 
methods and Machine Learning techniques that biomedical equipment can fit?

2. Materials and methods
This study develops a methodology by using signal processing and Machine 
Learning techniques to have an automatic classification between an injured 
knee and a healthy knee. A standardized measurement protocol serves to obtain 
specific features of the EMG and goniometry signals. These signals are analyzed 
with these techniques.

2.1. Electromyography (EMG)
An action potential is generated if a nerve muscle is activated through an ap-
propriate stimulus (threshold). The action potential is a brief flow of ions across 
the cell membrane. An axon can transmit action potentials generated by an 
excited cell from one cell to neighboring cells. An electric field is produced and 
spread through the biological tissue due to a large number of cells activation. 
This phenomenon is explained with an Electromyography [14].

The neuromuscular junction (NMJ) is the system responsible for the transmis-
sion of electric activity in motor nerve terminal (neuron) to muscle membrane. 
This is possible with a synaptic cleft to produce muscle contraction. The mo-
tor neuron and the muscle fibers that innervate constitute a functional unit; 
this in turn results from recurrent discharges of groups of muscle fibers called 
motor units (MU) [15]. EMG signals are those electrical signals detected due to 
the electrical potential difference, when a muscle is activated by using a needle 
electrode or a surface electrode. The latter is called surface electromyography 
(sEMG). An EMG signal is composed of a mixture of action potentials motor 
unit (MUAPs). Signals can show different degrees of muscle activity. When 
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the force of contraction increases, the MU are triggered and the EMG signal 
becomes complex. This makes individual MUAPs unlikely to be easily identified; 
unless a large amount of needle sensors are simultaneously used on different 
muscles. Although this may make the patient feel uncomfortable, this signal is 
recognized as the interference pattern (IP). IP analysis serves to describe muscular 
activity, muscular fatigue, chronic muscle pain, and to diagnose patients with 
neuromuscular disorders [9], [15]. sEMG is a noninvasive technique for assessing 
and recording the activation signal of muscles by the use of electrodes. sEMG is 
recommended for biomechanical analysis, gait analysis, muscle fatigue studies, 
etc. since it allows to study muscle activity in dynamic actions and to analyze 
different muscles in movement. The analysis of sEMG signals provides ampli-
tude and frequency parameters for descriptive and comparative studies [16].

2.2. Participants
11 male participants older than 18 years were tested. All of them had been diag-
nosed of a knee disease in one of their knees by a professional and had not started a 
rehabilitation process. Six participants had injury to the anterior cruciate ligament 
(ACL), four participants had meniscus injury and one participant sciatic nerve injury. 
Tests were performed at BATALLON DE SANIDAD DEL EJERCITO NACIO-
NAL OF COLOMBIA and Tecnoparque SENA, Manizales venue. A control group 
of eleven participants with no knee injuries or pain also participated in this study.

2.3. Instruments
The Datalog MWX8 electromyography was used in this study. This electro-
myography has a Bluetooth link to collect signals and data from a wide range 
of sensors including goniometers, torsiometers, accelerometers, etc. and an 
acquisition software to record and store data in real time.

The SG150B goniometer measures angles in flexion-extension, it includes 
2 channels, accuracy of ±2° measured of an interval ±90° that works between 
10 ° C and 50 ° C, and has a weight of 28 grams. This goniometer is standard-
ized and compatible with the signals recorded by the datalog MWX8. Surface 
electrodes, 20mm spacing between electrodes, high input impedance, more 
than	10	MΩ	(allowing	sampling	without	requiring	a	conductive	gel),	sample	
rate 1000Hz, 14-bit resolution and it works on a bandwdith between 20 and 
460 Hz7.

