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Swimming in Curved Surfaces and Gauss Curvature
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Abstract

The Cartesian-Newtonian paradigm of mechanics establishes that, within
an inertial frame, a body either remains at rest or moves uniformly on a
line, unless a force acts externally upon it. This crucial assertion breaks
down when the classical concepts of space, time and measurement reveal to
be inadequate. If, for example, the space is non-flat, an effective translation
might occur from rest in the absence of external applied force. In this
paper we examine mathematically the motion of a small object or lizard
on an arbitrary curved surface. Particularly, we allow the lizard’s shape
to undergo a cyclic deformation due exclusively to internal forces, so
that the total linear momentum is conserved. In addition to the fact
that the deformation produces a swimming event, we prove –under fairly
simplifying assumptions– that such a translation is somewhat directly
proportional to the Gauss curvature of the surface at the point where the
lizard lies.

Keywords: equations of motion; Lagrangian formalism; local Riemannian
geometry; non-Euclidean differential geometry.

Introduction

In a Euclidean inertial plane a body initially at rest remains at rest until a
disturbing force makes it leave the rest. Nonetheless, in a curved surface, a
deformable object can experience a finite amount of translation as a result of
cyclic deformations arising from internal forces caused by muscles, motors o
other means of shape alteration (Wisdom 2003). In brief, the body is said to
swim in the curved surface. The effective motion does not violate the law of
conservation of linear momentum but, rather, is a genuine generalization of
this law. The phenomenon reveals the existence of certain gauge fields on the
configuration space for such an object or system (Shapere & Wilczek 1989,
Littlejohn & Reinsch 1997). The net translation does not depend on the
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speed with which the shape changes but on the non-null Gauss curvature of
the surface. That is to say, the swimming phenomenon becomes ultimately
geometric (Avron & Kenneth 2006).

Although the existence of net translation from rest has been rigorously
established in different contexts, its dependency on the Gauss curvature
demands supplementary research efforts. Doubtlessly, the swimming motion
“depends on the intrinsic curvature of the manifold” (Wisdom 2003). In
Avron & Kenneth (2006) it has en passant been showed that “for a small
swimmer, the swimming distance in one stroke is determined by the Riemann
curvature times certain moments of the swimmer”. This suggests that,
in the best possible scenario, the effective translation would be directly
proportional to the surface curvature and that is certainly what happens in a
2-sphere (Blau 2003). However, this is not true for more general 2-manifolds
(Avron & Kenneth 2006, Blau 2003). Does the direct proportionality hold
at least within a reasonable approximation? We will below prove that this
question has an affirmative answer.

Diverse mathematical machinery has been employed to describe the
swimming phenomenon: embedded submanifolds of a real coordinate
space Rn (Shapere & Wilczek, Blau 2003), complex variables techniques
(Cherman et al. 2000), generalized coordinates or abstract Riemannian
n-manifolds (Avron & Kenneth 2006), among others. Here we limit ourselves
to the simplest situation: a Riemannian surface, i.e., a real 2-manifold furnished
with a smooth metric tensor or first fundamental form. Besides, our approach
is intrinsic, meaning that the surface is not considered as lying in a Euclidean
space or other ambient space. Arguments from physics should, into the
bargain, be crystal clear for the mathematician. The variational principle of
least action becomes here, without difficulties, a postulate. Noether’s Theorem
matches a mathematical theorem. We shall assume no further knowledge
on Lagrangian mechanics. Notions such as configuration space, shape space,
gauge potential, gauge convention and others constitute legitimate definitions.

