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Abstract

Microbial cellulases are industrially used enzymes that catalyze the cleavage
of the glycosidic bonds of cellulose. This hydrolysis yields sugars that can be
used in processes such as bioethanol production. These enzymes are mainly
produced by fungi belonging to the genus Trichoderma via submerged or solid
state fermentation with cellulosic materials as substrates. Recent publications
have increasingly demonstrated that alternatives to T. reesei enzymes in the
production of second-generation biofuels exist. Here, cellulolytic activities of
crude extracts obtained from a native isolate of T. asperellum from coffe pulp
and a strain of T. reesei were evaluated. Solid state fermentations were performed
using paper and sawdust as substrates. The activities were measured after
12 days of incubation. The extracts obtained from T. reesei showed higher
cellulase and endoglucanase activities (6.5 and 5.8 U/g) than those obtained
using T. asperellum (5.6 and 4.1 U/g) with paper as substrate. There were
no significant differences between isolates when grown on sawdust. It was
possible to verify that native T. asperellum was able to produce cellulases on
lignocellulosic material such as moistened paper and sawdust without having
undergone a chemical pretreatment.
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Introduction
Cellulose is an important structural component of the plant cell wall and
therefore, one of the most abundant biological materials on Earth. It is
a polysaccharide consisting of a linear chain of several hundreds to many
thousands of β (1→4) linked D-glucose units [1]. Cellulose, hemicellulose,
and lignin are the main components of the lignocellulosic biomass, such as seed
husks, bagasse, woodchips, straw, dry leaves, and sawdust. This lignocellulosic
biomass represents an economical, plentiful, renewable energy source because
it is generally waste material [2, 3].
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These waste materials can be used to produce biofuels, the use of which
can help reduce carbon dioxide emission as well as dependence on fossil
fuels. For this process, polymers in the lignocellulosic biomass must
be broken down into fermentable sugars. The enzymatic hydrolysis of
these compounds is an environment-friendly process catalyzed by both
types of cellulases (endo-1,4-b-D-glucanase, EC 3.2.1.4; exo-b-1,4-glucan
cellobiohydrolase, EC 3.2.1.91; and b-glucosidase, EC 3.2.1.21) and
hemicellulases (exo-1,4-b-xylosidase, EC 3.2.1.37 and endo-1,4-b-xylanase,
EC 3.2.1.8) [4, 5]. Also, this hydrolysis can be performed under neutral pH
and low temperature and with low by-product formation, thus being highly
efficient [6].

Nevertheless, high concentrations of enzymes are required to scale-up cellulose
hydrolysis to industrial levels. Therefore, the study of biotechnology-based
approaches is important for their use in production of cellulase-producing
microorganisms, which are of interest also in the textile, paper,
pharmaceutical, food, and detergent industries [6, 7].

This study focussed on Trichoderma, one of the most studied cellulase-
producing genera of fungi [4]. T. reesei is the most studied species for
cellulolytic enzyme production at an industrial level. It is a common soil
fungus found in the rhizospheres of crop plants, decaying wood, and
other decomposing materials. It is characterized by rapid growth, mostly
bright green conidia, and a repetitively branched conidiophore structure [8].
Although it is believed that T. reesei is the only and indispensable choice for
enzymatic cellulose saccharification and mutant strains with high cellulolytic
activity, such as T. reesei Rut C30 have been developed, recent publications
have increasingly demonstrated that fungi other than T. reesei are used for
cellulolytic enzymes production and it is necessary to optimize the culture
conditions for these fungi as well as the technology required for efficient
cellulase production in bioreactors [9-12].