7 http://www.biometricsltd.com/datalog.htm
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2.4 Physical test: Kinematic data acquisition and sEMG
A goniometer was used to have the kinematic data acquisition. This allows mea-
suring the angle of flexion-extension exercises. An electromyography measures 
sEMG, both measures are simultaneously while the exercises described below 
are performed: surface electrodes are fixed by a professional therapist in the 4 
affected muscles. These electrodes are fixed in muscle fiber orientation in their 
most prominent area and the goniometer is placed on the external side of the 
knee joint. The 3 physical tests are chosen because they are common exercises 
in diagnosis, they do not use extra weight with weights, dumbbells, fitness 
equipment, etc. which would affect the speed and acceleration [17]. Comfort-
able clothing is worn in order not to interfere with measurement equipment. 3 
minute pauses are between each exercise.

Signals sEMG in leg movement for open simple movement in chain kine-
matics (sitting). Physical test is performed at different times, bench sitting, 
back straight and maximum thigh support on the bench, feet in the air (no 
shoes). Physical test is repeated 4 times per participant. Moment 0 - 90° at rest 
(no contraction) for a period of 2s. Moment 1 - Movement extension: lower limb 
raises in a smooth, continuous motion, no additional load to achieve the greatest 
possible extension (0°) (t = 2s). Moment 2 - Keep the extension for two seconds. 
Moment 3 - Movement flexion to return to the initial position (t = 2s) in one 
smooth motion time. Moment 4 no contraction (t = 3s), total time of sitting 
exercise (t = 36s).

The Figure 1 depicts an example of two physical tests regarding the sitting 
and standing position.

Figure	1.	Open	and	simple	kinematic	chain	(siting	and	standing)

Source: authors’ own presentation
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2.4.1. sEMG in leg movement in simple kinematic chain (Standing)

Physical test is repeated 4 times per participant. Moment 0 – at rest at 0° (no 
contraction) for a span of 2s, standing (upright) both feet on the ground as sup-
port (no shoes) upright, no bending the spine, holding onto a chair for balance. 
Moment 1 – flexion motion: lower limb rises slowly (no extra load) to achieve 
maximum flexion (90° - 120° approx) (t = 2s), no movement of the top of the leg; 
only the knee. Moment 2 – keep position (t = 2 s). Moment 3 – flexion move-
ment is slowly performed to return to the initial position (t = 2 s). Moment 4 - No 
contraction (t = 3s), total time of foot exercise (t = 36s).

2.4.2. sEMG in leg for simple gait

Moment 0 – at rest at 0° (no contraction) for a 2s period, standing (upright posi-
tion) both feet on the ground as support (no shoes), straight position no bending 
the spine, then four steps starting with the right foot. Both feet together as at 
rest position at 4th step, turn 180 °, wait 2s, and perform moment 1. Moment 1 - 
at rest (no contraction) for a 2s period, standing (upright position) both feet on 
the ground as support (no shoes) straight position no bending the spine, then 
four steps starting with the left foot on a regular and flat surface, (t=14 s) as 
total time of gait exercise.

The physical tests exhibit five signals for each participant in each muscle test: 
4 EMG measured for each muscle and the last signal measured by the goniometer. 
This depicts the angle of motion of the knee sagittal plane. That is, for every 
test participant 15 signals were recorded. It means 15 signals recorded by par-
ticipant. Although, these signals were conferred by an International repository, 
now they are part of the Automatic research group of the Autonoma University8.

2.5. Signal processing
After having sEMG, the signal was filtered taking the flexion and extension 
moments that the goniometry shows. They may have a variable size due to the 
speed displacement of each participant. Equipment entries are set to ± 3 mV, 
where sEMG signals in any sample exceeds 2mV. This ensures no saturation of 
the ADC. A second order Chebyshev filter is applied to remove signals that are 
outside the extent of the electromyographic signals between 20Hz and 460Hz. 
Attenuation ripple (Rp) is 3 dB and attenuation of unwanted signals (Rs) is 

8 http://archive.ics.uci.edu/ml/datasets/EMG+dataset+in+Lower+Limb
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40dB. The filtered signals and the original ones exhibit no major change due 
to the default filter that the measuring equipment has, however, this procedure 
was performed to avoid unwanted signals that may affect their characteriza-
tion. Goniometer signal received a general smoothing generally known as 1-D 
denoising, which is given by

s(n) = f (n) + w(n)

Where n = 0,1,2,…m – 1, w(n) is the White noise Gaussian generated and 
f(n) is the expected signal of goniometry.

