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Abstract 

The aim of the present paper is to collect evidence about validity of the cognitive 

structure proposed to solve the items of an arithmetic test using an Item Response 

Theory based cognitive diagnosis model called Least Squares Distance Model (LSDM). 

The test was applied to a sample of 382 students of 7th grade from five public high 

schools in Bogotá-Colombia. With this data the objective was addressed in three ways: 

first, the analysis of two statistical validity indices; second by a cross-validation of the 

LSDM results on attribute difficulties using other cognitive model (LLTM), and third, by 

comparing the LSDM results with the observed scores on individual attributes. The 

logical behavior of the probability curves for the five attributes under study provides 
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important evidence for their overall validity. Additional specific evidences of validity are 

also presented in the results.    

Key words authors: Cognitive diagnosis models, Least Squares Distance Model, 

Arithmetic Test, Q-matrix. 

Key words plus 

Validaty, statistical methods, quantitative research. 

 

Resumen 

El objetivo del presente trabajo ha sido reunir evidencias sobre la validez de la estructura 

cognitiva propuesta para resolver los ítems de un test de aritmética, mediante la aplicación 

de un modelo de diagnóstico cognitivo basado en la Teoría de Respuesta al Item llamado 

Modelo de las Distancias Mínimo Cuadráticas (LSDM, por sus siglas en inglés). El test se 

aplicó a una muestra de 382 estudiantes de séptimo grado en cinco colegios públicos en 

Bogotá-Colombia. Usando estos datos el objetivo se abordó de tres maneras: en primer 

lugar se analizaron dos índices estadísticos de validez, en segundo lugar, se realizó una 

validación cruzada de los resultados del LSDM sobre las dificultades de atributos 

utilizando otro modelo cognitivo (LLTM) y en tercer lugar, se compararon los resultados 

del modelo con las puntuaciones observadas en atributos individuales. El 

comportamiento lógico de las curvas de probabilidad para los cinco atributos estudiados 

proporciona importante evidencia para su validez general. En los resultados se presentan 

también otras evidencias concretas de validez de la estructura propuesta. 

Palabras clave autores: Modelos de diagnostico cognitivo, Modelo de las Distancias 

Mínimo Cuadráticas, Test de Aritmética, Matriz Q. 

Palabras clave descriptores 

Validez, métodos estadísticos, investigación cuantitativa. 

 

 

 

 

 



The purpose of the cognitive diagnostic measure is to study the cognitive 

structures, (e.g specific knowledge and processing skills) underlying correct execution of 

test items. This type of measurement is intended to provide information on the cognitive 

strengths and weaknesses of the examinees. Interest in development of psychometric 

models that incorporate attributes, rules or cognitive processes is relatively new but has 

advanced to the extent that there is now a wide range of models (e.g., De la Torre & 

Douglas, 2004; Dimitrov, 2007; Henson & Douglas, 2005; Junker & Sijtsma, 2001). Some 

of these models are based in the Item Response Theory (IRT) like the Linear Logistic 

Test Model ([LLTM]; Fischer, 1973, 1995), the Multicomponent and General Latent 

Trait Models ([MLTM-GLTM]; Embretson, 1984, 1993), the Rule Space Model 

(Tatsuoka, 1985) or the more recently proposed   Least Squares Distance Model 

(Dimitrov & Atanasov, 2011).  

One of the key elements of cognitive diagnosis is the specification of the cognitive 

structure underlying the test, this means, to determine the type, amount and relationships 

between components or cognitive attributes and their links to specific items or tasks. The 

links between attributes and items are usually represented in a binary matrix called Q-

matrix (Tatsuoka, 1985). The elements of Q specify whether the attribute k is required to 

successfully complete the item j (qjk = 1) or not (qjk = 0).  

Knowledge about cognitive structures can help test developers and educators to 

construct test items with desirable measurement and cognitive characteristics, better 

understand of attributes of thinking, learning, and performance, and to develop teaching 

strategies focusing on specific cognitive and processing criteria, however, is very important 

to evaluate whether the attributes considered are actually used by the examinees to solve 

the items. In other words, the validation of the cognitive structure is a key issue in the 

development of cognitive measurement.  

