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Abstract

We report on some quantum properties of physical systems, namely, entangle-
ment, nonlocality, k-copy nonlocality (superactivation of nonlocality), hidden
nonlocality (activation of nonlocality through local �ltering) and the activation
of nonlocality through tensoring and local �ltering. The aim of this work is
two-fold. First, we provide a review of the numerical procedures that must
be followed in order to calculate the aforementioned properties, in particular,
for any two-qubit system, and reproduce the bounds for two-qudit Werner
states. Second, we use such numerical tools to calculate new bounds of these
properties for two-qudit Isotropic states and two-qubit Hirsch states.

Keywords: Qubits; quantum information; quantum nonlocality; entanglement.

Introduction

The understanding and classi�cation of the properties of quantum states
are important subjects from both fundamental and practical points of view
(Horodecki et al. 2009, Brunner et al. 2014). Entanglement (Horodecki et al.
2009) and nonlocality (Brunner et al. 2014) are useful resources for quantum
protocols, namely: quantum teleportation (Bennett et al. 1993) and cryptog-
raphy (Ekert 1991). However, a deeper understanding of the relationship
between them is still required (Brunner et al. 2014). Even though entangle-
ment is necessary in order to achieve nonlocality, these two properties are not
equivalent, i. e., there exist entangled local states (Werner 1989). Since several
quantum protocols exclusively make use of nonlocality as a resource (Acin et
al. 2006a), it is natural to ask whether it is possible to use these (apparently
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useless) entangled local states in order to achieve (activate) nonlocality by
means of processes termed activation scenarios. There are three of these mech-
anisms: local �ltering (Popescu 1995), tensoring (Navascués & Vértesi 2011),
and quantum networks. Additionally, it is possible to consider combinations
of them (Brunner et al. 2014).

In this work, we begin by brie�y reviewing the aforementioned activation
scenarios and pay particular attention to the following: (1) the complete
characterisation of hidden nonlocality (or activation through local �ltering)
for two-qubit systems recently derived in Pal & Ghosh (2015), (2) a case of
the activation through tensoring called k-copy nonlocality (or superactivation
of nonlocality) (Palazuelos 2012, Cavalcanti et al. 2013), and (3) activation
through the combination of tensoring and local �ltering (Masanes et al. 2008,
Liang et al. 2012). Moreover, we have focused (though not restricted) on the
study of these three scenarios over two-qubit systems. The latter could be of
interest for future studies on states coming from the dynamics of open quan-
tum systems where entanglement and nonlocality (restricted to the standard
de�nition) are usually investigated (Batle & Casas 2010, Batle & Casas 2011).
We then used the already mentioned tools to perform numerical simulations
in order to investigate these quantum properties for some states of interest.
We �rst reproduced the bounds for the so-called two-qudit Werner states.
We then reported new bounds of these properties for the so-called two-qudit
Isotropic states and two-qubit Hirsch states.

This work is organised as follows. The �rst two sections deal with entangle-
ment and nonlocality. The third section establishes the motivation underneath
the activation of nonlocality and consequently, we present an overview of the
currently known activation scenarios. Next, we address hidden nonlocality,
followed by k-copy nonlocality, and the activation of nonlocality through
tensoring and local �ltering. In the fourth section, we report results regarding
the aforementioned quantum properties for some states of interest. First,
we reproduced the bounds of these properties for two-qudit Werner states.
Second, we report new bounds on the activation through tensoring and local
�ltering for two-qudit Isotropic states. Third, we report new bounds regarding
hidden nonlocality and activation through tensoring and local �ltering for
two-qubit Hirsch states. Finally, we discuss the obtained results.

Entanglement

Quantum entanglement was �rst implicitly introduced in the seminal 1935 EPR
article (Einstein et al. 1935) and subsequent discussions, however, it had to wait
until 1989 to be formally de�ned (Werner 1989). A general �nite-dimensional
bipartite AB system is represented by a density matrix or quantum state
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ρ ∈ D(CdA⊗CdB), with dA, dB ≥ 2, whereD(H) stands for the set of density
matrices of the complex Hilbert spaceH or D(H) := {ρ ∈ PSD(H)|Tr(ρ) =

1}, with PSD the set of positive semide�nite complex matrices, that is the
matrices ρ such that ∀ |φ〉 ∈ H : 〈φ| ρ |φ〉 ≥ 0. A general state there can be
written as representing an ensemble of pure quantum states {|ψi〉 , pi}, with
pi > 0 ∀i, and

∑
i pi = 1 as:

ρ =
∑
i

piψi, (1)

with i := |ψi〉 〈ψi|. We say ρ is separable if:

ρ =
∑
i

piρA ⊗ ρB, (2)

otherwise it is entangled. Given a quantum state, it is not a trivial task to
know whether it is possible to decompose it as in Eq. (2): there are criteria
for entanglement quanti�cation that work quite well for two-qubit systems,
and good measures to quantify this are already in place. This said, we lack
a uni�ed generalisation to arbitrary high-dimensional and multipartite sys-
tems. We next address the main quanti�er for two-qubit systems, namely,
the entanglement of formation (EoF) (Bennett et al. 1996b). The EoF has a
compact analytical expression for two qubits (Wootters 1998) and for a couple
of bipartite high-dimensional states we are interested in, namely, the Werner
and the Isotropic states (Terhal & Vollbrecht 2001, Vollbrecht & Werner 2001,
Wootters 2001).

Entanglement of Formation (EoF): For pure bipartite statesψ= |ψ〉 〈ψ|, 
there is an entanglement measure free of ambiguity (in the sense that it is 
an if and only if criterion) in terms of the well known von Neumann entropy,
E(ψ) := S(ψA) = −Tr(ψAlog2ψA) with A := TrB(ψ) the partial trace
(Bennett 1996b). For general mixed states Eq. (1), it is natural to ask about the
possible generalisation

∑
i piE (ψi). However, since we have in�nite possible

ensemble decompositions Eq. (1), this de�nition will depend on the chosen
ensemble. Consequently, the following measure, known as the Entanglement
of Formation (EoF), has been introduced (Bennett 1996b):

E(ρ) := min
{ψi,pi}

[∑
i

piE(ψi)

]
. (3)

In 1998, an analytical expression of Eq. (3) for the particular case of two-qubit
systems was derived, (Wootters 1998). Given ρ ∈ D(C2⊗C2), its EoF is given
by:

EoF (ρ) = h

(
1 +

√
1− C(ρ)2

2

)
, (4)
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where h(x) := −xlog2x−(1−x)log2(1−x) is the so-called binary entropy,C
is the so-called concurrence,C(ρ) = max{0, λ1−λ2−λ3−λ4}, where the λi’s
are the square roots of the eigenvalues of the product matrix ρρ̂, in decreasing
order, with: ρ̂ = (σy ⊗ σy) ρ∗ (σy ⊗ σy), ρ∗ the complex conjugate of ρ and, σy
the Pauli matrix. Both, C(ρ) and EoF (ρ) go from 0 to 1. There is no known
compact analytical expression for general high-dimensional systems, except
for a couple of classes of two-qudit states; the so-called Werner and Isotropic
states (Terhal & Vollbrecht 2001, Vollbrecht & Werner 2000, Wootters 2001).
Next, we focus on the concept of nonlocality.

