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a b S t R a c t

The aim of the present paper is to collect evidence about validity of the 
cognitive structure proposed to solve the items of an arithmetic test using 
an cognitive diagnosis model (based on the Item  Response Theory) called 
Least Squares Distance Model (LSDM). The test was applied to a sample of 
382 students of 7th grade from five public high schools in Bogotá-Colombia. 
With this data the objective was addressed in three ways: first, the analysis 
of two statistical validity indices; second by a cross-validation of the LSDM 
results on attribute difficulties using other cognitive model (LLTM), and 
third, by comparing the LSDM results with the observed scores on indivi-
dual attributes. The logical behavior of the probability curves for the five 
attributes under study provides important evidence for their overall validity. 
Additional specific evidences of validity are also presented in the results. 
Keywords authors
Cognitive diagnosis models, Least Squares Distance Model, Arithmetic Test, 
Q-matrix.
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R e S u m e n

El objetivo del presente trabajo ha sido reunir evidencias sobre la validez 
de la estructura cognitiva propuesta para resolver los ítems de un test de 
aritmética, mediante la aplicación de un modelo de diagnóstico cognitivo 
basado en la Teoría de Respuesta al Item llamado Modelo de las Distancias 
Mínimo Cuadráticas (LSDM, por sus siglas en inglés). El test se aplicó a una 
muestra de 382 estudiantes de séptimo grado en cinco colegios públicos en 
Bogotá-Colombia. Usando estos datos el objetivo se abordó de tres maneras: 
en primer lugar se analizaron dos índices estadísticos de validez, en segundo 
lugar, se realizó una validación cruzada de los resultados del LSDM sobre 
las dificultades de atributos utilizando otro modelo cognitivo (LLTM) y en 
tercer lugar, se compararon los resultados del modelo con las puntuaciones 
observadas en atributos individuales. El comportamiento lógico de las curvas 
de probabilidad para los cinco atributos estudiados proporciona importante 
evidencia para su validez general. En los resultados se presentan también 
otras evidencias concretas de validez de la estructura propuesta.
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The purpose of the cognitive diagnostic measure 
is to study the cognitive structures, (e.g specific 
knowledge and processing skills) underlying cor-
rect execution of test items. This type of meas-
urement is intended to provide information on 
the cognitive strengths and weaknesses of the 
examinees. Interest in development of psycho-
metric models that incorporate attributes, rules 
or cognitive processes is relatively new but has 
advanced to the extent that there is now a wide 
range of models (e.g., De la Torre & Douglas, 
2004; Dimitrov, 2007; Henson & Douglas, 2005; 
Junker & Sijtsma, 2001). Some of these models 
are based in the Item Response Theory (IRT) 
like the Linear Logistic Test Model ([LLTM]; 
Fischer, 1973, 1995), the Multicomponent and 
General Latent Trait Models ([MLTM-GLTM]; 
Embretson, 1984, 1993), the Rule Space Model 
(Tatsuoka, 1985) or the more recently proposed 
Least Squares Distance Model (Dimitrov & 
Atanasov, 2011). 

One of the key elements of cognitive diagnosis 
is the specification of the cognitive structure un-
derlying the test, this means, to determine the type, 
amount and relationships between components or 
cognitive attributes and their links to specific items 
or tasks. The links between attributes and items are 
usually represented in a binary matrix called Q-ma-
trix (Tatsuoka, 1985). The elements of Q specify 
whether the attribute k is required to successfully 
complete the item j (qjk = 1) or not (qjk = 0).

Knowledge about cognitive structures can help 
test developers and educators to construct test 
items with desirable measurement and cognitive 
characteristics, better understand of attributes of 
thinking, learning, and performance, and to devel-
op teaching strategies focusing on specific cognitive 
and processing criteria, however, is very important 
to evaluate whether the attributes considered are 
actually used by the examinees to solve the items. 
In other words, the validation of the cognitive 
structure is a key issue in the development of cog-
nitive measurement. 

Traditionally, the validation process involves 
the analysis of the Q-matrix, some of the proposed 
statistical methods for validation of cognitive 

structures are: likelihood ratio test (Embretson, 
1984), quadratic assignment (Medina-Diaz, 1993), 
cluster analysis (Corter, 1995), classification rates 
(Tatsuoka, 1995), structural equation modeling 
(Dimitrov & Raykov, 2003), parameter estima-
tion (Rupp & Templin, 2008), delta method (De 
la Torre, 2008), and more recently, the LSDM 
(Dimitrov & Atanasov, 2011). 

