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Abstract

This study proposes in vivo tests and design of experiments to determine
the influence of experimental factors on the mechanical response of the
soft tissue. The experimental factors considered are: room temperature
(A), indentation velocity (B), indenter temperature (C), pump pressure (D)
and muscle activation (E). An inverse method was developed to obtain the
constants for constitutive equations of a multilayer biological model (skin,
hypodermis, and muscle) through the use of indentation tests in combination
with a finite element method. For each combination of the experimental
factors, two groups of constants were established from the inverse method.
Sixteen combinations of experimental conditions and their corresponding
constants for the Mooney-Rivlin constitutive equations were obtained to
be used in further numerical models. The factor D and factor interactions
ADE, CDE, and ACDE were statistically significant with respect to skin
mechanical response. Therefore, it can be concluded that there is not a current
equation able to represent the mechanical properties of the skin under all the
experimental conditions considered in this study

Keywords: Finite element method; inverse analysis; constitutive equation;
human skin.

Introduction

The skin is a biologic and multilayer material with intrinsic biomechanical
properties that are suited to its function to regulate thermal exchange, maintain
water equilibrium, and protect against ultraviolet radiation [1]. The study of
the mechanical properties of soft tissues is valuable to evaluate the progress
of diseases such as tumors [2] and treatment effects [3], to simulate medical
surgeries [4], to understand the aging process [5, 6] and to evaluate the efficacy
of cosmetic products [7]. Changes in the tissue elasticity is an indicator of
the onset and progression of diseases in specific organs [3]. Therefore, the
palpation technique is a medical practice used in the exploration of penis,
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hernias, lymph nodes, breast, skin, abdominal regions and others. For example,
the evolution of breast cancer [2, 8, 9] is associated with an increase in stiffness
of the pathological tissue. However, a lack of quantitative tests prevents the
identification of the evolution of a disease according to specific mechanical
properties.

The effects of the following experimental factors on the mechanical behavior of
tissues have been studied in the literature: (a) different non-invasive techniques
[10]. The most commonly used methods report a wide range of variability
from one study to another. For example, Young’s modulus of skin varies
between 0.42 MPa and 0.85 MPa in torsion testing [11], between 4.6 MPa and
20 MPa in tensile testing [12], between 0.05 MPa and 0.15 MPa in suction
testing [13], [14] and between 1.1 kPa [15] and 8 kPa [16] in indentation
testing. This wide range of reported values shows the influence that techniques
and experimental conditions have on the estimation of mechanical properties.
(b) bodily region of human skin, which are related to the elastic and anisotropic
properties [17, 18]; (c) methods of sample attachment and procedures for
obtaining samples [17, 19] (e.g., precompression stiffens mechanical response)
[20]; (d) experimental scale (nano, micro and macroscopic), which measures
different tissue properties and enables the determination of the individual
responses of each tissue layer [13]; (e) testing method (in vivo, in vitro, or
ex vivo), which alter the behaviors of biological tissues [19] (e.g., changes in
stiffness values of up to 50 % have been reported for different testing methods)
[21]; (f) elastic behavior, which can depend on subject characteristics such as
age, gender, color and type of skin pigmentation, dietary habits and use of
tobacco, vascularization, and presence of disease [22, 23]; (g) room humidity
and temperature, which affect skin properties [24] (e.g., the Young’s modulus
of stratum corneum decreases when hydration increases) [24]. All of these
studies have used or developed different constitutive equations to represent
soft tissue mechanical behavior. A possible explanation for differences in
reported mechanical behaviors of skin soft tissue may be because no study
has simultaneously analyzed the combinatory effect of different experimental
conditions on the mechanical properties of soft tissue.