Several strains of Trichoderma have been used in submerged fermentations to
study cellulase production using substrates, such as cellulose [5], pulp mill lime
mud [13], flower stems [14, 15], and crop residues [16]. Likewise, researchers
have also used corncob [6], mushroom compost [17], oat straw [18], wheat
bran [18, 19], rice husk and bran [20], rice straw [19, 21], cauliflower and
legumes residues [21], and sugarcane bagasse [19, 22] as substrates in solid
state fermentations (SSF). Additionally, enzymatic hydrolysis of corn stover,
rice straw, sawdust, and paper has been performed with cellulases produced
by Trichoderma to obtain fermentable sugars [2, 5, 6, 23]. However, these
substrates must undergo pretreatment for lignin removal, because lignin
constitutes a barrier to cellulose breakdown by microorganisms [6, 24].

http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum


421Zapata et al.

Universitas Scientiarum Vol. 23 (3): 419-436 http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum

Waste paper can be used as a substrate in SSF to produce cellulases with
fungi of the genus Trichoderma [3]. This type of fermentation, in comparison
to others, enables the use of low-cost substrates, recovery of enzymes
with higher concentrations, and faster growth of aerobic microorganisms,
such as the filamentous fungi. SSF also uses less energy and has lower
sterility requirements than those of submerged fermentations [25]. Paper has
low lignin and high cellulose contents and does not require any chemical
pretreatment for its use in cellulase production. Hence, besides being
environment-friendly, waste paper is an ideal substrate for fungal cellulase
production.

The objective of this work was to evaluate cellulolytic enzyme production in
SSF with a native isolate of T. asperellum using paper and sawdust as substrates
and to ascertain the effect of lignin on enzyme production. A strain of T. reesei
was used as reference organism.

Materials and methods

Microorganisms

T. reesei T114 was donated by the Environmental and Agricultural
Biotechnology Unit of the Biological Research Corporation (CIB).
T. asperellum and other fungi were isolated from coffee pulp after 60 days of
ensilage by serial dilutions in saline solution and culturing on potato dextrose
agar (PDA) supplemented with gentamicin. The colonies were screened for
the characteristics reported for Trichoderma and subcultured to obtain the
isolates.

To obtain monosporic cultures, conidia suspensions from each colony were
serially diluted and inoculated onto agar-agar plates. Next, cultures were
made from the plates containing conidia separated enough to transfer them
individually to a new plate [26], which was then incubated at 25 ◦C for 6 days
and further stored at 4 ◦C.

Morphological and molecular characterization

Isolates were observed after 6 days of incubation on PDA plates at 25 ◦C. Fungi
were identified according to their macroscopic (color, texture, and appearance)
and microscopic (appearance of hyphae, conidia, and conidiophores) features.
Genomic DNA of native T. asperellum was extracted from the pure culture and
the internal transcribed spacer (ITS4 and ITS5) regions of the ribosomal DNA
were amplified by PCR and subsequently sequenced. Sequences were aligned
and compared against available sequences in the databases GenBank, EMBL
(European Molecular Biology Laboratory) and UNITE (https://unite.ut.ee)
using the BLAST of NCBI (National Centre for Biotechnology Information,
http://www.ncbi.nlm.nih.gov/).
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Validation of fungal cellulolytic activity

To establish their cellulolytic activity, isolates were cultured in a medium
containing the following components: carboxymethyl cellulose (CMC),
10 g/L; (NH4)2SO4, 0.5 g/L; CaCl2, 0.5 g/L; KH2PO4, 0.1 g/L; K2HPO4,
0.1 g/L; and agar-agar, 15 g/L. Additionally, three modifications of this culture
medium were used to further evaluate fungal growth: i) use of sawdust with
an average particle size of 0.15 mm instead of CMC, ii) addition of 2.5 g/L of
yeast extract and peptone to the original composition, and iii) use of CMC
without adding salts. Hydrolysis of cellulosic substrates was confirmed after
incubation for 5 days at 30 ◦C.

Solid state fermentation

Sawdust and bond paper were used as substrates. Paper was cut into pieces
with sizes of approximately 5 × 5 mm2. Sawdust was ground to an average
particle size of 2 mm. Both the substrates were sterilized in an autoclave at
121 ◦C for 15 min, followed by drying at 70 ◦C for 24 h.