Although there is a considerable amount of 
psychometric models and Q-matrix validity meth-
ods, few applications have been made. In the 
mathematic testing field several works have been 
based on a test of fraction subtraction (De Carlo, 
2011; De la Torre, 2009; De la Torre & Douglas, 
2004, 2008; Rupp, Templin, & Henson, 2010) 
originally designed by Tatsuoka (1990). Other 
applications of cognitive diagnosis on mathematic 
test includes algebra tasks (Dimitrov & Raykov, 
2003; Medina-Díaz, 1993); fraction addition and 
subtraction (López & Elosua, 2002), arithmetic 
tests (Romero, Ponsoda & Ximenez, 2006, 2008) 
and the analysis of mathematic skills in large scale 
assessments (Romero, Ordóñez, López & Nav-
arro, 2009; Tatsuoka, Corter, & Tatsuoka, 2004).

This study investigates attributes that underlie 
the student performance on a test of basic arith-
metic operations using the LSDM and to compare 
the results with observed scores on individual 
attributes. 

For reach this aim, the present work have 
three specific objectives: 1) to apply the LSDM 
to collect evidence about validity of the cognitive 
structure proposed for an arithmetic test by means 
of two indices: the Mean Absolute Difference 
(MAD) and the Least Squares Distance (LSD); 
2) to use the Linear Logistic Test Model (Fischer, 
1973) like cross-validation of the LSDM results on 
attribute difficulties and 3) to explore the validity 
of Attribute Probability Curves (APCs) by means 
of the descriptive comparison of LSDM estimated 
APCs and the IRT Item Characteristic Curves 
(ICCs) of the directly measure of individual at-
tributes. 
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The Least Square Distance 
Model (LSDM)

The LSDM is a model for the validation of cognitive 
structures and analysis of binary items using his 
IRT parameters. This method use the parameters 
estimated with a model IRT and the Q-matrix to 
estimate the probability of mastering the attribute 
Ak in pre-fixed ability levels (in the logit scale). Like 
most of the cognitive diagnosis models, the LSDM 
assumes a conjunctive relation between attributes, 
in other words, the probability of correct answer 
to an item is the product of the likelihoods of all 
attributes required by that item, that is:

             (1)

Where, Pij is the probability of correct re-
sponse on item j for a person at ability level qi, 

 is the probability of correct perfor-
mance in attribute Ak for an examinee at the ability 
level qi and qjk is the element of the Q-matrix for 
item j and attribute Ak.

The model expressed in equation (1) assumes 
that the correct execution of an attribute is statisti-
cally independent for an examinee in a fixed ability 
level. The LSDM estimates the attribute probabil-
ities directly using the least squares approximation 
from the linear algebra. 

The steps for the application of the LSDM are: 
a) fix a reasonable number of ability levels in the 
logit scale, b) having the IRT item parameters and 
the pre-fixed ability levels, find the probability of 
correct response on item j in each ability level Pij 
by applying the corresponding IRT model that 
fit the data, may be Rasch Model, 2 Parameter 
Logistic Model (2PLM), or 3 Parameter Logistic 
Model (3PLM), c), take the neperian logarithm in 
both sides of equation (1), d) with n binary items 
the equation (1) produce the following the system 
of linear equations: L= QX where L is a (known) 
matrix with elements ln (Pij), Q is the (known) Q-
matrix and X is a (unknown) matrix with elements 
ln , e) find the values of X that 
minimize the Euclidean norm ||QX - L||, using 
matrix algebra (Lawson & Hanson, 1974). Finally, 

the probability to master the attribute Ak for an 
examinee with an ability level qi is exp (Xk); the 
graphical representation of that probability across 
the pre-fixed ability levels is called Attribute Prob-
ability Curve (APC) for the attribute Ak. 

MAD and LSD indices

Dimitrov (2007) proposed three validation criteria 
for the LSDM:

1. Small LSD values. Least Squares Distance 
(LSD) values are the residuals after minimization 
of ||QX - L|| and they must be small to indicate a 
suitable solution for . Small LSD values indicates 
better general fit of the model.