In this study, it is hypothesized that numerous experimental conditions
applied at the same time can affect the estimation of constitutive equations that
represent mechanical response of the tissue. It was decided to lock noticeable
factors on the best value, such as (a) indentation technique, (b) forearm, (d)
millimeters scale, (e) in vivo and (f) specific population, it is known they have
significant incidence. Thus, the aim was to establish the experimental factors
(such as room temperature, indentation velocity, indenter temperature, and
muscle activation) that affect the mechanical response of multilayer soft tissues,
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specifically of the skin (a layer of skin, hypodermis and muscle). Furthermore,
an inverse analysis is proposed to establish constitutive equations of the skin.
It compares in vivo experimental measurements with the results of a finite
element method analysis (FEA) that reproduces indentation conditions

Materials and methods

An inverse analysis was carried out using the following steps: first, an
indentation test was performed to obtain experimental results of indentation
force, distance and rate; then, a FEA with identical geometry and indentation
protocol and initial a priori mechanical properties was simulated; finally, an
optimization algorithm solved the inverse problem to find the constants for
the Mooney-Rivlin constitutive equation that fit the initial experimental curve
based on the mechanical parameters used in the numerical model (Fig. 1). The
method was validated and applied in previous studies on linear and non-linear
mechanical behavior and on monolayer and multilayer materials [25-27].

Figure 1. Inverse analysis diagram to derive skin mechanical properties.
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In vivo indentation test

The experiment was initially restricted to be performed as an in vivo
indentation test on multilayer soft tissues because the test does not alter
the composition of skin and allows to obtain reliable force and displacement
values. On the other hand, forearm is relatively flat, easily accessible, and
less disturbed by the involuntary movements of the body. For these reasons,
the indentation tests were carried out on the right ventral forearm zones of
right-handed people. The experimental assembly (Fig. 2) includes a device
for ensuring that a forearm is maintained perpendicular to the indenter, a
pump that exerts pressure on an individual’s forearm to minimize involuntary
movements, and a mechanism to activate the muscle. Previously, the assembly
was used to study in vivo the mechanical properties of human skin [28].

As it is known, mechanical properties of the skin depend on age, gender,
habits, and others [22]. To reduce the influence of age and gender on the
mechanical response, tests were performed on four male individuals between
17 and 19 years old. All of them had a body mass index of 20 and practice
football 4 to 6 hours per week. Physical activity should not strengthen the
upper body because it can generate variations in mechanical response that
are due to muscle toning and not to the composition of the skin. Random
procedures were performed according to the experimental design.

Figure 2. Experimental assembly: device for ensuring the position of the forearm, 
the mechanism of activating the muscle, and the exposed experimentation area are 
indicated.
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A spherical tip indenter with a 6.35 mm diameter was selected because rounded
edges minimize stress concentration and eliminate any possibility of pain.
The indentation depth was 3 mm, which exceeds twice the thickness of the
first two layers to guarantee a multilayer tissue response. The experiment
was conducted using a TA-XT2i Texture Analyzer, which measures the
normal forces related to stainless steel indenter in contact with the skin.
During indentation, reaction force and indentation depth are simultaneously
measured. Hence, a force-displacement curve can be generated out of these
data, which is later used for inverse analysis.

An experimental design was carried out to decide how many replications of
each treatment would be required to obtain the maximum information of the
test at the lowest cost [29]. A split-plot experiment was designed to identify
the incidence of the experimental factors in soft tissue mechanical response.
The factors considered in this study included the following:

- Room temperature (A), which may contribute to skin stiffness.

- Indentation velocity (B), to identify time-dependent skin properties.

- Indenter temperature (C), which may contribute to skin stiffness.

- Pump pressure magnitude (D), to ensure perpendicularity between the sample
and the indenter.

- Muscle activation (E), which may change multilayer stiffness.

Before conducting the main experiment, the reproducibility in controlling
each experimental factor was studied. Skin temperature is quite difficult to
control (between low [30 ◦C] and high [32 ◦C] levels [30]) because it depends
on an air conditioning system and on the time needed to adjust a room’s
temperature, the relative humidity is controlled with the air conditioned
system [31]. To ensure thermal conditioning, subjects were placed in the
study room 15 min before testing. Due to this restriction, it was not possible
to completely randomize the runs, which made it necessary to execute the
experiment in two stages. This situation leads to a split-plot experimental
design in which the whole plot corresponds to the temperature factor, and the
subplots correspond to combinations of the levels of the other four factors.
A fractional design with two complete plot replications with a single block
was proposed, leading to 64 runs. Each factor was considered in two levels of
experimentation that by convention are called “low” (-1) and “high” (+1).
The low and high levels of each factor are indicated in Table 1, and its values
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FACTOR DESCRIPTION LOW (-1) HIGH (+1)

A Room temperature 18 °C 29 °C

B Indentation velocity 0.3 mm/s 3 mm/s

C Indenter temperature 14 °C - 17°C 23 °C – 26 °C

D Pressure pump 0 mm Hg 20 mm Hg

E Muscle activation Relaxed Active

Table 1. Factors and their levels in the design of the experiment.

were selected carefully to avoid any damage over the volunteer but keeping
the experimental changes. For instance, difference of 10 ◦C in environment
temperature can reflect 2 ◦C on the skin [30], the pressure of the pump
is needed to fix the forearm and limit all involuntary movements, and
the indentation velocity was estimated between 300 um/s and 3 mm/s,
considering that the time of tissue response and load application is extended
from 1 to 10 seconds.