Traditionally, the validation process involves the analysis of the Q-matrix, some of 

the proposed statistical methods for validation of cognitive structures are: likelihood ratio 

test (Embretson, 1984), quadratic assignment (Medina-Diaz, 1993), cluster analysis 

(Corter, 1995), classification rates (Tatsuoka, 1995), structural equation modeling 

(Dimitrov & Raykov, 2003), parameter estimation (Rupp & Templin, 2008), delta method 

(De la Torre, 2008), and more recently, the LSDM (Dimitrov & Atanasov, 2011).    

Although there is a considerable amount of psychometric models and Q-matrix 

validity methods, few applications have been made. In the mathematic testing field several 



works have been based on a test of fraction subtraction (De Carlo, 2011; De la Torre, 

2009; De la Torre & Douglas, 2004, 2008; Rupp, Templin, & Henson, 2010) originally 

designed by Tatsuoka (1990). Other applications of cognitive diagnosis on mathematic 

test includes algebra tasks (Dimitrov & Raykov, 2003; Medina-Díaz, 1993); fraction 

addition and subtraction (López & Elosua, 2002), arithmetic tests (Ponsoda, & Ximenez, 

2006, 2008) and the analysis of mathematic skills in large scale assessments (López, & 

Navarro, 2009; Tatsuoka, Corter, & Tatsuoka, 2004). 

     This study investigates attributes that underlie the student performance on a 

test of basic arithmetic operations using the LSDM and to compare the results with 

observed scores on individual attributes.  

For reach this aim, the present work have three specific objectives: 1) to apply the 

LSDM to collect evidence about validity of the cognitive structure proposed for an 

arithmetic test by means of two indices: the Mean Absolute Difference (MAD) and the 

Least Squares Distance (LSD); 2) to use the Linear Logistic Test Model (Fischer, 1973) 

like cross-validation of the LSDM results on attribute difficulties and 3) to explore the 

validity of Attribute Probability Curves (APCs) by means of the descriptive comparison of 

LSDM estimated APCs and the IRT Item Characteristic Curves (ICCs) of the directly 

measure of individual attributes.  

 

The Least Square Distance Model (LSDM)  

 The LSDM is a model for the validation of cognitive structures and analysis of binary 

items using his IRT parameters. This method use the parameters estimated with a model 

IRT and the Q-matrix to estimate the probability of mastering the attribute Ak in pre-fixed 

ability levels (in the logit scale).  Like most of the cognitive diagnosis models, the LSDM 

assumes a conjunctive relation between attributes, in other words, the probability of 

correct answer to an item is the product of the likelihoods of all attributes required by that 

item, that is: 
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Where, Pij is the probability of correct response on item j for a person at ability level i, 

)|1( ikAP  is the probability of correct performance in attribute Ak for an examinee at 

the ability level i and qjk is the element of the Q-matrix for item j and attribute Ak. 



The model expressed in equation (1) assumes that the correct execution of an 

attribute is statistically independent for an examinee in a fixed ability level. The LSDM 

estimates the attribute probabilities directly using the least squares approximation from 

the linear algebra.  

The steps for the application of the LSDM are: a) fix a reasonable number of 

ability levels in the logit scale, b) having the IRT item parameters and the pre-fixed ability 

levels, find the probability of correct response on item j in each ability level Pij by applying 

the corresponding IRT model that fit the data, may be Rasch Model, 2 Parameter 

Logistic Model (2PLM), or 3 Parameter Logistic Model (3PLM), c), take the neperian 

logarithm in both sides of equation (1), d) with n binary items the equation (1) produce 

the following the system of linear equations: L= QX where L is a (known) matrix with 

elements ln (Pij), Q is the (known) Q-matrix and  X is a (unknown) matrix with elements 

ln )|1( ikAP  , e) find the values of X that minimize the Euclidean norm ||QX - L||, 

using matrix algebra (Lawson & Hanson, 1974). Finally, the probability to master the 

attribute Ak for an examinee with an ability level i is exp (Xk); the graphical representation 

of that probability across the pre-fixed ability levels is called Attribute Probability Curve 

(APC) for the attribute Ak.    