2.6. Characterization of the EMG
The literature [9] and [18] states that EMG processing in frequency domain 
as well as in time-frequency techniques lead to apply such techniques to obtain 
relevant signals. This is to classify functional conditions of the knee.

Normalization of a Standard Normal Distribution in sEMG records was 
implemented (where the mean (μ = 0) and standard deviation (σ = 1)). The 
following features for normalized EMG records are calculated by using the fol-
lowing expression:

P (x) = |SSTFT (x)|2

Where P(x) is the Power Spectral Density, and SSTFT (x) is the estimated 
spectrogram obtained from a Hamming window of length of 8 samples and 
overlapping 7 samples. Components of relevant frequency can be captured 
through the length of the window [19].

It is well known that frequency components of the signal on a frequency 
range between 20 and 250 Hz are relevant [19]. These are extracted from P(x) 
for each time span and normalized in order to obtain 2 features that correspond 
to the total concentration of power in the movement performed (v1), and are 
estimated 400 ms as distance between two maximum peaks of the EMG signal. 
These correspond to the minimum time it takes muscle stimulation (v2). With 
the EMG (x (t)) signal range (v3) is gotten, and the maximum of | x | (v4).

Average frequency MNF (v5) is estimated and can be expressed as

1

1

M
j jj

M
jj

f P
MNF

P
=

=

= ∑
∑
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Where Pj is the power spectrum of sEMG signals at frequency j (fj) [20]. 
Median Frequency (MDF) (v6) is estimated and can be expressed as [20]:

1 1

1
2

MDF M M

j j j
j j MDF j

P P P
= = =

= =∑ ∑ ∑

It has been shown that v5 and v6 features are quite useful for recording cyclic 
dynamic contractions especially as an indicator of fatigue [20].

2.6.1. Wavelet analysis 

The mother wavelet function ψ (t) defines the wavelet ψa,b(t) through joint 
operations of scale and translation change as defined [21]:

,
1( )a b

t bt
aa

ψ ψ − =   

Where a represents the scale change and b the translating change.
If mother wavelet function ψ (t) is real, then the family of functions defined 

by translation and scaling up make a comprehensive database of space. There-
fore, any function can be represented by a linear combination of the functions 
ψa,b(t), calculating the coefficients of the decomposition in the form of the scalar 
product [21].

There are various types of mother wavelet that fulfill the above conditions, 
the most notable ones are the types of Haar, Morlet, Daubechies wavelets [22].

Daubechies mother wavelet type 4 (DB4) is applied to each EMG signal in 
the muscle. This has a good performance for sEMG analysis. This function 
serves to extract the peaks of the wavelet transform that are generated by a set 
of MUAP of the EMG signal. The decomposition is generally used between 3 
and 5 levels [23].

With these attributes, 11 peaks obtained from the following transforms are: 
1 maximum of approximation coefficients 4, 1 maximum of detail coefficients 4, 2 
maximum of detail coefficients 3, 3 maximum of detail coefficients 2 and 4 maximum 
of detail coefficients 1 (v7:17). Means and variances of the detail coefficients of 
the 4 levels and the coefficient of approximation (v18:27) were also obtained. 
27 features are taken for each of the four muscles of each participant with a 
total of 3 muscle tests. This means, a matrix of 11 x 27 for the control group and 
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the same size for participants with any of the knee pathologies above mentioned. 
The following is the standard set which represents the characteristics of sEMG:

27j
iV ∈

Where i = {1,2, …, 22} corresponds to the number of test participants and 
j = {1, …, 4}  are the four muscles registered.

2.7. Characterization of movement signals
Angular speed and acceleration serves to extract the displacement signal through 
a goniometer. Taylor9 theorem was used to obtain the 2 signals. The first deriva-
tive provides speed and its derivative results in acceleration.