First we define an appropriate configuration space in a curved surface, a
deformable body (lizard) and a shape space, that is, a set of shape coordinates
(Littlejohn & Reinsch 1997) for our problem. We also compute the velocities
of the particles forming the lizard as it performs certain cyclic motion.
Then, we obtain the Lagrangian of the dynamical system and deal with the
consequences of the principle of least action. Needless to say, Noether’s
Theorem provides a mighty tool for exploiting the local symmetries of the
configuration space. The first integrals (quantities conserved in time) of the
Euler–Lagrange system supply a system of differential equations relating
the configuration coordinates with the shape coordinates. The core of this
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paper is reached later, when we introduce some infinitesimal approximations
and make explicit the gauge convention. Certainly, in order to separate the
configuration variables from the shape variables in the differential system, it
is necessary to make simplifications, including linear approximations to the
coefficients of the first fundamental form.

With these elements, we are ready to present our findings. First of all, we
give yet another proof of the existence of a finite net translation resulting
from a cyclic deformation of the shape, for our particular system (lizard).
Our principal result is, howbeit, the affirmative answer to the previous
question concerning the dependency of such finite amount of translation
on the Gaussian curvature of the surface at the point of interest. Videlicet,
under reachable simplifications, the translation is directly proportional to the
intrinsic curvature.

Gauge kinematics

A configuration space is, for our purposes, a way to visualize the “state” of a
special system as a point in a Riemannian 2-manifold. In such manner, our
configuration space will specifically be an open subset of V of a Riemannian
2-manifold equipped with isothermal coordinates (u, v). Gauss (1822) proved
the existence of such a local coordinate system within the frame of a general
theory on the the conformal representation of one surface upon other.
Dealing with a “small swimmer” only involves local coordinates in a “small”
neighborhood of a point in the surface.

Isothermal coordinates on the Riemannian surface V are local coordinates
whose metric is conformal to the Euclidean metric. The metric form is thus
given by

g = d s 2 = λ(d u2+ d v2), (1)

where λ= λ(u, v)> 0 is the sole metric coefficient. Given a curve γ in V that
makes constant angle with the u− (and the v−) axis, its geodesic curvature k
is the intrinsic geometric quantity yielding Liouville’s formula

k d s =
1
2

�

−
∂ logλ
∂ v

d u +
∂ logλ
∂ u

d v
�

. (2)

The value of k measures how far is γ from being a geodesic. The celebrated
Theorema Egregium assures then that the Gauss curvature K of a surface also
remains invariant under local isometries. Furthermore, the Gauss-Bonnet
differential relation
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K λd u ∧ d v =−d (k d s)

=−1
2

�

∂ 2 logλ
∂ u2

+
∂ 2 logλ
∂ v2

�

d u ∧ d v (3)

builds a walkable bridge between the geodesic curvature and the Gauss
curvature. For the proofs and details of these theorems on Riemannian
surfaces, we refer the interested reader to Stoker (1969).

The system or lizard consists of four massless deformable limbs connected
at one end in a common point P ∈V as it is illustrated in Fig. 1 The figure
resembles a plus sign or a cross. Two limbs or legs extend sideways in opposite
directions from P along a u-curve, that is, a curve for which v is a constant.
The remaining limbs (neck and tail) spread out perpendicularly in opposite
directions from P over a v -curve, a curve with constant u. These limbs have
equal masses m attached to their free ends. The whole system is contained in
V at all times, i.e. the lizard is a small swimmer. The four right angles at P
are rigid (incapable of being deformed).

We conceive muscles or other agents acting within the lizard to change the
length of the limbs. While the configuration of the system is specified by the
coordinates u, v , the lengths of the limbs can be regarded as shape coordinates.
The shape space will constitute, for the time being, certain 2-manifold with
coordinates α,β, where α denotes the common length to the legs and β is
the common length to neck and tail.