2. Monotonicity of the APCs. APCs should 
increase monotonically because higher attribute 
probabilities should correspond to higher abilities. 
The APCs also provide information about relative 
“difficulty” and “discrimination” of attributes: if 
the difference in the difficulty of the attributes is 
sufficiently large, the APCs will not cross and the 
attributes can be ordered in decreasing difficulty. 
The last feature of the LSDM allow to the research 
make a cross-validation of the results using other 
componential models like the LLTM. The APCs also 
offer information about attribute “discrimination”: 
if the attributes discriminate suitably, the “difficult” 
attributes should discriminate well among high ability 
examinees and, conversely, “easy” attributes should 
discriminate well among low ability examinees. 

3. Adequate recovery of the ICCs: a graphical 
comparison between the two sides of equation (1) 
for each item should show similar curves; this com-
parison is made by means of the Mean Absolute 
Difference (MAD) of probabilities, as can be seen 
in the following expression:

                    (2)

Where, F is the number of fixed ability levels, 
Pij is the matrix of IRT probabilities and 

 
is the 

matrix of probabilities recovered by the product of 
APCs estimated with the LSDM according to the 
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matrix. Ideally, MAD = 0 would indicate perfect 
ICC recovery. Dimitrov (2007) presents the fol-
lowing classification for degree of ICC recovery: 
very good (0 ≤ MAD < 0.02), good (0.02 ≤ MAD 
< 0.05), somewhat good (0.05 ≤ MAD < 0.1), 
somewhat poor (0.1 ≤ MAD < 0.15), poor (0.15 ≤ 
MAD < 0.2) and very poor (MAD ≥ 0.2).

Romero, Ordoñez and Ponsoda (2012)), using 
simulation procedures, propose the following cut 
points (over which the MAD values indicate a pos-
sible Q-matrix misspecification in those particular 
item), according to the sample size (N = 300) and 
number of attributes required by the item (k): 0.166 
(k = 1); 0.115 (k = 2); 0.085 (k = 3); 0.106 (k = 4). 
These authors also present the following cut points 
for LSD values in the sample of N = 300, that also 
were used for the present work in order to evaluate 
the global fit of the model: 0.253 (q = -3), 0.161 ((q 
= -2), 0.086 (q = -1), 0.043 (q = 0), 0.031 (q = 1), 
0.032 (q = 2), 0.027 (q = 3). 

Procedure

Defining the Cognitive Structure

A cognitive structure based in five attributes was 
proposed in order to explain the solution process 
of the arithmetic tasks. This structure was based 
in verbal protocols, interviews with mathematics 
teachers of the schools in which the test was ap-
plied; study of curriculums and mathematic courses 
offered in the target schools. Also, the cognitive 
theory and systematical analysis of the solution 
processes of addition and subtraction (Kamii & 
Joseph, 1989; Maza, 1991, 1999; Mialaret, 1984) 
were used to select the attributes that compose the 
cognitive structure. 

The basic operations that are learned in ear-
ly primary education are called for some authors 
“numerical facts” (Maza, 1991; 1999). If a and b are 
natural numbers, the “additive fact” consist in the 
sum of quantities involved, while the “subtractive 
fact” consist in subtract the quantities (when a > 
b). According to the interviewed teachers, once the 
students acquire control over the “numerical facts”, 
they begin to teach operations with integer num-

bers. Commonly, the teaching process of sum with 
integer numbers starts with the absolute value and 
straight-line notion. Then it is introduced the ad-
dition with the same sign numbers; a common rule 
to teach this operation is: “sum the quantities and 
put to the result the sign of the involved numbers”. 
This rule is reflected in the cognitive structure as 
attribute A5. 

The addition with different sign numbers is 
then introduced, a usual rule for this operation is: 
“subtract greatest minus a lesser number in absolute 
value and put at the result the sign of the greatest 
value”, this rule is reflected in the cognitive struc-
ture in the attribute A3. Another ordinary way for 
teaching subtraction between integer numbers is 
by using the inverse additive property: -a + b = 
b - a (attribute A4). 

