Publicado dic 28, 2018



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Ruth Viviana Intriago Morales https://orcid.org/0000-0002-4396-5617

José Luis Álvarez Vásquez https://orcid.org/0000-0003-0381-2402

##plugins.themes.bootstrap3.article.details##

Resumen

Antecedentes: El edentulismo es uno de los mayores problemas de salud oral que cause alteraciones fisiológicas, sociales, estéticas, fonéticas y nutricionales. Las terapias actuales para el remplazo dental son artificiales y no satisfacen los requisitos básicos de un diente natural. La bioingeniería de tejidos constituye una alternativa para la sustitución de dientes perdidos. Objetivo: Identificar los enfoques/técnicas disponibles actualmente para obtener un diente completo por bioingeniería (biodiente), así como puntualizar sus desafíos y perspectivas futuras. Métodos: Se realizó una revisión integrativa de la literatura, por medio de las siguientes palabras clave: biodiente, bioingeniería de tejidos, diente entero y células madre. Los años de la búsqueda fueron 2000-2018, en las bases de datos: PubMed, Scopus, EBSCO, Science Direct, Wiley Online Library, Lilacs y Google Académico/Scholar, en inglés y español. Se seleccionaron únicamente artículos y libros de mayor relevancia y pertinencia. Resultados: Se obtuvieron 53 artículos y 10 libros. Para la elaboración de un biodiente se emplean los siguientes métodos: andamios, sin andamios, células madre pluripotentes inducidas, germen de órganos, diente quimérico y estimulación de la formación de la tercera dentición. El tamaño y forma normales del diente, así como la obtención de células epiteliales, son los principales desafíos. Conclusiones: La posibilidad de crear y desarrollar un biodiente en un ambiente oral adulto es cada vez más real gracias a los avances biotecnológicos que ocurren diariamente. Es posible que estos conceptos sean la base de la odontología restauradora en un futuro próximo.

Keywords

bioengineering, dentistry, endodontics, regenerative medicine, bio-root, bio-tooth, restorative dentistry, stem cells, tissue engineering, tooth bioengineering, whole tooth regenerationbioingeniería, endodoncia, medicina regenerativa, odontología, biodiente, bioingeniería dental, bio-raíz, células madre, ingeniería de tejidos, regeneración dental completa, odontología restauradorabioengenharia, odontologia, endodontia, medicina regenerativa, bio-raiz, bio-dente, odontologia restauradora, células-tronco, engenharia de tecidos, bioengenharia de dentes, regeneração de dente inteiro