With the 3 movement signals, displacement, speed and acceleration, 12 
goniometry features are identified (GF): μ, σ2, maximum and minimum of 
the 3 movement signals. The standard set representing the characteristics of 
goniometry is defined by

12
iGF ∈

Features V and GF are normalized by using a Standard Normal Model.

2.8. Classification
An ANN served to classify the experimental and the control group. The inputs 
are a number of combinations of the features sEMG V of ST, RF, VM and BF 
muscles and GF also lead to observe the relationships between the proposed 
combinations and the influence of goniometry on sEMG.

Four combinations of muscles are proposed: external, internal and crossed 
muscles, each combination with GF. External (VRF, VBF, GF), internal VVM, 
VST, GF), and external-internal crossed (VRF, VST, GF) and internal-external 
crossed (VVM, VBF, GF).

2.8.1. Artificial Neural Network (ANN)

ANNs are simplified models of biological neural networks. They function as 
a parallel distributed and connected processor that stores some experimental 

9 Theorem that gives an extraction of  polynomial approximations of  a function at a given point of  a differentiable func-
tion. [24].
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knowledge. The ANNs use a nonlinear transfer function and a linear combination 
of inputs and weights that correspond to adaptive coefficients of such linear com-
bination. Each neuron can be described as a series of functional transformations 
that include synaptic connection, a polarization and an activation connection 
[25]. The set of synaptic connections is given by M linear combinations of the 
input variables x

1
,. . . , X

D
 of the form [25], 

(1) (1)
0

1

D

j ji j
i

a w ω
=

= +∑

Where j = 1, …, M, and the superscript (1) indicates the appropriate pa-
rameters that correspond to the first layer of the network. The (1)

jiω  are weights 
and the parameters (1)

0jω  are constants of polarization. The parameter aj is known 
as activation, and a differentiable nonlinear activation function transforms each 
activation, zj = h(aj)

The zj outputs are the response of the called hidden units. The nonlinear 
functions h(·) are usually chosen as sigmoidal functions. Values are again linearly 
combined to obtain the activations of the output units [25],

(2) (2)
0

1

M

k kj k
j

a ω ω
=

= +∑

Where k = 1, …, K and K is the number of outputs. This is for the second 
layer network.

The ANN used in this study is a perceptron with one hidden layer, that is 
trained with the backpropagation algorithm. The training data is 70%, 15% 
for the validation and 15% for the test [26]. 10 neurons are set in the hidden 
layer and a 6 training epoch is performed.

Values of Sensitivity (Se), Specificity (Sp) and Accuracy (Acc) are applied in 
order to measure the classification performance. These values determine the 
system’s capacity to quantify the ratio successfully classified in normal and 
pathological samples. Defining tpos, tneg, fpos y fneg  as true positive, true negative, 
false positive and false negative, respectively [27], Se, Sp and Acc is estimated 
as shown below

, ,pos neg pos neg

pos neg neg pos pos neg neg neg

t t t t
Se Sp Acc

t f t f t f t f
+

= = =
+ + + + +
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These measures are estimated by using the average of multiple iterations of 
the neural network with different sets of testing and validation.

2.9. Proposed Methodology
The Figure 2 shows the proposed methodology which is developed when all 
tests and classification results with ANN are performed. This methodology 
provides a diagnosis support to a professional rehabilitation by using sEMG 
records and goniometry.

Figure 2. Proposed methodology
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Source: author’s own presentation

3. Results
Combination features for EMG and GF are shown. In the results tables, the 
first column corresponds to the combination of muscles and goniometry. The 
following columns are the performance measures for each physical test.

The combinations of external-internal and crossed muscles show the best 
Acc without GF, that is an average of 91%, that is higher than other muscle 
combinations. This high performance can be related to their antagonism10 in the 
knee extension. It is observed that in the three exercises, Acc, Se and Sp remain 
the same when added GF, however, improvements ranging up to 14% in Acc 
and 21% in the internal muscle combination in the sitting test are evident. The 
physical tests exhibit a greater Sp to 77%. This means that the system classi-
fies all normal subjects with good performance. GFs exhibit the lowest value 
of Acc of 79%. The best classification responses were obtained by using GF. 
These results were evident in the sitting physical tests, where the Acc showed 
an average of 94%. It is important to note that the Acc with the proposed clas-
sification model and the used features exhibited above 82%. The sitting physi-
cal test is the largest contributor to the ratio of sEMG signals and goniometry 
to the classification process, when comparing the three physical tests and their 
performance with GFs and without them.