Finally, teachers refer two additional rules to 
solve parenthesis: 

1. a - (-b) = a + b and -a - (-b) = -a + b (At-
tribute A1)

2. a + (-b) = a - b and -a + (-b) = -a – b (At-
tribute A2)

 Based in these common processes of teaching 
learning of the arithmetical operations with integer 
numbers the following attributes were proposed:A1. 
Solve parenthesis in subtraction [-a - (-b) = - a + 
b; a - (-b) = a + b]

A2, Solve parenthesis in addition [-a + (-b) = - 
a - b; a + (-b) = a - b]

A3. Subtraction when a < b [a - b = - (b - a)] 
A4. Addition with different sign numbers [-a 

+ b = (b - a)]
A5. Subtraction with different sign numbers [-a 

- b = -(a + b)]

The Arithmetic Test and Q-Matrix

A test of 13 items was designed according to the 
theoretic cognitive structure defined previously and 
expressed in the following Q-matrix: (See table 1)

Characteristics of the Arithmetic Test 

Additionally to the 13 items presented in the Q-ma-
trix (see Table 1) 20 “individual” items were included 
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in the test with the intention to measure examinee 
knowledge of individual rules or attributes. For ex-
ample, the correct answer of the item: “-2 + (8) = 
a. -10 b. -6 c. 6 d. 10” implied the correct use of two 
attributes: first, A2: -2 + (-8) = -2 - 8 and then A5: 
- 2 – 8 = - (2+8) = -10. The individual items were 
designed with the objective of obtaining scores of stu-

dent proficiency in each of these steps. According to 
this aim the individual items that correspond to the 
two attributes exemplified above are: “-2 + (-8) = a. 
-2 + 8 b. -2 - 8 c. 2 + 8 d. 2 - 8” for A2 and “-2 – 8 = a. 
-(2+8) b.-(2-8) c.2+8 d. 2-8” for A5. The general item 
and its corresponding individual items are not contin-
ued; its position in the test was assigned at random.

table 1 
Q-matrix

Item A1 A2 A3 A4 A5

-2-8 0 1 0 0 1
-9-(-5) 1 0 1 1 0
-6+3 0 0 1 1 0
2-(-7) 1 0 0 0 0

0+(-6) 0 1 1 0 0
-6-9 0 0 0 0 1

-9+(-7) 0 1 0 0 1
-9+9 0 0 0 1 0
5-7 0 0 1 0 0

-7-(-9) 1 0 0 1 0
3+(-7) 0 1 1 0 0
-7+5 0 0 1 1 0

4+(-8) 0 1 1 0 0

Source: Own work.

table 2  
Rasch Model Fit, Parameters, Factor Loadings and MAD for Each Item

IRT Factor LSDM
Item b s.e χ2 p Loadings MAD
-2-8 -0.697 0.114 12.122 0.355 0.378 0.058

-9-(-5) -0.067 0.118 12.408 0.334 0.370 0.155
-6+3 -1.189 0.116 12.849 0.303 0.362 0.146
2-(-7) 0.185 0.122 5.846 0.883 0.218 0.156

0+(-6) 0.795 0.135 10.742 0.465 0.472 0.057
-6-9 -1.214 0.117 10.698 0.469 0.316 0.170

-9+(-7) -0.721 0.114 19.362 0.055 0.337 0.060
-9+9 0.534 0.128 18.030 0.081 0.738 0.199
5-7 -0.232 0.117 12.767 0.309 0.349 0.188

-7-(-9) 1.013 0.142 67.793 0.000 0.088 0.052
3+(-7) 0.269 0.123 14.871 0.188 0.702 0.005
-7+5 0.744 0.134 25.347 0.008 0.796 0.072

4+(-8) 0.581 0.129 13.575 0.257 0.752 0.033

Source: Own work.
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Sample 

 The arithmetic test was applied to an intentional 
sample of 382 students of 7th grade from five public 
schools in Bogotá-Colombia. The test was applied 
as an additional exercise of the mathematics class 
in order to guarantee students attention to develop 
the evaluation. The test was made in a mean of 40 
minutes.

IRT calibration and application 
of the models

The data matrix was calibrated using the Rasch 
model, the Table 2 present the item fit and parame-
ters used to the LSDM analysis. In order to accom-
plish the first objective, the LSDM criteria (MAD, 
and LSD) were studied according to the referred 
cut points; also the monotonicity of the APCs was 
evaluated.Second, the LLTM were applied, with the 
13 general items, and cross-validation on attribute 
relative “difficulties” was made using the LLTM 
basic parameters. Finally, comparison between 
LSDM estimated APCs and the ICCs product of 

the calibration of the observed scores on individual 
attributes (individual items) was made to study the 
quality of the APCs estimation.

