Publicado oct 29, 2013



PLUMX
Google Scholar
 
Search GoogleScholar


Claudia Patricia Lamby Tovar

Olga Lucia Gómez González

Lorenza María Jaramillo Gómez

##plugins.themes.bootstrap3.article.details##

Resumen

La saliva humana es un fluido del cuerpo esencial para la salud y una fuente ideal de biomarcadores para el diagnóstico, especialmente de enfermedades orales. La α-amilasa salival humana (AASH) es la proteína de la saliva que se encuentra en mayor concentración y posee actividad enzimática, ya que cataliza los enlaces α-1,4-glucosídicos de los almidones y los carbohidratos. También desempeña un papel importante en la colonización y metabolismo de las bacterias que conducen a la formación de la placa. En solución, esta proteína se une con gran afinidad a un selecto grupo de estreptococos orales, lo cual puede ayudar en la depuración o limpieza bacteriana de la cavidad oral. Es producida localmente en las glándulas salivales y su secreción es controlada por el sistema nervioso autónomo, por lo cual ha sido propuesta como un biomarcador para la actividad de este sistema. El objetivo de este artículo es analizar la importancia que tiene la AASH en la salud general.

 

Saliva is an important body fluid essential for health. Human saliva is an ideal source in the search of diagnostic markers, especially for oral disease. α-Amylase is a major protein in saliva, which catalyzes hydrolysis of 1,4-α-glucosidic linkages in starch and other polysaccharides. It also plays an important role in the colonization and metabolism of bacteria leading to dental plaque formation. α-Amylase in solution binds with high affinity to a selected group of oral streptococci, a function that may contribute to bacterial clearance. Salivary α-amylase is produced locally in the salivary glands that are controlled by the autonomic nervous system; for these reasons it has been proposed as a marker for stress induced activity of the sympathetic nervous system. The aim of this article is to analyze the importance of α-Amylase for general health.