10	Antagonist	muscles	work	in	opposition	and	generate	control	and	adequate	balance	to	execute	opposite	movements.	[28].
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Similar studies with ANN with only EMG features as [9], where 27 test 
participants showed values of Acc higher than 90% and [4] to classify six hand 
movements had Acc greater than 76% correspond to the classification results 
of this research.

In [29] is performed a combination of EMG features and kinematics with a 
principal component analysis (PCA) as a classifier among people with tremor 
and people with Parkinson’s disease with an Acc of 91%. In relation to this study 
a different classifier was applied, an ANN and improvements in the Acc were 
observed between 4% and 15% when adding the GFs.

3.1. Relevance of sEMG features and goniometry
The contribution of the characteristics in the classification process is assessed 
by using the algorithm Q-α relevance analysis [30]. This takes into account 
the contribution of each feature in the natural separability of data through a 
quadratic affinity matrix. This leads to establish connections between features 
and physiological assessment to reduce the computational cost.

Figure 3. Relevance of  features
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Source: author’s own presentation

Figure 3 shows the normalized amplitudes of the 120 features (27 for each 
of the 4 muscles and 12 of goniometry). These values lead to determine that 
the most important features for the gait are provided by the RF muscle and VM 
muscle corresponding with the maximum values of relevance. Features provided 
by BF and ST muscle are the most related for the sitting position, whereas for the 
standing position are the ones provided by RF and BF muscle. All antagonists’ 
cases in knee extension lead to assume the strong relationship of EMG signals 
into antagonistic muscles and descriptive role in the classification.
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4. Conclusions
A physical test to measure EMG and goniometry values was determined. This 
test consists of three muscle test: gait, standing and sitting. The EMG signals 
and corresponding motion measurements (position, speed and acceleration) 
were characterized resulting in 39 features (27 sEMG and 12 movement mea-
sures). After all processing, characterization and classification of signals, it can 
be determined that sEMG is a suitable method to provide information about 
the muscle performance, particularly for this research that requires movement 
measurement. Results obtained in the classification processes with ANN are 
better when taking into account the features provided by the goniometry than 
when excluded as shown in Table 1.

A methodology for the automatic classification of knee injuries with ANN in 
EMG signals and goniometry is proposed. This methodology is quantitative and 
could serve as a diagnostic support and monitoring, and can be implemented 
with the current electronic technology.

A more comprehensive study with a larger number of participants and uni-
formity of injury to deepen in the methods proposed is recommended.

Table	1.	Gait	performance	classification

Gait Standing Sitting
Muscle combinations Acc Se Sp Acc Se Sp Acc Se Sp

External muscles 0.82 0.89 0.77 0.91 0.85 1.00 0.95 0.92 1.00

External muscles, GF 0.86 1.00 0.79 0.95 0.92 1.00 1.00 1.00 1.00

Internal muscles 0.91 0.85 1.00 0.91 0.85 1.00 0.86 0.79 1.00

Internal muscles, GF 0.91 0.85 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Crossed- external and 
internal muscles

0.95 0.92 1.00 0.82 0.73 1.00 0.95 0.92 1.00

Crossed external–
internal, GF

0.95 0.92 1.00 0.95 0.92 1.00 1.00 1.00 1.00

Crossed internal–
external muscles

0.82 0.77 0.89 0.91 0.85 1.00 0.86 0.90 0.83

Crossed internal-
external muscles, GF

0.82 0.77 0.89 0.91 0.85 1.00 0.86 0.90 0.83

Average 0.88 0.87 0.92 0.92 0.87 1.00 0.94 0.93 0.96

Source: authors’ own presentation
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