Nonlocality

Quantum nonlocality was �rst implicitly introduced in the seminal EPR article
(Einstein et al. 1935) and corresponding subsequent discussions. However,
it had to wait until 1964 in order to be formally de�ned by J. S. Bell (Bell
1964). We proceed as follows: Given a bipartite system ρ ∈ D(CdA ⊗ CdB),
the �rst party of the whole system is sent to experimentalist A (Alice), and the
second to experimentalist B (Bob). They want to study the two observables
A and B respectively. These can be written in their spectral decomposition
as A =

∑
a oaP

x
a , B =

∑
b obP

y
b , where: Mx := {P x

a } and My := {P y
b } are

sets of projections, and oa, ob their respective eigenvalue spectra. However,
they can also be written more generally as A =

∑
a o
′
aE

x
a , B =

∑
b o
′
bE

y
b ,

where: Mx := {Ex
a} and My := {Ey

b } are now Positive Operators Valued
Measurements (POVM’s) with o′a, o

′
b real numbers though not necessarily

eigenvalues of A and B. Using this quantum state ρ, Alice and Bob make
measurements x and y, obtaining outcomes a and b. After repeating the
experiment enough times, eventually, they are able to establish the probability
of obtaining outcomes a, b after measuring x and y. This can be seen as the
joint conditional probability function p(a, b|x, y, ρ). According to quantum
mechanics, we could reproduce this statistics by means of the Born Rule
(Nielsen & Chuang 2000):

pQ(a, b|x, y, ρ) := Tr [(Ex
a ⊗ E

y
b )ρ] . (5)

Since quantum mechanics has been proven correct so far, we have: p(a, b|x, y, ρ)

= pQ(a, b|x, y, ρ). We can see a sketch of this process in Figure 1.
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Fig.1. Schematics of a standard Bell test (Brunner et al. 2014). Experimentalists Alice and Bob, share a 
bipartite quantum state ρ. They make measurements x and y and obtain outcomes a and b 

respectively.

Bell introduced the notion of locality (Bell 1964) within a formalism covering
theories that could reproduce this very same statistics Eq. (5). In this formalism
there are probability functions µ and ξ, such that

pL(a, b|x, y, ρ) =

∫
Λ

dλµ(λ|ρ)ξ(a, b|x, y, λ), (6)

where Λ is the often-called set of hidden variables and the triplet (Λ, µ, ξ) is
the ontological model. The locality condition reads ξ(a, b|x, y, λ) = ξA(a|x, λ)

ξB(b|y, λ). Mathematically speaking, it means that the functions ξA and ξB
are probabilistically independent on x and y. Physically speaking, it means
that after receiving inputs x and y, Alice cannot in�uence Bob’s output and
vice versa. Then, the question that arises is the following: Is it possible to
reproduce the statistics given by Eq. (5) by means of Eq. (6)? i. e.,

pQ(a, b|x, y, ρ)
?
= pL(a, b|x, y, ρ). (7)

If this is indeed possible for any POVM (we could relax the condition to just
projections), the quantum state ρ will be called local, otherwise ρ will be
nonlocal. For instance, it is not hard to prove that separable states Eq. (2)
are local states. From the locality condition Eq. (6), it is possible to derive
the so-called Bell inequalities (Bell 1964, Brunner et al. 2014) such that, if a
quantum state violates one of those inequalities, then that state is nonlocal.
In addition to having introduced this concept, Bell also derived the very �rst
Bell inequality with which he was capable of proving the nonlocality of the
two-qubit state |ψ〉 := 1√

2
(|01〉 − |10〉) (Bell 1964). It is well known that

nonlocality and entanglement are equivalent for multipartite pure states (in
the sense that every entangled state is nonlocal and viceversa) (Gisin 1991,
Gisin & Peres 1992, Popescu & Rohrlich 1992). However, this is not the case
for general mixed states, i. e., there exist mixed entangled local states (Werner
1989, Brunner et al. 2014). For a bipartite system, the aforementioned Bell
inequalities can be classi�ed through the parameters (mA,mB, nA, nB) where
x = 1, ...,mA, y = 1, ...,mB , a = 1, ..., nA, and b = 1, ..., nB (Brunner et al.
2014). Here, we shall discuss the simplest non trivial case, (2, 2, 2, 2). This
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inequality has a very compact form, at least for two-qubit systems, which we
detail in what follows.

CHSH Inequality: For a bipartite system, the Clauser-Horne-Shimony-Holt 
(CHSH) inequality (Clauser et al. 1969) considers two dichotomic (eigenvalues
±1) observables per party, namely, (A1, A2, B1, B2). With the notation already 
introduced, this would be the inequality (2,2,2,2) and it takes the form:

|Bρ(A1, A2, B1, B2)| := |E11 + E12 + E21 − E22| ≤ 2, (8)

where Eij := Tr [(Ai ⊗Bj) ρ], i, j = 1, 2. Both, this and more general Bell
inequalities can be derived in a systematic way by means of a geometric
approach (Brunner et al. 2014). The idea is to maximise the Bρ function over
those four observables. There is no compact solution for general arbitrary
dimensions, except for two qubits (Horodecki et al. 1995). In this case any
state ρ ∈ D(C2 ⊗ C2), can be written as:

1

4

(
14×4 + ~σ · ~a⊗ 1+ 1⊗ ~σ ·~b+

3∑
n,m=1

tn,mσn ⊗ σm

)
, (9)

with ~σ = [σi], σi, i = 1, 2, 3, the Pauli matrices, ~a = [ai] with ai := Tr[(σi ⊗
1)ρ], ~b = [bi] with bi := Tr[(1 ⊗ σi)ρ], and tnm := Tr[ρ(σn ⊗ σm)] making
the matrix Tρ := [tnm] ∈ M3×3(R). We have the following characterisation
in terms of the sum M(ρ) := µ+ µ̃ of the two biggest eigenvalues µ, µ̃ of the
matrix Uρ := T Tρ Tρ ∈M3×3(R):