SSF was performed in 250-mL Erlenmeyer flasks sealed using cotton balls, with
each flask containing 10 g of dried substrate. The substrates were moistened
with a sterile solution (yeast extract, 2.5 g/L; peptone, 2.5 g/L; (NH4)2SO4,
0.5 g/L; CaCl2, 0.5 g/L; KH2PO4, 0.1 g/L, K2HPO4, 0.1 g/L; pH, 6.0) to
obtain an initial humidity content of 80 %. Conidia from PDA cultures were
suspended in a solution of Tween 80 (0.1 % v/v) and inoculated into the above
mentioned solution to obtain a final concentration of 1 × 107 conidia/mL.
Erlenmeyer flasks were incubated at 28 ◦C with 80 % relative humidity for 12
days.

Enzyme assays

Crude enzymatic extracts were obtained by washing the cultures with 50 mM
citrate buffer solution (1:2.5, w/v, pH 4.8) for 30 min. Solids were separated
by centrifugation at 16 000× g and 4 ◦C for 15 min. Supernatants were stored
at -20 ◦C.

Total cellulolytic activity (FPase) was measured using the filter paper assay
(FPA) according to Ghose, 1987 [27]. Whatman filter paper N1 was soaked
in 1 mL of the enzyme extract that was diluted in 1 mL of 50 mM citrate
buffer (pH 4.8). The reaction mixtures were incubated at 50 ◦C for 30 min.
To measure endoglucanase activity (CMCase), 1 mL of the enzyme extract
was added to 1 mL of CMC (2 % w/v) prepared in citrate buffer. The mixture
was incubated at 50 ◦C for 30 min.

http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum
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The concentration of reducing sugars released was measured using the
dinitrosalicylic acid (DNS) method [28]. For this method, 0.5 mL of
DNS solution (NaOH, 1.6 g; sodium and potassium tartrate, 30 g;
3,5-dinitrosalicylic acid, 1 g; in 100 mL of distilled water) was added to 0.5 mL
of each sample and incubated in boiling water for 5 min. After the samples
were cooled to room temperature, the absorbance at 540 nm was measured
with a Nanocolor©R spectrophotometer. A glucose solution (4 g/L) was used to
plot the calibration curve. The extract obtained from uninoculated substrate
was used as negative control.

One enzyme unit was defined as the amount of enzyme required to release
1 µmol of reducing sugars in 1 hour at 50 ◦C. The results were calculated
using Equation 1 [6].

EA= RS ·
υe

E
· 1
0.18 · t

, (1)

where EA is the enzyme activity (U/g), RS is the concentration of reducing
sugars released (mg/mL), υe is the extract volume (mL), E is the mass of
fermented substrate (g), and t is the reaction time (h).

Experimental design and statistical analysis

The solid state fermentation was performed through a randomized design and a
factorial arrangement with three replicates for each treatment was followed. A
two-way analysis of variance (ANOVA) for enzymatic activities with substrate
and fungal isolate as factors was conducted with a significance level of 0.05.
Significant differences were analyzed using Tukey’s multiple comparison test.
All tests were performed using R R©.

Results and discussion

Fungi isolation and characterization

Besides Trichoderma, 12 other fungi were isolated from coffee pulp. After
2 months of ensilage, the coffee pulp from Coffea arabica contained
ashes (14.68 %), lipids (1.49 %), proteins (19.91 %), fibers (29.47 %), soluble
carbohydrates (34.47 %), nitrogen (3.19 %), phosphorus (0.23 %), potassium
(6.55 %), calcium (0.75 %), and magnesium (0.18 %) [29]; these micro- and
macronutrients are required for the growth of microorganisms. Hence, many
microorganisms can use coffee pulp as a substrate for growth.