Software and data analysis

Data analysis includes: checking of dimensionali-
ty of the arithmetic test ([NOHARM]; Fraser & 
McDonald, 1988); item calibration ([RASCAL]. 
Assessment System Co, 1996); LSDM application 
([MATLAB], Dimitrov, 2007) and LLTM appli-
cation ([LPCM-Win]; Fischer & Ponocny-Seliger, 
1998).

Results

Dimensionality and IRT Calibration

The fit of the Rasch model, difficulty parameters 
and its standard error are presented in Table 2. In 
this table can be seen that the item -7 - (-9) does 
not present good fit to the Rasch model, but in 
general, the test fits the IRT model. Table 2 also 
presents the factor loadings to the unidimensional 

Figure 1. Attribute Probability Curves of five attributes. A1: solve parenthesis in subtraction; A2: solve parenthesis 
in addition; A3: subtraction when a < b; A4: addition with different sign numbers and A5: subtraction with different 
sign numbers.

Source: Own work.
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model. The factorial structure was analyzed by 
means of a normal ogive compensatory multidi-
mensional model implemented in NOHARM. 
The fit of the unidimensional model was evaluat-
ed by the Tanaka Index (T), although there is not 
a common rule of interpretation for this index, it is 
proposed that values above 0.9 indicate acceptable 

fit (Tanaka & Huba, 1985). The Tanaka index 
for the unidimensional model is T = 0.961 and 
the Root Mean Square of the Residuals (RMSR 
= 0.031) indicating, as expected, the adequacy 
of the unidimensional solution. Additionally, all 
the items have high loading to the factor except 
the item -7 - (-9). 

ICC and LSD estimate of item: -9 + 9 ICC and LSD estimate of item: -3 + (-7)

Figure 2. ICC recovery for two items. 
Regarding to the LSD index, as can be seen in figure 3, its values are high in low ability levels (q < 0), however, the LSD only ex-
ceeds the cut points in medium ability levels indicating poor accuracy in the solution of X when -1 > q > 1. 
Source: Own work.

Figure 3. LSD values.
Source: Own work.
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Evidence about Validity of 
Cognitive Structure

The APCs obtained with LSDM are provided in 
Figure 1. 

As can be seen, these curves exhibit logical 
monotonic behavior: a) the higher the ability, the 

higher the chances of the examinees to correctly 
perform each attribute and b) more difficult attri-
butes (e.g., A2) discriminate well among high ability 
examinees, but not among low ability examinees 
and, conversely, relatively easy attributes (e.g., A5) 
discriminate well among low ability examinees, but 
not among high ability examinees. 

Figure 4. Comparison of APCs and ICCs calibrated with observed scores on individual attributes of attributes A1 
(left) and A2 (right).
Source: Own work.

Figure 5. Comparison of APCs and ICCs calibrated with observed scores on individual attributes of attributes A3 
(up-left), A4 (up-right) and A5 (down).
Source: Own work.
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The logical behavior of the APCs is an important 
criterion for their validity, in this case, the attributes 
exhibit a logical behavior, the “easiest” attribute is 
A5 (subtraction with different sign numbers), this 
is theoretically expected because it is an operation 
that only requires to sum the numbers and attach the 
negative sign: -a - b = -(a+b). By the contrary, the 
most “difficult” attributes were A1: solve parenthe-
sis in subtraction; A2: solve parenthesis in addition 
and A4: addition with different sign numbers, the 
difficulty of this attributes may be explained because 
they are the last operations taught because require 
the mastery of previous skills.

Another validation perspective of the attributes 
under study is the degree to which the ICC for each 
item is recovered with the product of LSDM estimates 
of the probabilities for correct performance on the at-
tributes required by the item. Ideally, MAD = 0 would 
indicate perfect ICC recovery. Last column of the Ta-
ble 2 presents the MAD values of the arithmetic test 
items and signaled in bold the poor recovered items 
according to the cut points proposed by Romero, Or-
dóñez and Ponsoda (2012), only 30% of items present 
poor recovery according to MAD index, and the worst 
recovered is the item -9 + 9 (MAD = 0.19), this may 
be caused because it is an item that involve the “inverse 
additive” property. The right side of Figure 2 exhibits 
the ICC and LSDM curves for the best recovered item 
and the left side for the worst recovered item.