ρ violates
the CHSH ⇐==⇒ M(ρ) := µ+ µ̃ > 1 . (10)

Inequality Eq. (8)

This is because, it is possible to show that max Bρ := |maxA1,A2,B1,B2Bρ| =
2
√
M(ρ). Then, using the Cirelson’s bound max Bρ ≤ 2

√
2 (Cirelson 1980),

it follows 0 ≤M(ρ) ≤ 2, showing nonlocality in the interval 1 < M(ρ) ≤ 2.
Instead of M(ρ), we could work with B(ρ) :=

√
max {0,M(ρ)− 1} because

for pure states we have that the former turns out to be equal to the concurrence
already discussed, i. e., C(|ψ〉) = B(|ψ〉) (Miranowicz 2004). However, in
order to analyse nonlocality through the CHSH inequality and make a direct
comparison with EoF, we will plot:

CHSH(ρ) = h

(
1 +

√
1−B(ρ)2

2

)
, (11)

being h the binary entropy de�ned in the previous section. It should be pointed
out that, if ρ does not violate the CHSH inequality, it does not necessarily
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imply that ρ is a local state; actually, it is possible that the state violates another
inequality, for instance the state considered in Collins & Gisin (2004). On the
other hand, proving locality is perhaps trickier than doing so for nonlocality
(Brunner et al. 2014). To wrap up, we search for nonlocality by means of the
CHSH inequality, however, there are entangled states that do not violate it
and even more, there are entangled local states (states that do not violate any
Bell inequality). Let us address the process of how to activate nonlocality on
these last classes of states.

Activation of Nonlocality: Scenarios

On the one hand, we have already pointed out that, although for pure states en-
tanglement and nonlocality are equivalent, (in the sense that every entangled
state is nonlocal and vice versa) this is not the case for general mixed states.
This, in principle, would settle the question about the relationship between
entanglement and nonlocality. However, in the mid nineties, Popescu was
able to activate the hidden nonlocality of a class of entangled local states after
a proper manipulation of them (Popescu 1995). This raised again the question
about the relationship between entanglement and what we could call, new
de�nitions (generalisations) of nonlocality. Therefore, from a fundamental
point of view, it is interesting to explore the aforementioned new relationship.

On the other hand, and from a practical point of view, even though entangle-
ment has been regarded as resource for many tasks (Horodecki et al. 2009),
it is also well known that there are protocols that explicitly require either
nonlocality or the violation of certain Bell inequalities (Brunner et al. 2014,
Acin et al. 2006a). Let us consider the following situation: suppose that an
experimentalist is able to prepare entangled local states only, but he needs
to implement protocols that require nonlocality. What could he do about it?
These procedures are called activation scenarios and we address them in what
follows (Brunner et al. 2014):

Activation through Local Filtering (LF): Popescu, in Ref. (Popescu 1995), 
took Werner entangled local states ρW ∈ D(Cd ⊗ Cd) and after applying a 
local �lter , an operation that could be thought as a projection onto a two-qubit 
system, namely P ⊗ Q with P := |1 〉〈 1| + |2 〉〈 2|, and Q := |1 〉〈 1| + |2 〉〈 2|, 
he found that the �nal state violated the CHSH inequality Eq. (8), with d > 5 
(See Appendix A for a detailed explanation). We can see a sketch of the 
procedure in Figure 2(a). Soon after this result, Gisin (Gisin 1996) proposed 
another example, but this time with states that, even though it was not known 
whether they were local, at least, they did not violate the CHSH inequality. 
Recently, Pal & Ghosh (2015) derived a complete characterisation for two-qubit 
systems.
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Fig. 2. (a) Activation of nonlocality through Local Filtering (Popescu 1995). Experimentalists Alice 
and Bob receive a part of a bipartite quantum state ρ. They make a local �ltering (map onto a two-qubit 
system) before a standard Bell test. (b) Activation of nonlocality through Tensoring (Navascués & 
Vértesi 2011). Experimentalists Alice and Bob receive a part of a quantum state ρ1 and part of another 
quantum state ρ2, then, they make a standard Bell test. (c) Activation of nonlocality through the 
combination of Tensoring and Local Filtering.

Activation through Tensoring (T): Here, the question is: Is it possible to 
�nd ρ1 and ρ2 entangled local states such that ρ1 ⊗ρ2 is an entangled nonlocal 
state? This procedure is illustrated in Figure 2(b). If ρ2 = ρ1, or in general if 
ρ⊗k is nonlocal, the phenomenon is called superactivation. Similarly, we 
could also say that the state ρ is k-copy nonlocal or that we have activation 
through k-tensoring. It is also natural to think about the combination of this 
procedure with the previous one as we can see in Figure 2(c). Historically, 
the �rst tensoring procedure appeared as a combination of k-tensoring with 
LF (Peres 1996a, Masanes 2006). Then, general tensoring and LF would arise 
(Masanes et al. 2008, Liang et al. 2012). The protocol of activation through 
tensoring alone (without LF) was reported in Navascués & Vértesi (2011), later, 
superactivation was put forward (Palazuelos 2012, Cavalcanti et al. 2013).

We next address the following three scenarios. First, hidden nonlocality (Pal
& Ghosh 2015). Second, k-copy nonlocality (Palazuelos 2012, Cavalcanti et
al. 2013). Third, tensoring with local �ltering (�rst tensoring, then local
�ltering) (Masanes et al. 2008, Liang et al. 2012). We shall focus on numerical
approaches for two-qubit systems.
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Local Filtering: Hidden Nonlocality (HN)

Recently, Pal & Ghosh (2015) derived a complete characterisation of hidden
nonlocality for two-qubit systems.

Given ρ ∈ D(C2⊗C2), ρ possesses hidden nonlocality (or ρ can be transform
into a CHSH-violating state ρ′ by means of local �lters) if and only if λ1

ρ +

λ2
ρ > λ0

ρ, where the λiρ’s are the eigenvalues of the matrix Cρ := ηTρηT
T
ρ

organized in decreasing order, with η := diag(1,−1,−1,−1) and Tρ := [tnm]

a matrix with elements tnm := Tr[(σm ⊗ σn)ρ] as de�ned in the CHSH
nonlocality section. The CHSH-violation of that new state ρ′ is given by
M ′(ρ) := M(ρ′) =

λ1ρ+λ2ρ
λ0ρ

. Instead of M ′(ρ), we could work with B′(ρ) :=√
max {0,M ′(ρ)− 1} because for pure states we have that the former turns

out to be equal to the concurrence already discussed, i. e., C(|ψ〉) = B(|ψ〉)
(Miranowicz 2004). Then, in order to analyse hidden nonlocality, we will plot:

HN(ρ) = h

(
1 +

√
1−B′(ρ)2

2

)
, (12)

being h the binary entropy de�ned in the EoF and CHSH sections.