 

MAD and LSD indices 

Dimitrov (2007) proposed three validation criteria for the LSDM: 

1. Small LSD values. Least Squares Distance (LSD) values are the residuals after 

minimization of ||QX - L|| and they must be small to indicate a suitable solution for X. 

Small LSD values indicates better general fit of the model. 

2. Monotonicity of the APCs. APCs should increase monotonically because higher 

attribute probabilities should correspond to higher abilities. The APCs also provide 

information about relative “difficulty” and “discrimination” of attributes: if the difference 

in the difficulty of the attributes is sufficiently large, the APCs will not cross and the 

attributes can be ordered in decreasing difficulty. The last feature of the LSDM allow to 

the research make a cross-validation of the results using other componential models like 

the LLTM. The APCs also offer information about attribute “discrimination”: if the 

attributes discriminate suitably, the “difficult” attributes should discriminate well among 



high ability examinees and, conversely, “easy” attributes should discriminate well among 

low ability examinees.     

3. Adequate recovery of the ICCs: a graphical comparison between the two sides 

of equation (1) for each item should show similar curves; this comparison is made by 

means of the Mean Absolute Difference (MAD) of probabilities, as can be seen in the 

following expression: 
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Where, F is the number of fixed ability levels, Pij is the matrix of IRT probabilities 

and 
ijP̂  is the matrix of probabilities recovered by the product of APCs estimated with the 

LSDM according to the Q matrix.  Ideally, MAD = 0 would indicate perfect ICC 

recovery. Dimitrov (2007) presents the following classification for degree of ICC recovery: 

very good (0 ≤ MAD < 0.02), good (0.02 ≤ MAD < 0.05), somewhat good (0.05 ≤ MAD < 

0.1), somewhat poor (0.1 ≤ MAD < 0.15), poor (0.15 ≤ MAD < 0.2) and very poor (MAD 

≥ 0.2). 

Ponsoda (2012), using simulation procedures, propose the following cut points 

(over which the MAD values indicate a possible Q-matrix misspecification in those 

particular item), according to the sample size (N = 300) and number of attributes required 

by the item (k): 0.166 (k = 1); 0.115 (k = 2); 0.085 (k = 3); 0.106 (k = 4). These authors 

also present the following cut points for LSD values in the sample of N = 300, that also 

were used for the present work in order to evaluate the global fit of the model: 0.253 (θ = 

-3), 0.161 ((θ = -2), 0.086 (θ = -1), 0.043 (θ = 0), 0.031 (θ = 1), 0.032 (θ = 2), 0.027 (θ = 3).  

 

Procedure 

Defining the Cognitive Structure 

     A cognitive structure based in five attributes was proposed in order to explain the 

solution process of the arithmetic tasks. This structure was based in verbal protocols, 

interviews with mathematics teachers of the schools in which the test was applied; study of 

curriculums and mathematic courses offered in the target schools. Also, the cognitive 

theory and systematical analysis of the solution processes of addition and subtraction 

(Kamii & Joseph, 1989; Maza, 1991, 1999; Mialaret, 1984) were used to select the 

attributes that compose the cognitive structure.  



The basic operations that are learned in early primary education are called for 

some authors “numerical facts” (Maza, 1991; 1999). If a and b are natural numbers, the 

“additive fact” consist in the sum of quantities involved, while the “subtractive fact” consist 

in subtract the quantities (when a > b).  According to the interviewed teachers, once the 

students acquire control over the "numerical facts", they begin to teach operations with 

integer numbers. Commonly, the teaching process of sum with integer numbers starts 

with the absolute value and straight-line notion. Then it is introduced the addition with 

the same sign numbers; a common rule to teach this operation is: “sum the quantities and 

put to the result the sign of the involved numbers”. This rule is reflected in the cognitive 

structure as attribute A5.  