References
1. Smith EE, Yelick PC. Progress in bioengineered whole tooth research: from bench to dental patient chair. Curr Oral Health Rep. 2016 Dec; 3(4): 302–8.
2. Howard M. Innovaciones en Odontología: la regeneración de los tejidos dentales y el reemplazo biológico de los dientes. Rev Científica Odontológica. 2012 Sep; 6(1).
3. Oshima M, Tsuji T. Functional tooth regenerative therapy: tooth tissue regeneration and whole-tooth replacement. Odontology. 2014 Jul; 102(2): 123–36.
4. Yadav P, Tahir M, Yadav H, Sureka R, Garg A. Test tube tooth: the next big thing. J Clin Diagn Res. 2016 Jun; 10(6): ZE01–3.
5. Monteiro N, Yelick PC. Advances and perspectives in tooth tissue engineering. J Tissue Eng Regen Med. 2016 Jan; 11(9): 2443–61.
6. Liu P, Zhang Y, Chen S, Cai J, Pei D. Application of iPS cells in dental bioengineering and beyond. Stem Cell Rev Rep. 2014 Oct; 10(5): 663–70.
7. Smith EE, Zhang W, Schiele NR, Khademhosseini A, Kuo CK, Yelick PC. Developing a biomimetic tooth bud model. J Tissue Eng Regen Med. 2017 Dec; 11(12): 3326–36.
8. Zhang Y, Chen Y. Bioengineering of a human whole tooth: progress and challenge. Cell Regen. 2014 Apr; 3(1): 8.
9. Padma Priya S, Higuchi A, Abu Fanas S, Pooi Ling M, Kumari Neela V, Sunil PM, Saraswathi TR, Murugan K, Alarfaj AA, Munusamy MA, Kumar S. Odontogenic epithelial stem cells: hidden sources. Lab Invest. 2015 Dec; 95(12): 1344–52.
10. Whittemore R, Knafl K. The integrative review: updated methodology. J Adv Nurs. 2005 Dec; 52(5): 546–53.
11. Wang Y, Preston B, Guan G. Tooth bioengineering leads the next generation of dentistry. Int J Paediatr Dent. 2012 Nov; 22(6): 406–18.
12. Alvarez J. Ingeniería de tejidos en endodoncia: estado actual e implicaciones futuras. Odontociencia: Facultad de Odontología, Universidad de Cuenca. 2010 Jul; 2(7): 13.
13. Otsu K, Kumakami-Sakano M, Fujiwara N, Kikuchi K, Keller L, Lesot H, Harada H. Stem cell sources for tooth regeneration: current status and future prospects. Front Physiol. 2014 Feb; 5(36).
14. Céspedes D, Perona G. Futuro de la odontología restauradora. Rev Estomatológica Hered. 2014 Ago; 20(1): 44.
15. Jucht D, Rujano R, Romero M, Rondón L. Utilización de células madre en el ámbito odontológico. Revisión de la literatura. Acta Bioclínica. 2014 Oct; 0(0): 101–23.
16. Zeidán-Chuliá F, Noda M. “Opening” the mesenchymal stem cell tool box. Eur J Dent. 2009 Jul; 3(3): 240–9.
17. Saber SE-DM. Tissue engineering in endodontics. J Oral Sci. 2009 Dec; 51(4): 495–507.
18. Singh R, Gaikwad S, Chatterjee S, Ray P. Stem cells: the holy grail of regenerative medicine. In: Engineering in translational medicine. London: Springer-Verlag; 2014.
19. Argentati C, Morena F, Bazzucchi M, Armentano I, Emiliani C, Martino S. Adipose stem cell translational applications: from bench-to-bedside: Cartilage tissue engineering. Vol. 19. 2018.
20. Frese L, Dijkman PE, Hoerstrup SP. Adipose tissue-derived stem cells in regenerative medicine. Transfus Med Hemother. 2016 Jul; 43(4): 268–74.
21. Mahmoudifar N, Doran PM. Mesenchymal stem cells derived from human adipose tissue. Methods Mol Biol Clifton NJ. 2015; 13(40): 53–64.
22. Hakki SS, Karaoz E. Dental stem cells: Possibility for generation of a Bio-tooth. In: Dental Stem Cells. Springer International Publishing; 2016.167-96.
23. Caicedo C-J, Villareal M-P. Avances en bioingeniería dental y su aplicación en ortodoncia y ortopedia dentofacial: Una revisión de literatura. Rev Estomatol. 2017 Jul; 25(1).
24. Yan M, Yu Y, Zhang G, Tang C, Yu J. A journey from dental pulp stem cells to a bio-tooth. Stem Cell Rev. 2011 Mar; 7(1): 161–71.
25. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 2000 Dec; 97(25): 13625–30.
26. Egusa H, Sonoyama W, Nishimura M, Atsuta I, Akiyama K. Stem cells in dentistry--part I: stem cell sources. J Prosthodont Res. 2012 Jul; 56(3): 151-65.
27. Volponi AA, Pang Y, Sharpe PT. Stem cell-based biological tooth repair and regeneration. Trends Cell Biol. 2010 Dec; 20–206(12-6): 715-22.
28. Yu J, Shi J, Jin Y. Current approaches and challenges in making a bio-tooth. Tissue Eng Part B Rev. 2008 Sep; 14(3): 307-19.
29. Cai J, Zhang Y, Liu P, Chen S, Wu X, Sun Y, Li A, Huang K, Luo R, Wang L, Liu Y, Zhou T, Wei S, Guangjin P, Duanqing P. Generation of tooth-like structures from integration-free human urine induced pluripotent stem cells. Cell Regen. 2013 Jul; 2(1): 6.
30. Lymperi S, Ligoudistianou C, Taraslia V, Kontakiotis E, Anastasiadou E. Dental Stem Cells and their Applications in Dental Tissue Engineering. Open Dent J. 2013 Jul; 7:76–81.
31. Shinmura Y, Tsuchiya S, Hata K-I, Honda MJ. Quiescent epithelial cell rests of Malassez can differentiate into ameloblast-like cells. J Cell Physiol. 2008 Dec; 217(3): 728–38.
32. Liu Y, Jiang M, Hao W, Liu W, Tang L, Liu H, Jin Y. Skin epithelial cells as possible substitutes for ameloblasts during tooth regeneration. J Tissue Eng Regen Med. 2013 Dec; 7(12): 934–43.
33. Wang B, Li L, Du S, Liu C, Lin X, Chen Y, Zhang Y. Induction of human keratinocytes into enamel-secreting ameloblasts. Dev Biol. 2010 Aug; 344(2): 795–9.
34. Malhotra N. Induced Pluripotent Stem (iPS) Cells in Dentistry: A Review. Int J Stem Cells. 2016 Nov; 9(2): 176–85.
35. Waddington R, Sloan A. Tissue engineering and regeneration in dentistry. Willey-Blackwell; 2017.
36. Benda C, Zhou T, Wang X, Tian W, Grillari J, Tse H-F, Grillari-Voglauer R, Pei D, Esteban M. Urine as a source of stem cells. In: Mesenchymal stem cells - basics and clinical application I. Springer Berlin Heidelberg; 2012.19–32.
37. Marrelli M, Paduano F, Tatullo M. Cells isolated from human periapical cysts express mesenchymal stem cell-like properties. Int J Biol Sci. 2013 Nov; 9(10): 1070–8.
38. Zhang W, Vazquez B, Oreadi D, Yelick PC. Decellularized tooth bud scaffolds for tooth regeneration. J Dent Res. 2017 May; 96(5): 516–23.
39. Marelli M, Paduano F, Rengo C, Spagnuolo G, Rengo S, Tatullo M. The human periapical cyst-mesenchymal stem cells (hPCy-MSCs): the new challenge of “waste medicine” in regenerative dentistry. In: MSCs and innovative biomaterials in dentistry. Humana Press; 2017.
40. Wang X-P, Suomalainen M, Jorgez CJ, Matzuk MM, Werner S, Thesleff I. Follistatin regulates enamel patterning in mouse incisors by asymmetrically inhibiting BMP signaling and ameloblast differentiation. Dev Cell. 2004 Nov; 7(5): 719–30.
41. Zhang YD, Chen Z, Song YQ, Liu C, Chen YP. Making a tooth: growth factors, transcription factors, and stem cells. Cell Res. 2005 May; 15(5): 301–16.
42. Wolfe P, Sell S, Bowlin G. Natural and synthetic scaffolds. In: Tissue engineering: from lab to clinic. Berlin Heidelberg: Springer-Verlag; 2011.
43. Taylor DA, Sampaio LC, Ferdous Z, Gobin AS, Taite LJ. Decellularized matrices in regenerative medicine. Acta Biomater. 2018 Jul; 74: 74–89.
44. Zhang L, Morsi Y, Wang Y, Li Y, Ramakrishna S. Review scaffold design and stem cells for tooth regeneration. Jpn Dent Sci Rev. 2013 Feb; 49(1): 14–26.
45. Romero Jasso G, Barrios A, C B. Bioingeniería dental, ¿El futuro de la terapia en odontología? Rev Asoc Dent Mex. 2011 Jul; 68(4): 169–74.