Tensoring: k-copy Nonlocality (Superactivation of Nonlocality 
SA)

In this section we focus on the case of the activation of nonlocality only
through tensor product; in particular, when the state is capable of activating
nonlocality by itself, i. e., superactivating (Palazuelos 2012, Cavalcanti et al.
2013). We shall specialise our results on two-qubit systems.

Main Theorems: In order to talk about k-copy nonlocality, the teleportation 
protocol (Bennett et al. 1993) will come in handy. Given a two-qubit state 
ρ ∈ D(C2 ⊗ C2), we have the next hierarchy of properties depicted by the 
following chain of implications:

ρ violates the CHSH inequality Eq. (8).ww� (Horodecki et al. 1996b)

ρ is useful for teleportation. (13)ww� (Palazuelos 2012, Cavalcanti et al. 2013)

ρ is k-copy nonlocal.

The proofs of both implications can be found in Horodecki et al. (1996b),
Palazuelos (2012), and Cavalcanti et al. (2013), respectively. Here, we com-
ment on a couple of remarks: The �rst implication is restrictive in the sense
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that there exist entangled local states (states that do not violate any Bell in-
equality, in particular, the CHSH inequality), although useful for teleportation
(Popescu 1994). The second implication actually holds true even for general
two-qudit systems ρ ∈ D(Cd ⊗ Cd) (Palazuelos 2012, Cavalcanti et al. 2013).
Third, usefulness for teleportation does not cover all the entangled states set,
i. e., there exist entangled states not useful for teleportation (Horodecki et
al. 1996b). Fourth, it remains open both, the existence of an entangled never
k-copy nonlocal state and a k-copy nonlocal, not useful for teleportation state.
Finally, since usefulness for teleportation is a property which is possible to
search for numerically, it consequently allows us to enquire about k-copy
nonlocality. In what follows, we discuss how to numerically calculate useful-
ness for teleportation.

The teleportation protocol (Bennett et al. 1993), in a nutshell, works as follows.
A quantum pure state |φ〉 ∈ Cd can be teleported by means of a channel built
with another quantum state ρ ∈ D(Cd ⊗ Cd). In order to check how useful ρ
is to the protocol, a function called Fidelity of Teleportation (FoT) was proposed
(Popescu 1994). A seminal result regarding this function (Horodecki et al.
1999) establishes that:

Fd(ρ) =
dfd(ρ) + 1

d+ 1
, (14)

where fd is the so called Fully Entangled Fraction (FEF) (sometimes also called
Entanglement Singlet Fraction) given by:

fd(ρ) := max
ψ∈ME

〈ψ|ρ|ψ〉 , (15)

where ME stands for the set of maximally entangled states, i. e., the states
:= |ψ〉 〈ψ|, de�ned as: |ψ〉 := (U1 ⊗ U2) 1√

d

∑d−1
i=0 |ii〉, with U1, U2 local

unitary operations. Taking a look at Eq. (15), we have 1
d+1

< Fd < 1. If we
use separable states in the FEF Eq. (15), we obtain the value fd(ρsep) = 1

d

(Horodecki et al. 1999). Consequently, we have the characterisation:

ρ is useful for teleportation ⇐=⇒ fd(ρ) >
1

d
. (16)

In particular, for a two-qubit state ρ (d = 2), with 1
3
< Fd(ρ) < 1, ρ is useful

for teleportation if and only if f2(ρ) > 1
2

or F2(ρ) > 2
3
. Therefore, we can

search for k-copy nonlocality through the usefulness for teleportation by
means of the calculation of the FoT Eq. (14). A natural question that arises
is: what is the actual k value necessary for this superactivation? It turns out
that, from the second implication in Eq. (13), it is possible to extract this value
(Palazuelos 2012, Cavalcanti et al. 2013). This k value is a minimum because it
is necessary only one nonlocal state in order to activate nonlocality through
tensoring (Popescu & Rohrlich 1992). We next show how to calculate this k.
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The superactivation tensoring factor k(d, fd): By means of the above-
mentioned theorem, the second implication in Eq. (13) it is possible to extract 
the explicit values of k in terms of the dimension d of the two-qudit system 
and their fully entangled fraction fd. From the theorem, those k’s must satisfy 
the following relation:[

C ′

C(ln d)2

]
(fdd)k

k2
> 1, (17)

with constants C := e4, C ′ := 4. Since in Eq. (17), we have a function
to the power of k over a polinomial (quadratic) function of k, we see that
the activation goes from f > 1/d. Numerically, in Figure 3(a), we see the
behaviour of k(d, fd). For most of the d− f region, k < 10 is enough (as it is
depicted by the white curve in the left); just when fd is close to the boundary
1
d
, it becomes asymptotically more di�cult to superactivate it. In Figure 3(b),

we see cuts for d = 2, 3, 4 and 5. Next, we will analyse how to calculate fd
for two qubits (d = 2) (Grondalski et al. 2002).

Fidelity of Teleportation (FoT): Following (Grondalski et al. 2002), we 
summarise the Fidelity of Teleportation (FoT) characterisation for two-qubit 
systems. Given ρ ∈ D(C2 ⊗ C2), we have that f2(ρ) = max{ηi, 0}, where 
the ηi’s are the eigenvalues of the matrix M = [Mmn], with elements Mmn =

Re (〈ψm| ρ |ψn〉), and {|ψn〉} the so-called magic basis |ψab〉 := i(a+b)(|0, b〉+

(−1)a |1, 1⊕ b〉)/
√

2. The FoT is given by F2(ρ) = 2f2(ρ)+1
3

, and we have
already seen that ρ is useful for teleportation if and only if f2 >

1
2

orF2(ρ) > 2
3
.

It should be pointed out that, the bound f2 = 1
2

is also a measure of usefulness
for other two-qubit protocols (Grondalski et al. 2002). In order to enquire
about this property, we shall plot:

SA(ρ) = F ′+2 , with F ′2 := F2 −
2

3
, (18)

and + the positive part of the function. For multipartite or high-dimensional
systems, there is not a general explicit relation for the FEF, except for Werner
and Isotropic states (Zhao et al. 2010).