The addition with different sign numbers is then introduced, a usual rule for this 

operation is: “subtract greatest minus a lesser number in absolute value and put at the 

result the sign of the greatest value”, this rule is reflected in the cognitive structure in the 

attribute A3. Another ordinary way for teaching subtraction between integer numbers is by 

using the inverse additive property: -a + b = b - a (attribute A4).   

Finally, teachers refer two additional rules to solve parenthesis:  

1. a - (-b) = a + b and -a - (-b) = -a + b (Attribute A1) 

2. a + (-b) = a - b and -a + (-b) = -a – b (Attribute A2) 

     Based in these common processes of teaching learning of the arithmetical operations 

with integer numbers the following attributes were proposed: 

A1.  Solve parenthesis in subtraction [-a - (-b) = - a + b; a - (-b) = a + b] 

A2, Solve parenthesis in addition [-a + (-b) = - a - b; a + (-b) = a - b] 

A3. Subtraction when a < b [a - b = - (b - a)]  

A4. Addition with different sign numbers [-a + b = (b - a)] 

A5. Subtraction with different sign numbers [-a - b = -(a + b)] 

  

The Arithmetic Test and Q-Matrix 

    A test of 13 items was designed according to the theoretic cognitive structure defined 

previously and expressed in the following Q-matrix: 

Table 1 

Q-matrix 

Item A1 A2 A3 A4 A5  



-2-8 0 1 0 0 1  

-9-(-5) 1 0 1 1 0  

-6+3 0 0 1 1 0  

2-(-7) 1 0 0 0 0  

0+(-6) 0 1 1 0 0  

-6-9 0 0 0 0 1  

-9+(-7) 0 1 0 0 1  

-9+9 0 0 0 1 0  

5-7 0 0 1 0 0  

-7-(-9) 1 0 0 1 0  

3+(-7) 0 1 1 0 0  

-7+5 0 0 1 1 0  

4+(-8) 0 1 1 0 0  

Source: Own work. 

 

Characteristics of the Arithmetic Test  

Additionally to the 13 items presented in the Q-matrix (see Table 1) 20 

“individual” items were included in the test with the intention to measure examinee 

knowledge of individual rules or attributes. For example, the correct answer of the item: “-

2 + (8) = a. -10  b. -6  c. 6  d. 10”  implied the correct use of two attributes: first,  A2: -2 + (-

8) = -2 - 8 and then A5: - 2 – 8 = - (2+8) = -10. The individual items were designed with the 

objective of obtaining scores of student proficiency in each of these steps. According to 

this aim the individual items that correspond to the two attributes exemplified above are: 

“-2 + (-8) =  a. -2 + 8 b. -2 - 8 c. 2 + 8 d. 2 - 8” for A2 and  “-2 – 8 = a. -(2+8) b.-(2-8) c.2+8 

d. 2-8” for A5. The general item and its corresponding individual items are not continued; 

its position in the test was assigned at random. 

Sample  

     The arithmetic test was applied to an intentional sample of 382 students of 7th grade 

from five public schools in Bogotá-Colombia. The test was applied as an additional 

exercise of the mathematics class in order to guarantee students attention to develop the 

evaluation. The test was made in a mean of 40 minutes. 

 

 



IRT calibration and application of the models 

 The data matrix was calibrated using the Rasch model, the Table 2 present the item 

fit and parameters used to the LSDM analysis. In order to accomplish the first objective, 

the LSDM criteria (MAD, and LSD) were studied according to the referred cut points; 

also the monotonicity of the APCs was evaluated. Second, the LLTM were applied, with 

the 13 general items, and cross-validation on attribute relative “difficulties” was made 

using the LLTM basic parameters. Finally, comparison between LSDM estimated APCs 

and the ICCs product of the calibration of the observed scores on individual attributes 

(individual items) was made to study the quality of the APCs estimation. 