Comparison of APCs and ICCs of 
step-items of Individual Attributes

In order to explore the APCs behavior with respect 
to the observed scores on individual attributes, fig-

ures 4 and 5 compare the APCs obtained with the 
LSDM with the ICCs of the respective “individual” 
items calibrated with the Rasch model.

Figure 4 shows that the ICCs and APCs are 
very similar in the case of A1 and A2. The graphic 
exhibits a slight LSDM trend of overestimates the 
probabilities in low ability levels, and conversely, 
underestimates the probabilities in high ability 
levels. Figure 5 present the attributes A3, A4 and 
A5; these figures exhibit some differences between 
ICCs for individual items and the APCs estimated 
with the LSDM, it seems clear that LSDM tends to 
overestimate the probabilities, especially in low ability 
levels, this discrepancy may be caused by the con-
junctive nature of the model.

Cross-Validation of the LSDM 
Results Using the LLTM

Finally, a cross-validation of the attribute of rel-
ative difficulty was made by means of other IRT 
based model called LLTM (Fischer, 1973). The 
LLTM allows estimating the contribution of dif-
ferent attributes to the difficulty item by a linear 
decomposition of the IRT difficulty parameter. To 
use properly the model, two requirements must be 
met: a) the Rasch model fit, and, b) the accurate 
reproduction of the Rasch difficulty parameters. 
In the present context the LLTM shows some-
what good fit statistics: the correlation between 
the Rasch and LLTM item difficulties was 0.81, 
although the statistically significant LR test (χ2 = 
164,98; df=6, p < 0.01) indicate that the proposed 
attributes do not fully explain the difficulties of 
the item. 

table 3  
LLTM Basic Parameters

Attribute α s.e z Significance
A1 -0.089 0.131 0.677 n.s.
A2 -0.756 0.088 8.508 Sign. 5% and 1%
A3 0.686 0.150 4.549 n.s.
A4 -0.149 0.098 1.529 Sign. 5% and 1%
A5 1.736 0.165 10.479 Sign. 5% and 1%+

Source: Own work.
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Table 3 presents the basic parameters for each 
attribute that represents the linear contribution of 
the attribute to the overall Rasch difficult item and 
its statistical significance. 

The five attributes of the present study can be 
ordered by increasing difficulty as follows: A5, A3, 
A1, A4 and A2. This order is a perfect match to 
the LLTM order of attributes “relatively difficult” 
providing a cross-validation of the LSDM results.

Conclusions 

This study illustrated the application of the 
LSDM in the validation and analysis of cognitive 
attributes that were hypothesized to underlie the 
correct solution of items with two arithmetic opera-
tions (addition and subtraction) of integer numbers. 
The logical behavior of the probability curves for 
the five attributes under study provides important 
evidence for their overall validity. The LSD values, 
as global fit indicators, shows that the model exhibit 
less accuracy in medium ability levels, while the 
MAD values allow us to identify particular items 
with cognitive misspecifications, as it is the case 
of items: “-9 - (-5)”, “-6 + 3”, “9 + (9)” and “ 5- 7”. 
When such problems are signaled, the search for 
plausible explanations may also contribute to better 
understanding (and possibly revise) the attributes 
and their links to items in the -matrix. 

Results of the LSDM performance with ob-
served scores on individual attributes shows that 
the APCs recovered with LSDM match well the 
ICCs of individual items for operations A1 and A2 
but for A3, A4 and A5 the APCs tends to be over the 
ICCs on all the ability levels; these results may be 
explained by the conjunctive nature of the model, 
moreover, the product of logistic curves is not logis-
tic, for this reason this work presents a descriptive 
and exploratory explanation, more than a statistical 
comparison between curves. 

For the other hand, a perfect match between 
LLTM basic parameters and LSDM relative attri-
bute difficulties was found, therefore the LSDM 
results was confirmed, as well as the plausibility 
of the overall cognitive structure proposed for the 
arithmetic test.

The mentioned results show the importance 
of cognitive diagnosis assessment, not only on the 
large scale assessment, but also in the classroom 
evaluation; for example, the results obtained in 
this study may have important implications for 
the practice of teaching arithmetic operations in 
the target schools. The illustrated approach with 
using the LSDM can be applied in other areas of 
learning and cognition in the theory and practice 
of education. 
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