The epidermis and dermis layers were assumed to form only one skin
mechanical layer [13]. Thus, the mechanical response was attributed to the
cutis and hypodermis layers. The skin thickness of human forearm was not
directly measured in this experiment, and it was assumed that the total skin
thickness was approximately 2.4 mm, as measured by Hendricks et al. [13].

Numerical simulation

An axisymmetric finite element model of the skin was created. The contact
between the indenter and the skin was modeled as a spherical rigid body
(the indenter) and a plane deformable hyperelastic body (skin). After the
convergence analysis, a model with 896 planar 4-noded elements (CAX4R) was
used (Fig. 3). The friction coefficient (µ) between the stainless steel indenter
and the skin was determined by using a device capable of simultaneously
measuring normal and tangential forces. The friction coefficient obtained
was 0.20 ± 0.01.
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The mesh was divided into three different sets to represent the skin layer (top
elements), the subcutaneous or hypodermis layer (intermediate elements), and
the muscle layer (bottom elements); see Fig. 3. The three layers were assumed
to be perfectly bonded to each other. The thicknesses of the skin (dermis and
epidermis) layer, hypodermis layer and muscle layer were 1.2 mm, 1.2 mm
[12], and 4 mm, respectively.

It is globally accepted that most biological soft tissues mechanical behavior can
be modeled by hyperelastic material models [18]. Some authors [13, 32, 33]
employed Mooney-Rivlin models to characterize human skin. The skin layers
were modeled using a compressible hyperelastic Mooney-Rivlin formulation,
which is represented by the following equation:

U =C10

�

Ī1− 3
�

+C01

�

Ī2− 3
�

+
1

D1

�

J − 1)2 (1)

Where U is the strain energy function; C10, C01, and D1 are empirical
temperature-dependent material parameters; I1 and I2 are alternative invariants
of the left Cauchy Green deformation tensor; and J is the Jacobian of the
deformation gradient.

For the muscle layer, the following coefficients were used: C10 = 4.25 kPa,
C01 = 0 Pa, D1 = 2.36 MPa-1 [32]. For the skin and the hypodermis, the

Figure 3. Model with 896 planar 4-noded elements (CAX4R) corresponding to the 
experiment representation.
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coefficient D1 = 2000 MPa-1 was calculated from a bulk modulus of 1 MPa
[19], and the coefficients C10 and C01 were obtained from the inverse analysis.
The FEA were performed using Abaqus 6.11 (Dassault Systemes).

Inverse algorithm

According to the procedure described previously, an initial equivalent Young’s
modulus that approximately characterizes the skin and hypodermis layers are
considered. An implemented version of a Levenberg-Marquardt optimization
algorithm was used in Matlab©R to find the differences (error) between the
experimental measurement curves and the numerical model results and to
propose a new value of equivalent Young’s modulus with a minimum error
[34].

As stiffness for a spherical indenter does not have a linear relation and there are
not available force values of computational and experimental data for exactly
the same displacement values, the following type of equation is used to adjust
data:

P = mhk (2)

Where m and k are initially assumed as constants, line P is force, and h is
displacement.

This algorithm interpolates between a Gauss-Newton algorithm and a method
of gradient descent, which makes the solution more robust. The algorithm
uses either a linear or non-linear equation of adjustment. After running
multiple simulations to reach the optimal force-displacement relationship that
matches the experimental measurements, the constants of Mooney-Rivlin
equation are determined.

The constants C10 and C01 are defined using the following equation that
approximates a Young’s modulus [35]:

∼ �

C10+C01

�

(3)E = 6 ·

Where

∼C01 = 0.25C10 (4)

The equivalent Young’s moduli for the cutis Ec and the hypodermis E h are
iterated in a finite element model using the Mooney-Rivlin Eq. ( 1 ).