 

Software and data analysis 

 Data analysis includes: checking of dimensionality of the arithmetic test 

([NOHARM]; Fraser & McDonald, 1988); item calibration ([RASCAL]. Assessment 

System Co, 1996); LSDM application ([MATLAB], Dimitrov, 2007) and LLTM 

application ([LPCM-Win]; Fischer & Ponocny-Seliger, 1998). 

 

Results 

Dimensionality and IRT Calibration 

 The fit of the Rasch model, difficulty parameters and its standard error are presented 

in Table 2. In this table can be seen that the item -7 - (-9) does not present good fit to the 

Rasch model, but in general, the test fits the IRT model. Table 2 also presents the factor 

loadings to the unidimensional model. The factorial structure was analyzed by means of a 

normal ogive compensatory multidimensional model implemented in NOHARM. The 

fit of the unidimensional model was evaluated by the Tanaka Index (T), although there is 

not a common rule of interpretation for this index, it is proposed that values above 0.9 

indicate acceptable fit (Tanaka & Huba, 1985).  The Tanaka index for the 

unidimensional model is T = 0.961 and the Root Mean Square of the Residuals (RMSR = 

0.031) indicating, as expected, the adequacy of the unidimensional solution. Additionally, 

all the items have high loading to the factor except the item -7 - (-9).  

 

 

 

 



Table 2  

Rasch Model Fit, Parameters, Factor Loadings and MAD for Each Item 

  IRT    Factor  LSDM 

Item b s.e χ
2 p  Loadings  MAD 

-2-8 -0.697 0.114 12.122 0.355  0.378  0.058 

-9-(-5) -0.067 0.118 12.408 0.334  0.370  0.155 

-6+3 -1.189 0.116 12.849 0.303  0.362  0.146 

2-(-7) 0.185 0.122 5.846 0.883  0.218  0.156 

0+(-6) 0.795 0.135 10.742 0.465  0.472  0.057 

-6-9 -1.214 0.117 10.698 0.469  0.316  0.17 

-9+(-7) -0.721 0.114 19.362 0.055  0.337  0.06 

-9+9 0.534 0.128 18.03 0.081  0.738  0.199 

5-7 -0.232 0.117 12.767 0.309  0.349  0.188 

-7-(-9) 1.013 0.142 67.793 0  0.088  0.052 

3+(-7) 0.269 0.123 14.871 0.188  0.702  0.005 

-7+5 0.744 0.134 25.347 0.008  0.796  0.072 

4+(-8) 0.581 0.129 13.575 0.257  0.752  0.033 

Source: Own work. 

 

Evidence about Validity of Cognitive Structure 

      The APCs obtained with LSDM are provided in Figure 1.  

 



Figure 1. Attribute Probability Curves of five attributes. A1: solve parenthesis in 

subtraction; A2: solve parenthesis in addition; A3: subtraction when a < b; A4: addition with 

different sign numbers and A5: subtraction with different sign numbers. 

Source: Own work. 

 

As can be seen, these curves exhibit logical monotonic behavior: a) the higher the 

ability, the higher the chances of the examinees to correctly perform each attribute and b) 

more difficult attributes (e.g., A2) discriminate well among high ability examinees, but not 

among low ability examinees and, conversely, relatively easy attributes (e.g., A5) 

discriminate well among low ability examinees, but not among high ability examinees.  

     The logical behavior of the APCs is an important criterion for their validity, in this 

case, the attributes exhibit a logical behavior, the “easiest” attribute is A5 (subtraction with 

different sign numbers), this is theoretically expected because it is an operation that only 

requires to sum the numbers and attach the negative sign: -a - b = -(a+b).  By the contrary, 

the most “difficult” attributes were A1: solve parenthesis in subtraction; A2: solve 

parenthesis in addition and A4: addition with different sign numbers, the difficulty of this 

attributes may be explained because they are the last operations taught because require 

the mastery of previous skills. 