Microorganisms of the genera Aspergillus, Candida, Enterobacter, Penicillium,
Streptomyces, Fusarium, Geotrichum, Escherichia, and Pseudomonas have been
isolated from coffee pulp ensilaged for 2 months [29]; coffee pulp is an ideal

http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum
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medium for the growth of fungi and bacteria due to its high humidity content
[30]. Likewise, some native fungi of the genus Aspergillus isolated from coffee
husk can degrade caffeine and tannins [31]. In this study, we confirmed the
presence of some already reported fungi in coffee pulp. In addition, a strain
of Trichoderma, which can use cellulosic polymers as an energy source, was
found.

One isolate was identified as specie belonging to the genus Trichoderma by
observing the morphological features of his colony and his microscopic
structures. This isolate presented the following features: hyaline tabicated
microhyphae, regularly branched conidiophores, 3-5 hyaline bottle-shaped
phialides on the conidiophore’s edge, green ovoid unicellular conidia,
fast-growing colonies with colorless, reverse, nonaerial mycelium at early
stages, and tufty aerial mycelium at later stages. The native isolate was
white-spotted green, whereas T. reesei exhibited white and green concentric
rings [8, 32]. The results of ITS sequencing of the native Trichoderma indicated
99 % identity with T. asperellum.

Fungi growth on solid media with cellulosic substrates

After 5 days of incubation, native T. asperellum and T. reesei grew on solid
culture media prepared with CMC and sawdust as substrates. The colonies
were larger on media supplemented with yeast extract and peptone.

Culture medium composition modified T. reesei morphology as well as its
cellulase production. Strains growing on media supplemented with yeast
extract, peptone, and glucose showed denser and more highly branched
mycelia, and thus, larger surface area, which enhanced their enzyme
production due to higher enzyme-substrate interaction [32].

Microbial growth was limited in culture media that lacked salts, suggesting
that salts are necessary for the production of cellulolytic enzymes; these results
validated previous studies, which used pulp mill lime mud as a substrate for
the growth of T. asperellum [13].

Enzyme production by SSF

After 12 days of incubation, fungal growth was higher on paper than on
sawdust. FPase and CMCase activities were exhibited by both the isolates
(Fig. 1 and 2), but these activities were significantly higher in case of T. reesei
grown on paper. The concentrations of reducing sugars released in FPA
with extracts produced by T. reesei growing on paper and sawdust were 2.82
and 0.96 g/L, respectively, while those of CMCase were 5.24 and 1.84 g/L,
respectively.

http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum
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Figure 1. FPase activity of extracts obtained by SSF. Letters indicate significant
differences (p < 0.05) between concentrations of released reducing sugars. Source:
Authors.

Figure 2. CMCase activity of extracts obtained by SSF. Letters indicate significant
differences (p < 0.05) between concentrations of released reducing sugars. Source:
Authors.
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CMCase activity was also observed for isolates grown on sawdust, although
the level was significantly lower than that observed for isolates grown on paper.
Similar to other lignocellulosic materials, sawdust is composed of cellulose,
hemicellulose, and pectin, forming a complex crystalline lattice with lignin,
which makes the material refractory and blocks the interaction between
cellulose and Trichoderma endo- and exoglucanases [10]. Other scholars have
reported similar results. A considerably low enzyme activity using wood
sawdust as a substrate for the production of cellulases with T. harzianum on
SSF was found [23]. Similarly, more than 0.6 mg/mL of reducing sugars
released using cellulolytic extracts from SSF of lignocellulosic materials with
T. reesei could not be recovered [19].

In other studies, in contrast with this work, substrates were delignified before
SSF to enhance cellulose production [6]. High cellulolytic activity in extracts
from mixed and pure cultures of T. reesei and A. niger using wheat bran,
rice straw or soybean hulls as substrates, which are much less refractory
than sawdust, was found [21, 33]. Given that lignin is the main obstacle for
enzyme production using sawdust as a substrate, further studies concerning
delignification of sawdust before SSF with Trichoderma should be conducted
[34, 35].

The ANOVA calculations (Table 1) showed that both the variables, i.e.,
the type of substrate and isolate, affected FPase and CMCase activities.
Furthermore, interaction between these variables also affected enzyme
production, suggesting that enzyme production is markedly different for
each isolate depending on the substrate used.