To find the differences between the experimental and computational curves,
m and k from Eq. ( 2 ) were compared. Relative errors were estimated and
defined as a logic disjunction (OR):
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k e x pe r i ment al−k com p u t at i onal
k e x pe r i ment al

−
OR

m e x pe r i m
m

ent al m com p u t at i onal
e x pe r i ment al > 0.005 (5)

Firstly, Ec is taken as a fixed value while E h is iterated in steps of 0.05kPa until
the error is lower than 5 %. Secondly, the value of E h found previously is
fixed. Then, Ec is iterated in 0.002KPa steps until an error of 2.5 % is attained.
Finally, the found Ec and E h values are used to establish the constants of the
constitutive equation that correspond to the mechanical properties of each
layer.

Additionally, it is known that the skin is stiffer than the hypodermis [16] and
so the following relationship must be fulfilled:

Ec > En (6)

When this condition is not met, Ec is iterated until the error is lower than
5 % and E h is iterated in the contrary case. The iterative process allows the
resultant simulation curve to be compared to the experimental curve until
the error is less than 2.5

Results and discussion

Design of experiment

The results of the experiment show that factor D (pump pressure) and factor
interactions ADE (temperature - pump pressure - muscle activation), CDE
(indenter temperature - pump pressure - muscle activation), and ACDE
(temperature - indenter temperature - pump pressure - muscle activation)
are statistically significant. The R-squared value of the experimental design
is 84.86 %. Normal distribution, equal variances, and randomization of the
residuals were verified to guarantee the validity of the experimental design
conclusions.

It is useful to fit a regression model to the experimental data in order to predict
the value of mechanical response in different values of the factors studied. The
statistical model in coded units [-1,1] of the experiment with interactions to
the third order is represented by the following:

Yi j k =C0+
∑

Ci xi +
∑∑

Ci j xi x j +
∑∑∑

Ci j k xi x j xk +Yk + (7)

ε











i , j , k =A,B ,C , D , E , F ,G
i 6= j 6= k

l = 1,2
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Where yi j k is a predicted response at the point (xi , x j , xk ), that corresponds to
an encoded level between [-1,1] of x1 =A, x2 =B, x3 =C, x4 =D, x5 =E, and Ci
corresponds to an estimated coefficient of individual effects, Ci j corresponds
to an estimated coefficient of double interaction effects, Ci j k corresponds
to an estimated coefficient of triple interaction effects. Equation (7) and the
estimated coefficients that are shown in Table 2 can be used to predict the
mechanical response of the skin based on the significant factors.

Numerical model

In the design of experiments proposed, the randomization of the individuals
who participated in the experiments guaranteed that the following numerical
models did not correspond to a specific individual.

According to the experimental design, an inverse analysis was carried
out for each combination of factors. The constitutive equation under a
Mooney-Rivlin model (Eq. 1) for the skin and hypodermis were obtained for
each combination of factors (Table 3). Because B (indentation velocity) was
the only factor that had no significant impact on mechanical response, it was
not included in the analysis. This factor and its interactions with other factors
could be considered replications of the other measurements.

Examples of displacement versus reaction force curves are shown in Fig. 4;
the experimental data interpolation curve (Eq. 2) is compared with the
computational curve. Although it is not possible to identify the individual
behaviors of the layers, a change in the initial slope (between 0 and 1 mm)
can be seen when only the upper layer (skin) is changed. On the other hand,
when only the lower layer (hypodermis) properties are changed, a change in
the curve slope can be observed between 1 mm and 2 mm. The relationship
between elasticity moduli allows to determine the change in the curve slope
and to improve their estimation. Sudden changes in slope and Ec/Eh≤1
relationships contradict the literature; this indicates that the hypodermis is
stiffer than the skin, and that there is an error in the estimation of the thickness
of the skin, or muscle and skin constitutive equations selected. This answer
corresponds to the factor levels [-1 + 1 + 1 + 1] and [+ 1-1 + 1-1]; Eq. (6)
was neglected when comparing the curves.