     Another validation perspective of the attributes under study is the degree to which the 

ICC for each item is recovered with the product of LSDM estimates of the probabilities 

for correct performance on the attributes required by the item. Ideally, MAD = 0 would 

indicate perfect ICC recovery. Last column of the Table 2 presents the MAD values of 

the arithmetic test items and signaled in bold the poor recovered items according to the 

cut points proposed by Ponsoda (2012), only 30% of items present poor recovery 

according to MAD index, and the worst recovered is the item -9 + 9 (MAD = 0.19), this 

may be caused because it is an item that involve the “inverse additive” property. The right 

side of Figure 2 exhibits the ICC and LSDM curves for the best recovered item and the 

left side for the worst recovered item. 



  

ICC and LSD estimate of item: -9 + 9 ICC and LSD estimate of item: -3 + (-7) 

Figure 2. ICC recovery for two items.  

Regarding to the LSD index, as can be seen in figure 3, its values are high in low ability 

levels ( < 0), however, the LSD only exceeds the cut points in medium ability levels 

indicating poor accuracy in the solution of X when -1 >  > 1.  

Source: Own work. 

 

 

Figure 3. LSD values. 

Source: Own work. 

 

 

 

 



Comparison of Apcs and Iccs of Individual Attributes 

  In order to explore the APCs behavior with respect to the observed scores on 

individual attributes, figures 4 and 5 compare the APCs obtained with the LSDM with the 

ICCs of the respective “individual” items calibrated with the Rasch model. 

  

Figure 4. Comparison of APCs and ICCs calibrated with observed scores on individual 

attributes of attributes A1 (left) and A2 (right). 

Source: Own work. 

 

    Figure 4 shows that the ICCs and APCs are very similar in the case of A1 and A2. The 

graphic exhibits a slight LSDM trend of overestimates the probabilities in low ability 

levels, and conversely, underestimates the probabilities in high ability levels. Figure 5 

present the attributes A3, A4 and A5; these figures exhibit some differences between ICCs 

for individual items and the APCs estimated with the LSDM, it seems clear that LSDM 

tends to overestimate the probabilities, especially in low ability levels, this discrepancy 

may be caused by the conjunctive nature of the model. 

 



  

 

Figure 5. Comparison of APCs and ICCs calibrated with observed scores on individual 

attributes of attributes A3 (up-left), A4 (up-right) and A5 (down). 

Source: Own work. 

 

 Cross-Validation of the LSDM Results Using the LLTM 

    Finally, a cross-validation of the attribute of relative difficulty was made by means of 

other IRT based model called LLTM (Fischer, 1973). The LLTM allows estimating the 

contribution of different attributes to the difficulty item by a linear decomposition of the 

IRT difficulty parameter. To use properly the model, two requirements must be met: a) 

the Rasch model fit, and, b) the accurate reproduction of the Rasch difficulty parameters. 

In the present context the LLTM shows somewhat good fit statistics: the correlation 

between the Rasch and LLTM item difficulties was 0.81, although the statistically 

significant LR test (
2 
= 164,98;  6 df, p < 0.01) indicate that the proposed attributes do not 

fully explain the difficulties of the item.  



Table 3 presents the basic parameters for each attribute that represents the linear 

contribution of the attribute to the overall Rasch difficult item and its statistical 

significance.   

 

Table 3  

LLTM Basic Parameters 

Attribute α s.e z
 

Significance 

Percentage 

A1 -0.089 0.131 0.677 n.s. 

A2 -0.756 0.088 8.508 1 

A3 0.686 0.15 4.549 n.s. 

A4 -0.149 0.098 1.529 1 

A5 1.736 0.165 10.479 1 

Source: Own work. 

 

The five attributes of the present study can be ordered by increasing difficulty as 

follows: A5, A3, A1, A4 and A2. This order is a perfect match to the LLTM order of 

attributes “relatively difficult” providing a cross-validation of the LSDM results. 