Table 2 shows FPase and CMCase activities measured in enzyme units per
gram of dried substrate (U/g). T. asperellum and T. reesei exhibited FPase
activity that was higher than that of the negative control when using paper
as the substrate. In contrast, no significant differences were found when
using sawdust as the substrate, probably due to the barrier effect of lignin.
FPase activity comprises the activity of endo- and exoglucanases, which can
be produced by Trichoderma in the presence of an inducer, such as sophorose
or cellulose, the latter being highly accessible in the fibers of paper pulp but
not in sawdust [36].

Furthermore, significant differences were found in the CMCase activities
between the two isolates and the negative control, which were higher on
paper than on sawdust as the substrate (Table 2). Trichoderma endoglucanases
cleave glycosidic bonds in a random manner, preferentially in portions of low
molecular weight [23]. These enzymes may be induced by molecules present
in both paper and sawdust.

http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum
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Source DF SS MS F P

FPase

Substrate 1 51.47 51.47 758.36 0.000

Fungi 2 35.68 17.84 262.84 0.000

Interaction 2 24.64 12.32 181.51 0.000

Error 12 0.81 0.07

Total 17 112.60

R2 = 0.9928

CMCase

Substrate 1 17.45 17.45 55.86 0.000

Fungi 2 41.28 20.64 66.07 0.000

Interaction 2 10.25 5.12 16.40 0.000

Error 12 3.75 0.31

Total 17 72.73

R2 = 0.9485

Table 1. Two-factor ANOVA performed on the data of total cellulolytic (FPase) and
endoglucanase (CMCase) activities (p < 0.05).

CMCase activity was higher than FPase activity when sawdust was used
as the substrate. Other studies using isolates, such as those consistent with
Trichoderma, SSF, and lignocellulosic substrates, such as wheat bran and straw,
rice husk and straw, and sawdust, have reported similar results [18, 20, 21, 23].
This probably occurs because endoglucanases are produced in high quantities
to reduce the size of cellulose chains, thus increasing the availability of energy
sources to fulfill the energy demand in phases of higher biomass production
[20].

On the contrary, FPase activity was higher than CMCase activity when paper
was used as the substrate. Although this phenomenon is not common for
Trichoderma cultures grown on lignocellulosic substrates, it has been observed
in other studies a higher FPase activity with low concentration of nitrogen
source and inoculum proportion in the cultures [37].

It should be considered that FPase activity was measured using filter paper in
the enzymatic reaction; hence, it is possible that Trichoderma enzymes specific
for this type of substrate were synthesized. As reported in other studies,
T. reesei exhibited the highest cellulolytic activity. However, the native isolate
of T. asperellum also produced cellulolytic enzymes that catalyzed the release
of fermentable sugars using paper as the substrate. It will be noteworthy to

http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum
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Activity Substrate Control T. asperellum T. reesei

FPase
Sawdust 0.51 ± 0.08a 0.945 ± 0.12a 1.072 ± 0.04a

Paper 0.61 ± 0.42a 5.594 ± 0.15b 6.468 ± 0.44c

CMCase
Sawdust 0.34 ± 0.06a 2.059 ± 0.09b 2.050 ± 0.21b

Paper 0.43 ± 0.32a 4.106 ± 0.86c 5.827 ± 0.99d

Table 2. FPase and CMCase activity of extracts obtained by SSF reported in enzyme
units per gram of dried substrate. For each enzyme activity measure, letters indicate
significant differences (p < 0.05).

investigate the ability of both the fungi to utilize different kinds of waste
papers as an alternative source of reducing sugars and cellulolytic enzymes,
which can hydrolyze other lignocellulosic materials.

Reliable comparisons with other studies cannot be made because there are
only a few reports regarding the production of fungal enzymes by SSF using
paper as a substrate, and those experiments were not conducted using similar
temperature, incubation time, and buffer concentration as used in the current
experiment.