Fig. 5 shows an example of the stress state from a combination of experimental
factors at different levels, and it can be seen that there is the reaction of all
layers. Although the comparison of the skin reaction force was made at
3mm, for computational savings the model has 2 mm depth of indentation.
The stress distribution is directly related to the rigidity of the layers; the middle
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TERM EFFECT COEFF EE OF 
COEFF T P

Constant 22.196 1.731 12.82 0.007
A[HTC] 10.593 5.296 1.731 3.06 0.095

B 0.684 0.342 1.087 0.31 0.755
C 2.600 1.300 1.087 1.20 0.241
D 7.942 3.971 1.087 3.65 0.001
E -0.955 -0.477 1.087 -0.44 0.664

A[HTC]*B 1.442 0.721 1.087 0.66 0.512
A[HTC]*C 1.264 0.632 1.087 0.58 0.565
A[HTC]*D 2.481 1.240 1.087 1.14 0.263
A[HTC]*E 2.058 1.029 1.087 0.95 0.351

B*C -1.493 -0.746 1.087 -0.69 0.498
B*D -3.950 -1.975 1.087 -1.82 0.079
B*E 2.434 1.217 1.087 1.12 0.272
C*D 1.159 0.579 1.087 0.53 0.598
C*E -0.404 -0.202 1.087 -0.19 0.854
D*E -2.300 -1.150 1.087 -1.06 0.298

A[HTC]*B*C 1.789 0.895 1.087 0.82 0.417
A[HTC]*B*D 3.829 1.915 1.087 1.76 0.088
A[HTC]*C*D 4.015 2.007 1.087 1.85 0.075
A[HTC]*B*E 2.413 1.207 1.087 1.11 0.276
A[HTC]*C*E -0.434 -0.217 1.087 -0.20 0.843

A[HTC]*D*E 5.654 2.827 1.087 2.60 0.014
B*C*D 2.175 1.087 1.087 1.00 0.325
B*C*E 2.146 1.073 1.087 0.99 0.331
B*D*E -2.726 -1.363 1.087 -1.25 0.220
C*D*E 4.544 2.272 1.087 2.09 0.045

A[HTC]*B*C*D 3.758 1.879 1.087 1.73 0.094
A[HTC]*B*C*E 0.403 0.201 1.087 0.19 0.854
A[HTC]*B*D*E -2.642 -1.321 1.087 -1.22 0.234

A[HTC]*C*D*E 5.919 2.960 1.087 2.72 0.011
B*C*D*E 3.866 1.933 1.087 1.78 0.086

A[HTC]*B*C*D*E -1.382 -0.691 1.087 -0.64 0.530

Table 2. Estimated coefficients and effects of reaction force at 3-mm indentation 
depth.
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SKIN HYPODERMIS

[A.C.D.E] c10 [MPa] c01 [MPa] Ec [MPa] c10 [MPa] c01 [MPa] Eh [MPa]