Keywords
References
1. Spielmann N, Wong DT. Saliva: diagnostics and therapeutic perspectives. Oral Dis. 2011 May; 17(4): 345-54.
2. Rehak NN, Cecco SA, Csako G. Biochemical composition and electrolyte balance of “unstimulated” whole human saliva. Clin Chem Lab Med. 2000 Apr; 38(4): 335-43.
3. Kandra L, Gyémánt G. Examination of the active sites of human salivary alpha-amylase (HSA). Carbohydr Res. 2000 Nov 17; 329(3): 579-85.
4. Scannapieco FA, Torres G, Levine MJ. Salivary alpha-amylase: role in dental plaque and caries formation. Crit Rev Oral Biol Med. 1993; 4(3-4): 301-7.
5. Ramasubbu N, Ragunath C, Mishra PJ, Thomas LM, Gyémánt G, Kandra L. Human salivary alpha-amylase Trp58 situated at subsite -2 is critical for enzyme activity. Eur J Biochem. 2004 Jun; 271(12): 2517-29.
6. MacGregor EA, Janecek S, Svensson B. Relationship of sequence and structure to specificity in the alpha-amylase family of enzymes. Biochim Biophys Acta. 2001 Mar 9; 1546(1): 1-20.
7. Fisher SZ, Govindasamy L, Tu C, Agbandje-McKenna M, Silverman DN, Rajaniemi HJ, McKenna R. Structure of human salivary alpha-amylase crystallized in a C-centered monoclinic space group. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006 Feb 1; 62(Pt 2): 88-93.
8. Peng Y, Chen X, Sato T, Rankin SA, Tsuji RF, Ge Y. Purification and high-resolution top-down mass spectrometric characterization of human salivary α-amylase. Anal Chem. 2012 Apr 3; 84(7): 3339-46.
9. Deimling D, Breschi L, Hoth-Hannig W, Ruggeri A, Hannig C, Nekrashevych Y, Prati C, Hannig M. Electron microscopic detection of salivary alpha-amylase in the pellicle formed in situ. Eur J Oral Sci. 2004 Dec; 112(6): 503-9.
10. Scannapieco FA, Bhandary K, Ramasubbu N, Levine MJ. Structural relationship between the enzymatic and streptococcal binding sites of human salivary alpha-amylase. Biochem Biophys Res Commun. 1990 Dec 31; 173(3): 1109-15.
11. Rohleder N, Nater UM. Determinants of salivary alpha-amylase in humans and methodological considerations. Psychoneuroendocrinology. 2009 May; 34(4): 469-85.
12. Nater UM, Rohleder N. Salivary alpha-amylase as a non-invasive biomarker for the sympathetic nervous system: current state of research. Psychoneuroendocrinology. 2009 May; 34(4): 486-96.
13. Kandra L, Gyémánt G, Zajácz A, Batta G. Inhibitory effects of tannin on human salivary alpha-amylase. Biochem Biophys Res Commun. 2004 Jul 9; 319(4): 1265-71. PubMed PMID: 15194503.
14. Brown AE, Rogers JD, Haase EM, Zelasko PM, Scannapieco FA. Prevalence of the amylase-binding protein A gene (abpA) in oral streptococci. J Clin Microbiol. 1999 Dec; 37(12): 4081-5.
15. de Wijk RA, Prinz JF, Engelen L, Weenen H. The role of alpha-amylase in the perception of oral texture and flavour in custards. Physiol Behav. 2004 Oct 30; 83(1): 81-91.
16. Rohleder N, Wolf JM, Maldonado EF, Kirschbaum C. The psychosocial stress-induced increase in salivary alpha-amylase is independent of saliva flow rate. Psychophysiology. 2006 Nov; 43(6): 645-52.
17. Lorentz K. Approved recommendation on IFCC methods for the measurement of catalytic concentration of enzymes Part 9 IFCC method for alpha-amylase (1,4-alpha-D-glucan 4-glucanohydrolase, EC 3211) International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) Committee on Enzymes. Clin Chem Lab Med. 1998 Mar; 36(3): 185-203.
18. Bailey UM, Punyadeera C, Cooper-White JJ, Schulz BL. Analysis of the extreme diversity of salivary alpha-amylase isoforms generated by physiological proteolysis using liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2012 Dec 12; 911: 21-6. PubMed PMID: 23217301.
19. Janecek S, Svensson B, Henrissat B. Domain evolution in the alpha-amylase family. J Mol Evol. 1997 Sep; 45(3): 322-31.
20. Veerman EC, van den Keybus PA, Vissink A, Nieuw Amerongen AV. Human glandular salivas: their separate collection and analysis. Eur J Oral Sci. 1996 Aug; 104(4 (Pt 1)): 346-52.