46. Tsuji T, editor. Functional tooth regeneration. In: Organ Regeneration Based on Developmental Biology. Springer Singapore; 2017.
47. Steindorff MM, Lehl H, Winkel A, Stiesch M. Innovative approaches to regenerate teeth by tissue engineering. Arch Oral Biol. 2014 Feb; 59(2): 158–66.
48. Takahashi K, Kiso H, Saito K, Togo Y, Tsukamoto H, Huang B, Bessho K. Feasibility of gene therapy for tooth regeneration by stimulation of a third dentition. In: Gene therapy - tools and potential applications. 2013.
49. Bhanja A, D’Souza DSJ. Mapping the milestones in tooth regeneration: Current trends and future research. Med J Armed Forces India. 2016 Dec; 72, Supplement 1:S24–30.
50. Kuchler-Bopp S, Bécavin T, Kökten T, Weickert JL, Keller L, Lesot H, Deveaux E, Benkirane-Jessel N. Three-dimensional micro-culture system for Tooth tissue engineering. J Dent Res. 2016 Jun 1; 95(6): 657–64.
51. Nakao K, Morita R, Saji Y, Ishida K, Tomita Y, Ogawa M, Saitoh M, Tomooka Y, Tsuji T. The development of a bioengineered organ germ method. Nat Methods. 2007 Mar; 4(3): 227–30.
52. Ikeda E, Morita R, Nakao K, Ishida K, Nakamura T, Takano-Yamamoto T, Ogawa M, Mizuno M, Kasugai S, Tsuji T. Fully functional bioengineered tooth replacement as an organ replacement therapy. Proc Natl Acad Sci U S A. 2009 Aug; 106(32): 13475–80.
53. Yu J, Wang Y, Deng Z, Tang L, Li Y, Shi J, Jin Y. Odontogenic capability: bone marrow stromal stem cells versus dental pulp stem cells. Biol Cell. 2007 Aug; 99(8): 465–74.
54. Koussoulakou DS, Margaritis LH, Koussoulakos SL. A curriculum vitae of teeth: evolution, generation, regeneration. Int J Biol Sci. 2009 Feb; 5(3): 226–43.
55. Sartaj R, Sharpe P. Biological tooth replacement. J Anat. 2006 Oct; 209(4): 503–9.
56. Gao ZH, Hu L, Liu GL, Wei FL, Liu Y, Liu ZH, Fan ZP, Zhang CM, Wang J, Wang S. Bio-root and implant-based restoration as a tooth replacement alternative. J Dent Res. 2016 Jun; 95(6): 642–9.
57. Eap S, Bécavin T, Keller L, Kökten T, Fioretti F, Weickert J-L, Deveaux E, Benkirane-Jessel N, Kuchler-Bopp S. Nanofibers implant functionalized by neural growth factor as a strategy to innervate a bioengineered tooth. Adv Healthc Mater. 2014 Mar; 3(3): 386–91.
58. Kuchler-Bopp S, Larrea A, Petry L, Idoux-Gillet Y, Sebastian V, Ferrandon A, Schwinté P, Arruebo M, Benkirane-Jessel N. Promoting bioengineered tooth innervation using nanostructured and hybrid scaffolds. Acta Biomater. 2017 Mar; 50: 493–501.
59. Oshima M, Tsuji T. Whole tooth regeneration as a future dental treatment. In: Engineering Mineralized and Load Bearing Tissues. Springer International Publishing; 2015. 255–69.
60. Kačarević ŽP, Rider PM, Alkildani S, Retnasingh S, Smeets R, Jung O, Ivanišević Z, Barbeck M. An nntroduction to 3D bioprinting: possibilities, challenges and future aspects. Mater Basel Switz. 2018 Nov; 11(11).
61. Malkoc V. Challenges and the future of 3D bioprinting. J Biomed Imaging Bioeng. 2018; 2(1).
62. Jaramillo L. Síntesis y evaluación histológica de constructos tridimensionales que promueven la interacción de células mesenquimales con ectodermo oral embrionario de ratas Lewis para la obtención de tejidos semejantes a dientes. Pontificia Universidad Javeriana, Colombia; 2012.
63. Snead ML. Whole-tooth regeneration: It takes a village of scientists, clinicians, and patients. J Dent Educ. 2008 Jan; 72(8): 903–11.
Cómo citar
Intriago Morales, R. V., & Álvarez Vásquez, J. L. (2018). Elaboración de un biodiente: enfoque actual y desafíos. Universitas Odontologica, 37(79). https://doi.org/10.11144/Javeriana.uo37-79.ebea
Sección
Dossier Temático

Artículos más leídos del mismo autor/a