[-1-1-1-1] 4.54E-04 1.13E-04 3.40E-03 1.42E-04 3.56E-05 1.07E-03

[-1-1-1+1] 4.11E-04 1.03E-04 3.08E-03 6.67E-05 1.67E-05 5.00E-04

[-1-1+1-1] 3.14E-04 7.85E-05 2.36E-03 2.00E-04 5.00E-05 1.50E-03

[-1-1+1+1] 6.41E-04 1.60E-04 4.81E-03 5.68E-04 1.42E-04 4.26E-03

[-1+1-1-1] 4.40E-03 1.10E-03 3.30E-02 4.50E-05 1.13E-05 3.38E-04

[-1+1-1+1] 3.39E-04 8.47E-05 2.54E-03 1.17E-04 2.93E-05 8.80E-04

[-1+1+1-1] 2.15E-02 5.38E-03 1.62E-01 5.29E-05 1.32E-05 3.96E-04

[-1+1+1+1] 4.95E-05 1.24E-05 3.72E-04 7.90E-03 1.97E-03 5.92E-02

[+1-1-1-1] 6.66E-03 1.66E-03 4.99E-02 6.05E-05 1.51E-05 4.54E-04

[+1-1-1+1] 5.60E-02 1.40E-02 4.20E-01 5.74E-05 1.43E-05 4.30E-04

[+1-1+1-1] 5.60E-05 1.40E-05 4.20E-04 4.18E-03 1.04E-03 3.13E-02

[+1-1+1+1] 7.05E-04 1.76E-04 5.29E-03 5.57E-04 1.39E-04 4.18E-03

[+1+1-1-1] 1.27E-03 3.17E-04 9.50E-03 3.36E-04 8.40E-05 2.52E-03

[+1+1-1+1] 1.72E-02 4.30E-03 1.29E-01 5.92E-05 1.48E-05 4.44E-04

[+1+1+1-1] 3.31E-03 8.27E-04 2.48E-02 4.00E-04 1.00E-04 3.00E-03

[+1+1+1+1] 9.33E-04 2.33E-04 7.00E-03 4.88E-04 1.22E-04 3.66E-03

Table 3. Constitutive equation coefficients under a Mooney-Rivlin model that represent the skin 
under specific experimental conditions.

layer (the hypodermis) is the least rigid, presenting the lowest values for stress
distribution. This pattern of stress distribution is consistent with all other
numerical models.
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Figure 4. Experimental (interpolation) and computational comparison curve
A) Ec/Eh>1, B) Ec/Eh»1, C) Ec/Eh<1.

A)  

B) 

C)
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Figure 5. Von Mises equivalent stress (MPa) corresponding to low (-1) levels of 
A: room temperature, C: indenter temperature, D: pump pressure factors and E: 
muscle activation factor.

Conclusions

Low values of factors A (room temperature), C (indenter temperature), D
(pump pressure), and their corresponding interactions result in lower values of
the mechanical response. The reason that the two first factors (in their lower
levels) affect directly the mechanical response is related to the temperature
delta between the skin and the indenter. The skin temperature is affected
by the room temperature. Hence, when the room temperature decreases,
the skin temperature decreases as well. Then, the temperature delta between
the indenter and the skin is smaller in the lower levels of these two factors
than in the higher ones. This leads to the conclusion that the skin is more
rigid when the temperature delta is higher. However, the aforementioned
conclusion is inferred from the room temperature, since no skin temperature
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was measured. Thus, future work can be focused on properly validating this
statement. Furthermore, as expected, the effect of factor D and its interactions
on the mechanical response indicate that the skin is more rigid when the skin
is pre-stressed.

One limitation of this study was the inability to measure the thicknesses of the
different layers (skin and hypodermis) in each individual, which led to the use
of fixed values in the numerical analysis. In general, as shown in Fig. 4, there
is a good approximation between experimental and computational curves.
However, a lack of precision in the constitutive equations can be observed in
the following condition: [-1+1+1+1] (temperature - indenter temperature -
pump pressure - muscle activation) in which the results represent a hypodermis
layer that is more rigid than the skin layer, indicating a possible error in the
estimations of the thickness of each layer of the skin for a given individual,
or an error when considering constant coefficients for muscle properties.
In addition, in this preliminary study, the contribution of the important
structural components of the dermis: collagen, elastin, and ground substance
[1], was neglected.

It is important to take into account that layer thickness is statistically
significant with respect to the mechanical response of multilayer tissues and
that evidently that the precision of the constitutive equations also depends on
this factor [36]. However, physiological variations can alter the mechanical
behavior of the skin [22] and are specific to each individual. Although it is
known that specific morphological conditions [22, 37] of volunteers have
an incidence on the mechanical response, this study does not pretend to
explain it. The randomization of the volunteers allows controlling the effects
of extraneous variables. It is assumed that, on average, morphological factors
will affect treatment conditions equally; so any significant differences between
conditions can fairly be attributed to the independent variables. Inter-subject
variability was not studied.

Indentation velocity did not influence skin mechanical properties, which
could be due to the low velocities that were used during the experiment.
This correlates with a study by Su et al.[38], who carried out indentations at
different strain rates to evaluate the viscoelastic response of multi-layer skin
and who could not find simulation results corresponding to the experimental
data. Future work could include analyses of higher velocities or larger levels
of differences.