Figure 1. Lizard in configuration space u, v.
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The possible values of α and β guarantee that no point of the lizard goes
beyond the boundary of V . Their initial values are respectively α0,β0. The
lizard performs a cyclic motion due exclusively to internal forces, stretching
and shrinking its limbs, just like delineating a rhombus (or any other Jordan
curve) in the shape space, returning finally back to the initial point. Cf. Fig. 2

The configuration coordinates of the four masses, as functions of time, are

u −α, v; u +α, v; u, v −β; u, v +β. (4)

Gauge dynamics

A straightforward calculation of the corresponding squared velocities in terms
of the metric coefficient yields the classical Lagrangian of our system or lizard:

L=
m
2
×
�

α̇λ(u −α, v)[(u̇ − )2+ v̇2]

α̇

β̇

+λ(u +α, v) (u̇ + )2+ v̇2]

+λ(u, v −β) [u̇2+(v̇ − )2]

β̇+λ(u, v +β) [u̇2+(v̇ + )2]
	

.

(5)

Configuration and shape mix together in this expression. We do not have yet an
explicit relation between configuration coordinates and shape coordinates (gauge
convention) and so, we have yet no way to check whether or not L is a gauge invariant.

Figure 2. Rhombus � in shape space α, β.
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In order to determine the dynamical trajectory of a point in the lizard, we resort
to the principle of least action. This is a powerful variational principle of particle
and continuum systems. The Hamilton action is the real-valued functional of the
trajectories

S =
∫

L(t )d t , (6)

from an initial to a final configuration in a specified time interval. Among all
possible trajectories that the system could conceivably take, one selects (the) one that
minimizes the action. Briefly, actual trajectories are those having least action. The
true trajectory must, in this case, satisfy a system of differential equations, called the
Euler–Lagrange equations.

Instead of attempting to solve directly these equations, we profit from some families
of infinitesimal transformations on V which leave invariant the Lagrangian L. Each
of such families produces a quantity whose values are conserved in time or, more
precisely, a first integral of the Euler–Lagrange system. Noether’s Theorem assures
the legitimacy of these “conservation laws”. Since the Lagrangian may be written
in the form L= L(p, wp), where p = (u, v) and wp = (u̇, v̇) ∈ Tp(V ) (the tangent
space to V at point p), it defines a fiberwise function L : T V → R on the tangent
bundle T V , into the set of real numbers R. A diffeomorphism h : V →V leaves L
invariant if

L(h(p), d hp .wp ) = L(p, wp ) (7)

where d h : T V → T V stands for the fiberwise derivative of h. Moreover, let E be
an interval of real numbers containing zero, and {hε : ε ∈ E} an indexed system of
diffeomorphisms of V leaving L invariant. This system is called a one-parameter
family of diffeomorphisms of V when (i) the expression hε is differentiable with
respect to ε and (ii) h0 is the identity map on V . Under these circumstances, once we
write conveniently

(8)hε(u, v) = (Υ (u, v;ε),Φ(u, v;ε)), ε ∈ E ,

Noether’s Theorem ensures that the quantity

∂ u̇ ∂ ε
(0)+

∂ v̇
∂ L ∂ Υ ∂ L ∂ Φ

∂ ε
(0) (9)

is a first integral of motion.

Now, the usual laws of conservation of energy and the angular momentum of classical
mechanics are translated into relativity by postulating the existence of Killing vector
fields. This will be the approach we will embrace. A Killing vector field is a vector
field on the surface V that preserves the metric. That is, the Lie derivative of the
metric with respect to a Killing vector field vanishes. By well-known results in
Atkins (2011), the Lie algebra of local Killing fields for a regular Riemannian surface
may be one of five possible choices, including the trivial algebra. Riemannian surfaces
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V of non-vanishing constant Gaussian curvature, for example, are (locally) symmetric
and admit three of such fields. Meaningfully, every differentiable Killing field in the
neighborhood V determines a one-parameter family of diffeomorphims of V leaving
the above Lagrangian invariant. Specifically, each infinitesimal transformation arising
from a Killing field (ξ ,ζ ) implies the conservation of

P =
∂ L
∂ u̇

ξ (u)+
∂ L
∂ v̇

ζ (v). (10)

Since the lizard lies initially at rest, we have that P ≡ 0.

Assumption 1.