Tensoring and Local Filtering (T&LF)

In this Section, we deal with the activation of nonlocality through tensoring
and local �ltering (Masanes et al. 2008, Liang et al. 2012). Let us consider
the set PCHSH formed by states satisfying the CHSH inequality even after all
possible local �ltering (LF) operations (Masanes et al. 2008). In other words:
PCHSH ⊂ D(H),

ρ ∈ PCHSH ⇐=⇒ ∀Ω : D (H) −→ D
(
C2 ⊗ C2

)
LF (19)

it holds that, Ω (ρ) does not violate CHSH.
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Fig. 3. (a) Superactivation tensoring factor k(d, fd) in terms of the fully entangled fraction (FEF) 0 
≤ fd ≤ 1 and the dimension d ≥ 2 of the two-qudit system. The white curves represent the 
threshold for k < 10 and k < 3 from left to right respectively. (b) Transversal cuts of Fig. 3. (a) for 
d = 2, 3, 4 and 5.

Here, the local �lter LF denotes a separable map of the form Ω(ρ) =
∑

i(Ai ⊗
Bi)ρ(Ai⊗Bi)

†, with Ai, Bi being Kraus operators (Masanes et al. 2008). This
PCHSH set has been characterised for two-qubit systems (Verstraete & Wolf
2002). If we de�ne P ′CHSH as the set of states that do not violate CHSH even
after k tensoring themselves or LF, also called not asymptotically violation
(Masanes 2006), we have the relation P ′CHSH ⊂ PCHSH. There is an equivalence
between this asymptotically violation of CHSH (Masanes 2006) and another
property called distillability (Bennett et al. 1996a), which will let us search
numerically for states in PCHSH.

Main Theorem: Since we are focused on two-qubit sytems, we highlight 
the result for bipartite systems (Masanes et al. 2008). However, it should be 
said that, the theorem also works for general multipartite systems (Liang et 
al. 2012). It establishes the following:
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τ ∈ D
(
CdA ⊗ CdB

)
∃ρτ ∈ D

[
2⊗
i=1

(
Cdi ⊗ C2

)]
is ⇐==⇒ s.t. ρτ ∈ PCHSH, (20)

entangled τ ⊗ ρτ /∈ PCHSH.

A couple of remarks: First, since the result holds for any entangled state τ ,
it also applies for entangled states τ ∈ PCHSH, which would imply that the
CHSH nonlocality of τ has been activated (in the sense of PCHSH) through
tensoring (with ρτ ) and LF. We could also call it, tensorial activation of hidden
nonlocality. Second, even though the theorem guarantees the existence of the
matrix ρτ , it does not tell us explicitly how to calculate it.

Numerical Approach: Given τ ∈ D(CdA ⊗ CdB ) an entangled state, we 
would like to �nd the aforementioned respective density matrix ρτ . In order 
to do so, we follow the approach reported in (Liang et al. 2012). From the 
proof of the main theorem, which can be [found in (Liang et al. 2012),] it is
enough to look for a density matrix ρτ ∈ D (CdA ⊗ C2) ⊗ (CdB ⊗ C2) with 
the following characteristics. First,

Tr
[
ρτ
(
τT ⊗ Hπ/4

)]
< 0, (21)

with: Hθ := 1⊗ 1− cos θσx ⊗ σx − sin θσz ⊗ σz.

Second, we have to check that ρτ ∈ PCHSH. In principle, it is not numerically
possible to check if a state belongs or not to the set PCHSH (with the exception
of two-qubit systems (Pal & Ghosh 2015), however, our matrix ρτ is not of this
sort). Fortunately, we have some results that partially allow us to search for
it: i) as we have already pointed out, P ′CHSH ⊂ PCHSH; ii) P ′CHSH is equivalent
to Bound Entanglement (BE) (Masanes 2006); iii) there is a class of these
bound entangled states, the so-called PPT (Positive Partial Transpose) states
(Peres 1996b, Horodecki et al. 1996a). The former are states such that, their
partial transpose respect to the �rst subsystem is positive or ρT1 ≥ 0. In
other words, given ρ ∈ D(CdA ⊗ CdB), which is always possible to write it
as ρ :=

∑
ijkl ρijkl|i 〉〈 j| ⊗ |k 〉〈 l| with ρijkl coe�cients, the partial transpose

respect to the �rst subsystem is de�ned as:

ρT1 :=
∑
ijkl

ρijkl(|i 〉〈 j|)T ⊗ |k 〉〈 l|

=
∑
ijkl

ρijkl|j 〉〈 i| ⊗ |k 〉〈 l|, (22)

with T the standard transposition. The state ρ is then a PPT state, if its partial
transpose remains positive or ρT1τ ≥ 0. Therefore, we have the hierarchy of
properties:
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PPT −→ BE ←→ P ′CHSH −→ PCHSH. (23)

Hence, we could look for a matrix ρτ with a positive partial transposition
respect to the �rst subsystem CdA ⊗ C2 in order to guarantee that it belongs
to PCHSH. Then, we have the following minimisation problem:

minimise: σ(τ) := Tr
[
ρτ
(
τ T ⊗ Hπ/4

)]
,

over {ρτ} (24)
and constraints: ρτ ≥ 0, ρT1τ ≥ 0.

A problem with these characteristics is a Semide�nite Programming (SDP)
problem which is numerically solvable (Liang et al. 2012, Vandenberghe &
Boyd 1996). We have solved it by using MATLAB (MATLAB 2011b) with the
YALMIP toolbox (Löfberg 2004) and the solvers SDPT3 (Toh et al. 1998) and
SeDuMi (Sturm 1999). We next analyse all these properties on specialised
examples.

Results: Some Quantum Properties of States of Interest

In this section, we shall use the formalism and tools already described in the
previous sections in order to analyse the following quantum properties of
some speci�c states: entanglement, nonlocality, k-copy nonlocality, hidden
nonlocality, activation T&LF, and locality. From now on, we will deal with
quantum states in terms of a parameter p, i. e., ρ = ρ(p), with the following
notation: if p > pE then the state is entangled, if p > pNL the state is nonlocal,
if p > pSA the state is useful for teleportation (an therefore k-copy nonlocal),
if p > pHN the state contains hidden nonlocality, if p > pT&LF the program
described in the previous section has found an ancillary state that helps to
the activation T&LF, and if p ≤ pL the state is local. We will analyse these
properties onto the Werner states reproducing the values reported in Liang et
al. (2012). Additionally, we report new activation regions for Isotropic and
Hirsch states.