The elastic modulus of skin is affected by various factors, such as the amount
of deformation (due to non-linear stress-strain behavior) and skin thickness.
It also varies considerably for different experimental techniques. In this
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study, the skin elastic modulus varied between 0.372 kPa and 420 kPa, while
the hypodermis elastic modulus varied between 0.338 kPa and 59.2 kPa.
These values are of the same magnitude order as reported by others [16,
38]. Pailler-Mattei et al. [16] reported an elastic modulus of 35 kPa for the
cutis and 2 kPa for the hypodermis. Their indentation tests were conducted
for a constant indentation speed of 400 µm/s, and the indenter used was
conical, whereas the mechanical model was a simple assembly of three springs.
Su et al. [38] found a Young’s modulus between 20.2 kPa and 24.4 kPa for the
hypodermis under a constant indentation speed of 0.2 mm/s. These values are
within the range found in this study, and the lowest variability encountered by
Sue et al. [38]may be because their simulations accounted for real thicknesses.
Nevertheless, it is clear that the wide range of values obtained as responses
for the skin and hypodermis elastic moduli reflect the great influence that
experimental factors have on mechanical properties.

The following was found for each combination of factors when establishing the
factors that affect the skin mechanical response: (a) a constitutive equation that
characterized the mechanical behavior of two layers (skin and hypodermis)
(Table 3) and (b) an equation that predicted the skin reaction force (Eq. 7).

The wide range of constitutive equation coefficients that were obtained to
model the skin, hypodermis and skin reflect the great influence that skin
thickness estimation and experimental factors have on mechanical properties.
The method proposed in this study can be useful to determine the mechanical
properties of the skin in a patient-specific manner for future in silico models
or to quantify the evolution of skin properties during skin treatment.

Future studies must include measurements of the thickness of each layer of
the skin for improving the precision of the constitutive equations. Moreover,
the creation and application of a new constitutive equation that consider all
experimental condition reduce the wide range of coefficients obtained, and it
allows to design models for particular uses or specifications.
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Influencia de los factores experimentales de la 
indentación en la respuesta mecánica de la piel

Resumen. Este estudio propone pruebas in vivo y diseño de 
experimentos para determinar la influencia de los factores 
experimentales en la respuesta mecánica de tejidos blandos. Los 
factores experimentales considerados son: temperatura ambiente 
(A) velocidad de indentación (B), temperatura del indentador (C),
presión de bombeo (D) y activación muscular (E). Se desarrolló
un método inverso con el fin de obtener las constantes para las
ecuaciones constitutivas de un modelo biológico de multicapa (piel,
hipodermis y músculo) a través del uso de pruebas de indentación
en combinación con el método del elemento finito. Para cada
combinación de los factores experimentales, se establecieron
dos grupos de constantes del método inverso. Se obtuvieron
dieciséis combinaciones de condiciones experimentales y sus
correspondientes constantes para las ecuaciones constitutivas
de Moorney-Rivlin, que se pueden usar en futuros modelos
numéricos. El factor D y las interacciones de los factores
ADE, CDE y ACDE fueron estadísticamente significativas con
respecto a la respuesta mecánica de la piel. En consecuencia,
se puede concluir que no hay actualmente una ecuación capaz
de representar las propiedades mecánicas de la piel bajo las
condiciones experimentales consideradas en este estudio.

Palabras clave: método del elemento finito; análisis inverso; 
ecuación constitutiva; piel humana
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Influência dos fatores experimentais da indentação na 
resposta mecânica da pele

Resumo. Este estudo propõe ensaios in vivo e desenho 
de experimentos para determinar a influência dos fatores 
experimentais na resposta mecânica de tecidos moles. Os fatores 
experimentais considerados são: temperatura ambiente (A), 
velocidade de indentação (B), temperatura de indentação (C), 
pressão de bomba (D) e ativação muscular (E). Desenvolveu-se 
um método invertido com o fim de obter as constantes para a 
equação constitutivas de um modelo biológico de multicapa (pele, 
hipoderme e músculo) por meio do uso de ensaios de indentacao 
em combinação com o método do elemento finito. Para cada 
combinação dos fatores experimentais, se estabeleceram dois 
grupos de constantes do método inverso. Obtiveram-se dezesseis 
combinações de condições experimentais e suas constantes 
correspondentes para as equações constitutivas de Mooney-
Rivlin, que podem ser usadas em futuros modelos numéricos. O 
fator D e as interações dos fatores ADE, CDE e ACDE foram 
estatisticamente significativas com respeito a resposta mecânica 
da pele. Assim sendo, se pode concluir que não há atualmente 
uma equação capaz de representar as propriedades mecânicas da 
pele baixo as condições experimentais consideradas neste estudo.

Palavras-chave: método do elemento finito; análise inversa; 
equação constituinte; pele humana
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