21. Castle D, Castle A. Intracellular transport and secretion of salivary proteins. Crit Rev Oral Biol Med. 1998; 9(1): 4-22.
22. Nater UM, Rohleder N, Gaab J, Berger S, Jud A, Kirschbaum C, Ehlert U. Human salivary alpha-amylase reactivity in a psychosocial stress paradigm. Int J Psychophysiol. 2005 Mar; 55(3): 333-42.
23. Bosch JA, de Geus EJ, Veerman EC, Hoogstraten J, Nieuw Amerongen AV. Innate secretory immunity in response to laboratory stressors that evoke distinct patterns of cardiac autonomic activity. Psychosom Med. 2003 Mar-Apr; 65(2): 245-58.
24. Al-Hashimi I, Levine MJ. Characterization of in vivo salivary-derived enamel pellicle. Arch Oral Biol. 1989; 34(4): 289-95.
25. Yao Y, Berg EA, Costello CE, Troxler RF, Oppenheim FG. Identification of protein components in human acquired enamel pellicle and whole saliva using novel proteomics approaches. J Biol Chem. 2003 Feb 14; 278(7): 5300-8.
26. Jaramillo L, Durán C. Aspectos bioquímicos de la película adquirida. En: Gutiérrez SJ, editora. Fundamentos de ciencias básicas aplicadas a la odontología. Bogotá: Editorial Pontificia Universidad Javeriana; 2006. pp. 280-3.
27. Lamkin MS, Arancillo AA, Oppenheim FG. Temporal and compositional characteristics of salivary protein adsorption to hydroxyapatite. J Dent Res. 1996 Feb; 75(2): 803-8.
28. Gibbons RJ. Bacterial adhesion to oral tissues: a model for infectious diseases. J Dent Res. 1989 May; 68(5): 750-60.
29. Scannapieco FA, Solomon L, Wadenya RO. Emergence in human dental plaque and host distribution of amylase-binding streptococci. J Dent Res. 1994 Oct; 73(10): 1627-35.
30. Scannapieco FA, Torres GI, Levine MJ. Salivary amylase promotes adhesion of oral streptococci to hydroxyapatite. J Dent Res. 1995 Jul; 74(7): 1360-6.
31. Gibbons RJ, Hay DI, Schlesinger DH. Delineation of a segment of adsorbed salivary acidic proline-rich proteins which promotes adhesion of Streptococcus gordonii to apatitic surfaces. Infect Immun. 1991 Sep; 59(9): 2948-54.
32. Castro P, Tovar JA, Jaramillo L. Adhesion of Streptococcus mutans to salivary proteins in caries-free and caries-susceptible individuals. Acta Odontol Latinoam. 2006; 19(2): 59-66.
33. Gibbons RJ, Hay DI, Cisar JO, Clark WB. Adsorbed salivary proline-rich protein 1 and statherin: receptors for type 1 fimbriae of Actinomyces viscosus T14V-J1 on apatitic surfaces. Infect Immun. 1988 Nov; 56(11): 2990-3.
34. Gibbons RJ, Hay DI. Human salivary acidic proline-rich proteins and statherin promote the attachment of Actinomyces viscosus LY7 to apatitic surfaces. Infect Immun. 1988 Feb; 56(2): 439-45.
35. Clark WB, Beem JE, Nesbitt WE, Cisar JO, Tseng CC, Levine MJ. Pellicle receptors for Actinomyces viscosus type 1 fimbriae in vitro. Infect Immun. 1989 Oct; 57(10): 3003-8.
36. Kandra L, Zajácz A, Remenyik J, Gyémánt G. Kinetic investigation of a new inhibitor for human salivary alpha-amylase. Biochem Biophys Res Commun. 2005 Sep 2; 334(3): 824-8.
37. Klein MI, DeBaz L, Agidi S, Lee H, Xie G, Lin AH, Hamaker BR, Lemos JA, Koo H. Dynamics of Streptococcus mutans transcriptome in response to starch and sucrose during biofilm development. PLoS One. 2010 Oct 19; 5(10): e13478.
38. Kilian M, Nyvad B. Ability to bind salivary alpha-amylase discriminates certain viridans group streptococcal species. J Clin Microbiol. 1990 Nov; 28(11): 2576-7.
39. Chaudhuri B, Rojek J, Vickerman MM, Tanzer JM, Scannapieco FA. Interaction of salivary alpha-amylase and amylase-binding-protein A (AbpA) of Streptococcus gordonii with glucosyltransferase of S gordonii and Streptococcus mutans. BMC Microbiol. 2007 Jun 25; 7: 60.
40. Li L, Tanzer JM, Scannapieco FA. Identification and analysis of the amylase-binding protein B (AbpB) and gene (abpB) from Streptococcus gordonii. FEMS Microbiol Lett. 2002 Jul 2; 212(2): 151-7.
41. Scannapieco FA, Bergey EJ, Reddy MS, Levine MJ. Characterization of salivary alpha-amylase binding to Streptococcus sanguis. Infect Immun. 1989 Sep; 57(9): 2853-63.