Werner-Isotropic (WI) States:We �rst consider the so-called Werner states 
(Werner 1989). Particularly, the two-qubit version of them, in which we refer 
to them as the Werner-Isotropic (WI) states, and read

τWI(p) = p |ψ−〉 〈ψ−|+
(1− p)

4
1,

0 ≤ p ≤ 1, |ψ−〉 :=
1√
2

(|01〉 − |10〉) . (25)
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Fig. 4. Quantum properties for the WI states Eq. (25). Entanglement-EoF (blue solid thick curve) Eq.
(4). Superactivation-SA (green dotted curve) Eq. (18). Nonlocality-CHSH (red dashed-dotted curve) 
Eq. (11). Hidden Nonlocality - HN (magenta solid thin curve) Eq. (12). Activation T&LF through 
the minimisation procedure Eq. (24) (cyan dashed curve) for which we have plotted −5σ [τWI (p)] 
in order to make it visible amongst the other properties. R (orange triply dashed curve), activation 
T&LF with the ancillary matrix Eq. (26), which was obtained by the minimisation procedure Eq. (24) 
at pA = 0.6569, and Projective-Locality (black vertical solid line) at pL = 0.6595 according to the best 
known bound derived in Ref. (Acín et al. 2006b).

In Figure 4, we have plotted the nonlocality-related properties discussed
throughout the paper for these WI states, namely, EoF, CHSH, SA, HN and
activation T&LF. Regarding activation T&LF, we have plotted −5σ[τWI(p)]

in order to make it visible amongst the other measures. We were also able
to extract the ancillary matrix for p = 0.6569 Eq. (26), which turns out to be
useful for all the 0.6569 < p < 1 region, as we show in the R(p) function
plotted in Figure 4. Therefore, τWI(p)⊗ ρτ is CHSH-nonlocal after a LF with,

ρτ =
1

16

3∑
i,j=0

Rijσi ⊗ σi ⊗ σj ⊗ σj, (26)

where

R :=
1

9

(
9 3 3 3
1 −1 3 −1
1 −1 3 −1
1 −1 3 −1

)
. (27)

To complete the results reported in Figure 4, the following Table 1 gives the
limit bounds of the nonlocality-related properties beyond entanglement for
the WI states.
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pE pSA pT&LF pL pHN pNL

0.3333 0.3333 0.6569 0.6595 0.7054 0.7054

Table 1. Limit values for the nonlocality-related properties beyond entanglement for WI States Eq. (25).

A few things should be pointed out: First, even though the nonlocality limit
point obtained from the CHSH inequality is pNL = 1√

2
≈ 0.7071, there

exists a slightly better bound which reads pNL = 0.7054 (Hua et al. 2015).
Second, CHSH-nonlocality coincides with hidden nonlocality because the WI
states are already in a Bell-diagonal form (see (Verstraete & Wolf 2002) for a
detailed explanation). We see that for the states in the entangled local region
0.3333 < p < 0.6596, even though they do not present hidden nonlocality,
they present superactivation of nonlocality and Activation T&LF.

Werner States: We next address the so-called two-qudit Werner 
states (Werner 1989):

τ dW (p) =
p

d(d− 1)
2Panti +

(1− p)
d2

1,

1− 2d

d+ 1
≤ p ≤ 1, (28)

Panti :=
1

2

(
1−

d∑
ij

|i〉 〈j| ⊗ |j〉 〈i|

)
.

In Figure 5, we have plotted the activation T&LF by means of the minimisation
of the σ(τ dW ) function, according to Eq. (24) and up to qudits of dimension
d = 6. In Table 2, we report the limit values for the nonlocality-related
properties discussed throughout the paper, also up to d = 6. The entanglement
and locality limits come from Werner (1989). The superactivation limit by
means of the FoT comes from Zhao et al. (2010), from which it turns out they
(as soon as d > 2) are not useful for teleportation. Therefore, it is unknown
if they are superactivable or not, and so, we have marked them in the table
with an X. The activation T&LF column follows the plots shown in the Figure
5 and also reported in Liang et al. (2012). Finally, in the last column, hidden
nonlocality from Popescu (1995). In Appendix A, we give a more detailed
description of these bounds.
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d pE pSA pT&LF pL pHN

2 0.3333 0.3333 0.6569 0.6595 0.7054
3 0.2500 X 0.6360 0.6667 0.7630
4 0.2000 X 0.6247 0.7500 0.7837
5 0.1429 X 0.6174 0.8000 0.7944
6 0.1667 X 0.6127 0.8333 0.8009

Table 2. Limit values for nonlocality-related properties beyond entanglement for Werner states 
Eq.(28) up to d = 6.

Isotropic States: We now consider the Isotropic states (Horodecki & Horodecki 
1999):

τ dI (p) = p |ψd〉 〈ψd|+
(1− p)
d2

1,

0 ≤ p ≤ 1, |ψd〉 :=
1√
d

d∑
i=1

|ii〉 . (29)
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Fig. 5. Activation T&NL for Werner states. Minimisation procedure Eq. (24) of the function σ[τ d (p)] 
vs parameter p for τ d (p), high dimensional Werner states Eq. (28). d = 2 (green dotted curve), d = 3 
(red dahsed-dotted curve), d = 4 (cyan triply dashed curve), d = 5 (magenta doubly dashed curve), 
d = 6 (yellow dashed curve). The inset shows a zoom of the functions close to the zero value. We 
reproduce the values reported in Liang et al. (2012), which we report in Table 2.
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In Figure 6, we have plotted the activation T&LF by means of the minimisa-
tion of the σ(τ dI ) function, according to Eq. (24) and up to qudits of dimension
d = 6. In Table 3, we report the limit values for the nonlocality-related
properties discussed throughout the paper up to d = 6. The entanglement
and locality limits are taken from Horodecki & Horodecki (1999). The super-
activation limit is obtained from Zhao et al. (2010) (all of them are useful).
Activation T&LF comes from plots shown in Figure 6. Finally, nonlocality limit
values are obtained from the Collins-Gisin–Linden-Massar-Popescu (CGLMP)
inequalities (Collins et al. 2002). In Appendix B, we give a more detailed
description of these bounds.