Conclusions

This study confirmed that it is possible to isolate Trichoderma, widely reported
as cellulolytic enzyme producers, from decomposing lignocellulosic materials.
T. reesei isolate showed a higher production of endo- and exoglucanases than
that by native T. asperellum. FPase and CMCase activities were very low when
sawdust was used as a substrate in SSF with both the fungal isolates, probably
because of the high lignin content, which acts as a barrier for fungi-cellulose
interactions.

T. asperellum has been used for the biological control of some phytopathogenic
fungi and although the cellulolytic activity of native T. asperellum in this study
was lower than that by T. reesei, it was demonstrated that paper can be useful
as a substrate for biomass and conidia production of T. asperellum.
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Producción de celulasas en papel y aserrín usando 
Trichoderma asperellum

Resumen. Las celulasas microbianas son enzimas utilizadas 
industrialmente, que catalizan la ruptura de enlaces glicosídicos de 
celulosa. Esta hidrólisis produce azúcares que pueden utilizarse en 
procesos tales como la producción de bioteanol. Estas enzimas son 
producidas principalmente por hongos pertenecientes al género 
Trichoderma vía fermentación en estado sólido o sumergido, con materiales 
celulósicos como sustratos. Las publicaciones recientes han demostrado 
de forma creciente que existen alternativas a las enzimas de T. reesei en la 
producción de biocombustibles de segunda generación. En este estudio 
se evaluaron las actividades celulolíticas de extractos crudos obtenidos 
de un aislamiento nativo de T. asperellum de pulpa de café y una cepa de 
T. reesei. Las fermentaciones en estado sólido se llevaron a cabo usando
como sustratos papel y aserrín. Las actividades se midieron después de
12 días de incubación. Los extractos obtenidos de T. reesei mostraron
mayor actividad de celulasa y endoglucanasa (6.5 and 5.8 U/g) que
los obtenidos usando T. asperellum (5.6 and 4.1 U/g) con papel como
sustrato. No hubo diferencias significativas entre los dos aislamientos
cuando crecieron en aserrín. Se pudo verificar que T. asperellum nativa
fue capaz de producir celulasas en material lignocelulósico, como papel
humedecido y aserrín, que no había pasado por un pretratamiento
químico.

Palabras clave: celulasas; extractos celulolíticos; fermentación en 
estado sólido; Trichoderma.
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Produção de celulases em papel e serragem usando 
Trichoderma asperellum

Resumo. As celulases microbianas são enzimas utilizadas 
industrialmente, que catalisam o rompimento das ligações glicosídicas 
da celulose. Esta hidrólise produze açúcares que podem ser utilizados em 
processos como a produção de bioetanol. Estas enzimas são produzidas 
principalmente por fungos pertencentes ao gênero Trichoderma, via 
fermentação em estado sólido ou submerso, com materiais celulósicos 
como substrato. As publicações recentes veem demonstrando de maneira 
crescente que existem alternativas as enzimas de T. reesei na produção 
de biocombustíveis de segunda geração. Neste estudo foram avaliadas 
as atividades celulolíticas de extratos brutos obtidos de um isolamento 
nativo de T. asperellum da polpa de café e uma cepa de T. reesei. As 
fermentações em estado sólido se realizaram usando como substrato 
papel e serragem. As atividades foram medidas depois de 12 dias de 
incubação. Os extratos obtidos de T. reesei mostraram maiores atividades 
de celulase e endoglicanase (6.5 e 5.8 U/g) que os obtidos usando 
T. asperellum (5.6 e 4.1 U/g) com papel como substrato. Não houve
diferenças significativas entre os dos isolamentos quando cresceram em
serragem. Foi possível verificar que T. asperellum nativa foi capaz de
produzir celulases em material lignocelulósico, como papel humedecido
e serragem, que não haviam passado por um pré-tratamento químico.

Palavras-chave: celulases; extratos celulolíticos; fermentação em estado 
sólido; Trichoderma.
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