42. Hara K, Ohara M, Hayashi I, Hino T, Nishimura R, Iwasaki Y, Ogawa T, Ohyama Y, Sugiyama M, Amano H. The green tea polyphenol (-)-epigallocatechin gallate precipitates salivary proteins including alpha-amylase: biochemical implications for oral health. Eur J Oral Sci. 2012 Apr; 120(2): 132-9.
43. Lamby CP, Gómez OL, Jaramillo L. Concentración de α-amilasa salival en niños con diferentes índices de caries. Univ Odontol. 2013 Ene-Jun; 32(68). En prensa.
44. Liu J, Duan Y. Saliva: a potential media for disease diagnostics and monitoring. Oral Oncol. 2012 Jul; 48(7): 569-77.
45. Helmerhorst EJ, Oppenheim FG. Saliva: a dynamic proteome. J Dent Res. 2007 Aug; 86(8): 680-93.
46. Trueba AF, Mizrachi D, Auchus RJ, Vogel PD, Ritz T. Effects of psychosocial stress on the pattern of salivary protein release. Physiol Behav. 2012 Feb 1; 105(3): 841-9.
47. Gilman S, Thornton R, Miller D, Biersner R. Effects of exercise stress on parotid gland secretion. Horm Metab Res. 1979 Jul; 11(7): 454.
48. Chatterton RT Jr, Vogelsong KM, Lu YC, Ellman AB, Hudgens GA. Salivary alpha-amylase as a measure of endogenous adrenergic activity. Clin Physiol. 1996 Jul; 16(4): 433-48.
49. Skosnik PD, Chatterton RT Jr, Swisher T, Park S. Modulation of attentional inhibition by norepinephrine and cortisol after psychological stress. Int J Psychophysiol. 2000 Apr; 36(1): 59-68.
50. Takai N, Yamaguchi M, Aragaki T, Eto K, Uchihashi K, Nishikawa Y. Gender-specific differences in salivary biomarker responses to acute psychological stress. Ann N Y Acad Sci. 2007 Mar; 1098: 510-5.
51. Ben-Aryeh H, Fisher M, Szargel R, Laufer D. Composition of whole unstimulated saliva of healthy children: changes with age. Arch Oral Biol. 1990; 35(11): 929-31.
52. Nagler R, Lischinsky S, Diamond E, Drigues N, Klein I, Reznick AZ. Effect of cigarette smoke on salivary proteins and enzyme activities. Arch Biochem Biophys. 2000 Jul 15; 379(2): 229-36.
53. Enberg N, Alho H, Loimaranta V, Lenander-Lumikari M. Saliva flow rate, amylase activity, and protein and electrolyte concentrations in saliva after acute alcohol consumption. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2001 Sep; 92(3): 292-8.
54. Morrison WE, Haas EC, Shaffner DH, Garrett ES, Fackler JC. Noise, stress, and annoyance in a pediatric intensive care unit. Crit Care Med. 2003 Jan; 31(1): 113-9.
55. López ME, Colloca ME, Páez RG, Schallmach JN, Koss MA, Chervonagura A. Salivary characteristics of diabetic children. Braz Dent J. 2003; 14(1): 26-31.
56. Yavuzyilmaz E, Yumak O, Akdoğanli T, Yamalik N, Ozer N, Ersoy F, Yeniay I. The alterations of whole saliva constituents in patients with diabetes mellitus. Aust Dent J. 1996 Jun; 41(3): 193-7.
57. Shirasaki S, Fujii H, Takahashi M, Sato T, Ebina M, Noto Y, Hirota K. Correlation between salivary alpha-amylase activity and pain scale in patients with chronic pain. Reg Anesth Pain Med. 2007 Mar-Apr; 32(2): 120-3.
58. Trueba AF, Mizrachi D, Auchus RJ, Vogel PD, Ritz T. Effects of psychosocial stress on the pattern of salivary protein release. Physiol Behav. 2012 Feb 1; 105(3): 841-9.
59. Fiehn NE, Oram V, Moe D. Streptococci and activities of sucrases and alpha-amylases in supragingival dental plaque and saliva in three caries activity groups. Acta Odontol Scand. 1986 Feb; 44(1): 1-9.
Cómo citar
Lamby Tovar, C. P., Gómez González, O. L., & Jaramillo Gómez, L. M. (2013). La α-amilasa salival: relación con la caries dental y la salud en general / Salivary α-Amylase: Relation with Dental Caries and Health in General. Universitas Odontologica, 32(69), 93–101. Recuperado a partir de https://revistas.javeriana.edu.co/index.php/revUnivOdontologica/article/view/SICI%3A%202027-3444%28201307%2932%3A69%3C93%3AASCDSG%3E2.0.CO%3B2-X
Sección
Dossier Temático

Artículos más leídos del mismo autor/a

1 2 > >>