Hirsch States: Finally, we analyse the two-qubit states studied by Hirsch, 
Quintino, Bowles and Brunner (Hirsch et al. 2013) which for simplicity we 
will call Hirsch states:

τF (p, q, σ) = p |ψ−〉 〈ψ−| (30)

+[1− p]
[
qσ + (1− q)1

2

]
⊗ 1

2
,

0 ≤ p ≤ 1, 0 ≤ q ≤ 1, |ψ〉 :=
1√
2

(|01〉 − |10〉),

and σ and arbitrary one-qubit state. These states can also be thought as
a generalisation of the two-qubit WI states Eq. (25); in fact, we recover
them by putting σ = 1

2
, and q = 1. In Figure 7(a), we have plotted the

nonlocality-related properties for the two-parameter Hirsch states Eq. (30),
using σ = |0〉 〈0|.

d pE pSA pT&LF pL pHN

2 0.3333 0.3333 0.6569 0.6595 0.7054
3 0.2500 0.2500 0.5606 0.4167 0.6961
4 0.2000 0.2000 0.4890 0.3611 0.6905
5 0.1429 0.1429 0.4337 0.3208 0.6872
6 0.1667 0.1667 0.3895 0.2900 0.6849

Table 3. Limit values for nonlocality related properties beyond entanglement for Isotropic states 
Eq.(29) up to d = 6.
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Fig. 6. Activation T&NL for Isotropic states. Minimisation procedure Eq. (24) of the function σ[τId(p)] 
vs parameter p for τId(p) high dimensional Isotropic states Eq. (29). d = 2 (green dotted curve), d = 3 
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This plot should be understood as the projection of these properties upon
the p− q plane. The white region is composed by separable states whilst the
rest stands for entangled states and the nonlocality properties that lie within.
These properties have been superposed following the hierarchy we expect.
Interestingly, these states for σ = |0〉 〈0|, and q = 1 become

τF (p) = p |ψ−〉 〈ψ−|+ (1− p) |0〉 〈0| ⊗ 1
2
, (31)

for which the authors of Ref. (Hirsch et al. 2013) were able to prove locality,
i. e., to build a local model, for all p > 1/2. In Figure 7(b), we have plotted
the aforementioned properties for the states Eq. (31). In Table 4, we have
reported the limit values for the aforementioned properties for the states Eq.
(31).
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Fig. 7. (a) Quantum properties for the two-parameter Hirsch states Eq. (30) with σ = |0〉 〈0|. 
Entanglement-EoF (blue) Eq. (4). Nonlocality-CHSH (red) Eq. (11). Superactivation-SA (green) Eq. (18). 
Hidden Nonlocality-HN (magenta) Eq. (12). Activation T&LF (cyan) Eq. (24). (b) Quantum properties 
for one-parameter Hirsch states Eq. (31) (or two-parameter Hirsch states with σ = |0〉 〈0| and q = 1, 
previous plot (a) at q = 1). Entanglement-EoF (blue solid thick curve) Eq. (4). Nonlocality-CHSH (red 
dashed-dotted curve) Eq. (11). Superactivation-SA (green dotted curve) Eq. (18). Hidden Nonlocality-
HN (magenta solid thin curve) Eq. (12). Activation T&LF for which we have plotted −5σ [τF (p, q)] in 
order to make it visible amongst the other properties (cyan dashed curve) Eq. (24). Projective-Locality 
(black vertical solid line).

Discussion

In this work, we have dealt with 6 properties of quantum states, namely,
entanglement, nonlocality, locality, and three generalisations of nonlocality
by means of the activation scenarios: hidden nonlocality HN (or activation
through local �ltering), k-copy nonlocality (or superactivation of nonlocality
SA), and activation through tensoring and local �ltering (T&LF). We stress
that there are more general setups, for instance, tensoring between di�erent
states or quantum networks. However, we have chosen the already discussed
ones, because, at least for two-qubit systems, we can numerically enquire for
these properties (with the exception of locality).

EoF
SA

HN CHSH
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pE pSA pT&LF pL pHN pNL

0 0 0.1716 0.333 0.5000 0.7071

Table 4. Limit values for the nonlocality-related properties beyond entanglement for the 
one-parameter Hirsch states Eq. (31).

The three activation scenarios we have worked with share the mechanisms of
whether local �ltering or tensoring. Whilst local �lters for two qubits, which
could be seen as operations that the experimentalists can locally implement,
keep the dimension of the system, tensoring increases it. Additionally, both
mechanisms take separable states into separable states (and consequently
local states). Therefore, they cannot possibly activate nonlocality on separable
states. Thus, they could only be useful for entangled local states.

We then have analysed these properties upon particular states of interest,
namely, the so-called Werner, Isotropic, and Hirsch states. These particular
choices were made because there exist local bounds for these states which
let us consider entangled local states. We remark that unlike the others prop-
erties, locality cannot be yet approached numerically. Locality can only be
investigated by means of the construction of local models which is not an
easy task.

This paper sheds light into mainly two aspects. First, from a practical point
of view, it could be seen as a reference guide to calculate nonlocality-related
properties for two-qubit systems. In particular, regarding k-copy nonlocality,
Figure 3(a,b) speci�es the integer number k necessary for the superactivation.
We have checked these properties upon the well known Werner states Figures
(4, 5) and Tables (1,2). Second, we have reported new bounds for other states of
interest (namely, Isotropic and Hirsch states). We have chosen these particular
states, in the same vein as Werner states, because of their known bounds
regarding locality. Even though nonlocality- related properties have already
been reported for these states, activation T&LF has not been calculated yet.
We have reported these bounds, �lling this gap. Before going into the details
of our �ndings, a note on the activation T&LF.

The main theorem regarding activation T&LF (20) guarantees that all entan-
gled states can be activated in this way. Therefore, from a purely theoretical
point of view, it could be seen as pointless to further study this scenario
in relation with entanglement. However, the theorem in question does not
provide us either the matrix or the �lter necessary for the activation, which is
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an important issue from a practical point of view. The numerical approach Eq
(21) could give us the ancillary matrix in question, and it is open how to �nd
the local �lter that maximises the activation. We now proceed to discuss our
�ndings for the Isotropic and Hirsch states.

For the so-called two-qudit Isotropic states, even though nonlocality-related
properties have been studied, no bounds for activation T&LF have been re-
ported yet. In Figure 6, we have calculated these bounds which we report in
Table 3 column 4 (pT&LF ) in terms of the dimension d of the qudits. From
these results, one can observe the following. Unlike the Werner states’ bounds,
these Isotropic states’ bounds do not cover the local states (given d > 2, values
in Table 3 column 4 (pT&LF ) are still greater than values in Table 3 column 5
(pL)). However, these new bounds now extend the known nonlocality region
(given d > 2, values in Table 3 column 6 (pNL) are greater than values in Table
3 column 4 (pT&LF )). Unfortunately, there is no two-qudit characterisation of
the set PCHSH , unlike two-qubit systems (Pal & Ghosh 2015), so we cannot
say anything in this regard.

For the so-called two-qubit Hirsch states, even though nonlocality-related
properties have been reported, neither bounds for hidden nonlocality nor
activation T&LF have been reported yet. In Figure 7(a), we have calculated
these bounds. First, we remark the hierarchy amongst these properties. All of
these properties are inside entanglement and all of them cover the standard
de�nition of nonlocality. Second, we are able to report a PCHSH activation
region for these qubits (which could also be called tensorial activation of
hidden nonlocality), here depicted by the cyan region (activation T&LF) that
is not covered by the magenta region (HN) in Figure 7(a).