 

Conclusions 

     This study illustrated the application of the LSDM in the validation and analysis of 

cognitive attributes that were hypothesized to underlie the correct solution of items with 

two arithmetic operations (addition and subtraction) of integer numbers. The logical 

behavior of the probability curves for the five attributes under study provides important 

evidence for their overall validity. The LSD values, as global fit indicators, shows that the 

model exhibit less accuracy in medium ability levels, while the MAD values allow us to 

identify particular items with cognitive misspecifications, as it is the case of items: “-9 - (-

5)”, “-6 + 3”, “9 + (9)” and “ 5- 7”. When such problems are signaled, the search for 

plausible explanations may also contribute to better understanding (and possibly revise) 

the attributes and their links to items in the Q-matrix.  

Results of the LSDM performance with observed scores on individual attributes 

shows that the APCs recovered with LSDM match well the ICCs of individual items for 

operations A1 and A2 but for A3, A4 and A5 the APCs tends to be over the ICCs on all the 



ability levels; these results may be explained by the conjunctive nature of the model, 

moreover, the product of logistic curves is not logistic, for this reason this work presents a 

descriptive and exploratory explanation, more than a statistical comparison between 

curves.  

     For the other hand, a perfect match between LLTM basic parameters and LSDM 

relative attribute difficulties was found, therefore the LSDM results was confirmed, as well 

as the plausibility of the overall cognitive structure proposed for the arithmetic test. 

The mentioned results show the importance of cognitive diagnosis assessment, not 

only on the large scale assessment, but also in the classroom evaluation; for example, the 

results obtained in this study may have important implications for the practice of teaching 

arithmetic operations in the target schools. The illustrated approach with using the LSDM 

can be applied in other areas of learning and cognition in the theory and practice of 

education.  
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Table 1 

Q-matrix 

Item A1 A2 A3 A4 A5  

-2-8 0 1 0 0 1  

-9-(-5) 1 0 1 1 0  

-6+3 0 0 1 1 0  

2-(-7) 1 0 0 0 0  

0+(-6) 0 1 1 0 0  

-6-9 0 0 0 0 1  

-9+(-7) 0 1 0 0 1  

-9+9 0 0 0 1 0  

5-7 0 0 1 0 0  

-7-(-9) 1 0 0 1 0  

3+(-7) 0 1 1 0 0  

-7+5 0 0 1 1 0  

4+(-8) 0 1 1 0 0  

Source: Own work. 

 

 

Table 2 

Rasch Model Fit, Parameters, Factor Loadings and MAD for Each Item 

  IRT    Factor  LSDM 

Item b s.e χ
2 P  Loadings  MAD 

-2-8 -0.697 0.114 12.122 0.355  0.378  0.058 

-9-(-5) -0.067 0.118 12.408 0.334  0.370  0.155 

-6+3 -1.189 0.116 12.849 0.303  0.362  0.146 

2-(-7) 0.185 0.122 5.846 0.883  0.218  0.156 

0+(-6) 0.795 0.135 10.742 0.465  0.472  0.057 

-6-9 -1.214 0.117 10.698 0.469  0.316  0.17 

-9+(-7) -0.721 0.114 19.362 0.055  0.337  0.06 

-9+9 0.534 0.128 18.03 0.081  0.738  0.199 

5-7 -0.232 0.117 12.767 0.309  0.349  0.188 



-7-(-9) 1.013 0.142 67.793 0  0.088  0.052 

3+(-7) 0.269 0.123 14.871 0.188  0.702  0.005 

-7+5 0.744 0.134 25.347 0.008  0.796  0.072 

4+(-8) 0.581 0.129 13.575 0.257  0.752  0.033 

Source: Own work. 

 

Table 3 

LLTM Basic Parameters 

Attribute α s.e z
 

Significance 

Percentage 

A1 -0.089 0.131 0.677 n.s. 

A2 -0.756 0.088 8.508 1 

A3 0.686 0.15 4.549 n.s. 

A4 -0.149 0.098 1.529 1 

A5 1.736 0.165 10.479 1 

Source: Own work. 

 

 

 