We have depicted the particular case of Figure 7(a) for q = 1 in Figure 7(b)
and Table 4, because there is a locality bound for these states. First, the states
within the locality region (p < pL = 0.5) are usually considered useless for
quantum protocols based on nonlocality. However, they are now displaying a
nice variety of generalised nonlocality-related properties. Actually, all of the
three generalisations we are considering here, unlike Werner states in Figure
4 which present SA (all of the local region) and Act T&LF (a small region)
but no HN. Second, comparing this again with the Werner states in Figure 4,
we are numerically showing that there is not a trivial relation between these
generalisations of nonlocality. In particular, there are Werner states with SA
but no HN whilst there are Hirsch states with HN but no SA.
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Concluding Remarks

First, we have reviewed the so far known activation of nonlocality scenarios.
We payed particular attention to the hidden nonlocality, k-copy nonlocality,
and the activation through tensoring and local �ltering, in particular, upon
two-qubit systems. We have reviewed the numerical approaches required
in order to establish a quanti�cation of such quantum properties. For the
particular case of two-qudit Werner states, we have reproduced the limit
points of the above-mentioned properties.

Second, using the above tools we analysed the activation of nonlocality related
properties now for Isotropic and Hirsch states. In particular, we reported limit
points on the activation of nonlocality through tensoring and local �ltering
that, to the best of our knowledge, have not been reported so far. Additionally,
due to the recent result in Pal & Ghosh (2015), we have calculated hidden
nonlocality for two-qubit Hirsch states which has led us to report tensorial
activation of hidden nonlocality.
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Appendix A: Werner States

Here we show the nonlocality-related properties limit points (except activation
T&LF) for the two-qudit Werner states Eq. (28). They are entangled for p > pE
and local for p ≤ pL with (Werner 1989):

pE =
1

d+ 1
, pL =

d− 1

d
. (32)

The explicit calculation of the �delity of teleportation reported in Zhao et al.
(2010), shows that all entangled Werner states are not useful for teleportation,
i. e., fd(ρent) <

1
d
. Their hidden nonlocality or nonlocality through LF (only)

is checked as in Popescu (1995), which we detail in what follows. Applying
upon the two-qudit Werner states Eq. (28) the local �ltering operation given
by P ⊗Q, with:
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P = |0 〉〈 0|A + |1 〉〈 1|A, Q = |0 〉〈 0|B + |1 〉〈 1|B, (33)

we obtain the two-qubit state ρ(p) := [P ⊗Q]ρdW (p),

ρ(p) =
p

d(d− 1)
2|ψ 〉〈ψ|+ (1− p)

d2
12 ⊗ 12, (34)

with |ψ〉 := 1√
2

(|01〉 − |10〉). Normalizing we obtain:

ρ(p) =

[
d(d− 1)d2

2pd2 + (1− p)4d(d− 1)

]
×
[

p

d(d− 1)
2|ψ 〉〈ψ|+ (1− p)

d2
12 ⊗ 12

]
.

Now, checking its CHSH maximal violation by means of the criterion Eq. (10),
we have that the second part vanishes, whilst the �rst part achieves maximum
violation, i. e., 2

√
2, then:

max Bρ(p) =

[
d(d− 1)d2

2pd2 + (1− p)4d(d− 1)

]
(35)

×
[

p

d(d− 1)
2(2
√

2)

]
.

We have CHSH violation when max BρdW
(p) > 2, Eq. (8). After some algebra

we obtain that this holds for p ≥ pNL, with:

pNL =
4(d− 1)

2d(
√

2− 1) + 4(d− 1)
. (36)

For instance, the values we are interested in:

• d = 3, pNL = 4
17

(3
√

2− 1) ≈ 0.7630.
• d = 4, pNL = 3

7
(2
√

2− 1) ≈ 0.7837.
• d = 5, pNL = 8

41
(5
√

2− 3) ≈ 0.7944.
• d = 6, pNL = 5

14
(3
√

2− 2) ≈ 0.8009.

Which are the values reported in Table 2 and in Liang et al. (2012). In Liang et
al. (2012) they also reported that, after numerical optimisations over possible
�lters, �lters given by Eq. (33) are optimal, in the sense that, the obtained
two-qubit system violates CHSH at its best.
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Appendix B: Isotropic States

Here, we show the nonlocality-related properties limit points (except activa-
tion T&LF) for the two-qudit Isotropic states Eq. (29). They are entangled for
p > pE and local for p ≤ pL, with (Horodecki & Horodecki 1999):

pE =
1

d+ 1
, pL =

−1 +
∑d

k=1
1
k

d− 1
. (37)

The explicit calculation of the �delity of teleportation reported in Zhao et al.
(2010), shows that all entangled Isotropic states are useful for teleportation, i.
e., fd(ρent) >

1
d
. Finally, nonlocality is checked through the violation of the

CGLMP inequalities (Collins et al. 2002).
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Sobre la activación de no-localidad cuántica

Resumen. Se reportan algunas propiedades cuánticas de sistemas físicos, a saber, entrelazamiento, 
no-localidad, no-localidad a k-copias (superactivación de la no-localidad), no-localidad oculta 
(activación de la no-localidad a través de filtrado local) y activación de la no-localidad a través de 
producto tensorial y filtrado local. Este trabajo tiene dos propósitos: en primer lugar, proporcionar 
una reseña de los procedimientos numéricos que deben seguirse con el fin de calcular las propiedades 
mencionadas, en particular para cualquier estado de dos qubits, así como reproducir las cotas para 
los estados Werner de dos qudits. En segundo lugar, se utilizan estas herramientas numéricas para 
calcular nuevas cotas de estas propiedades para los estados isotrópicos de dos qudits y los estados de 
Hirsch de dos qubits.

Palabras clave: qubits; información cuántica, nolocalidad cuántica, entrelazamiento.

Sobre a Ativação da Não-localidade Quântica

Resumo. Apresentamos um estudo sobre as propriedades quânticas de sistemas físicos, 
especialmente, o emaranhamento, a não-localidade, a não-localidade k-copy (superativação da não-
localidade) e a ativação de não-localidade através do uso de tensores e filtragem local. O objetivo 
deste trabalho foi duplo. Primeiro, fornecemos uma revisão do procedimento numérico a ser seguido 
a fim de calcular as propriedades acima mencionadas, em particular, para qualquer sistema de dois-
qubits, e que reproduza a ligação para dois-qudit em Estado Werner. Em segundo lugar, utilizamos 
estas ferramentas numéricas para calcular novas ligações destas propriedades para estados isotrópicos 
e Hirsch de dois-qudit.
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