We assume that there are two independent Killings fields on V so that

∂ u̇
=

∂ L ∂ L
∂ v̇
≡ 0. (11)

The classification of regular Riemannian surfaces in Atkins (2011) guarantees that
Assumption 1 holds whenever V is –locally– isometric to a surface of constant
(positive, negative or zero) Gaussian curvature. Since these surfaces comprise parts
of spheres, pseudospheres and developable surfaces, the application of our results is
wide. The remaining cases demand further research. It is also important to keep in
mind that we are dealing only with local, but not global, properties of differential
surfaces.

In this way,

λ(u −α, v)(u̇ − α̇)+λ(u +α, v)(u̇ + α̇)

+ λ(u, v −β)u̇ + λ(u, v +β)u̇ = 0, (12)

β βλ(u, v −β)(v̇ − ˙)+λ(u, v +β)(v̇ + ˙)

+ λ(u −α, v)v̇ + λ(u +α, v)v̇ = 0. (13)

Or, put differently,

u̇ =
λ(u −α, v)−λ(u +α, v)

α̇, (14)

v̇ =

λ(u −α, v)+λ(u +α, v)+λ(u, v −β)+λ(u, v +β)

λ(u, v −β)−λ(u, v +β)
λ(u −α, v)+λ(u +α, v)+λ(u, v −β)+λ(u, v +β)

β̇. (15)

As there is no apparent general method to separate the variables, we try now to
approximate this system of ordinary differential equations.
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Gauge convention

A gauge convention is a manner for attaching a shape frame to a flexible body. In the
case of the lizard we have implicitly supposed the existence of a bijective coordinate
transformation

(u +α, v +β) 7→ (α0+α,β0+β). (16)

This will be our gauge convention. By the way, it also furnishes a Riemannian
structure to the shape space via

λ(α0+α,β0+β) := λ(u0+α, v0+β), (17)

where (u0, v0) ∈V . This relation also defines an isometry between a neighborhood of
(u0, v0) in the configuration space onto a neighborhood of (α0,β0) in the shape space.
(u0, v0) may be, for instance, the point P where the lizard’s limbs join themselves
together at rest before the deformation takes place.

With this in mind, we proceed to write the approximation of our nonlinear system.

Assumption 2.

There would be no harm in fixing the points (u, v) at (u0, v0) in such a way that

u̇ '
λ(u0−α, v0)−λ(u0+α, v0) α̇, (18)

v̇ '

λ(u0−α, v0)+λ(u0+α, v0)+λ(u0, v0−β)+λ(u0, v0+β)

λ(u0, v0−β)−λ(u0, v0+β)
λ(u0−α, v0)+λ(u0+α, v0)+λ(u0, v0−β)+λ(u0, v0+β)

β̇. (19)

By means of the previous isometry, we are now able to separate the shape coordinates
on the right side of the equations:

u̇ '
λ(α0−α,β0)−λ(α0+α,β0) α̇, (20)

v̇ '

λ(α0−α,β0)+λ(α0+α,β0)+λ(α0,β0−β)+λ(α0,β0+β)

λ(α0,β0−β)−λ(α0,β0+β)
λ(α0−α,β0)+λ(α0+α,β0)+λ(α0,β0−β)+λ(α0,β0+β)

β̇. (21)

Immediately after that, we linearize or give a linear form to the metric coefficients
through the customary first-order Taylor polynomial

λ(α0±α,β0±β)≈ λ(α0,β0)+
∂ λ

∂ α
(α0,β0) · (±α)

+
∂ λ

∂ β
(α0,β0) · (±β). (22)
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We are, in such a manner, left with

u̇ ≈−
2λ(α0,β0)

α ∂ λ

∂ α
(α0,β0) α̇, (23)

v̇ ≈−
β

2λ(α0,β0)
∂ λ

∂ β
β(α0,β0) ˙. (24)

Finally, we release back the shape coordinates to their possible values, i.e., we allow
them to vary in the whole range by exchanging the roles of (α0,β0) and (α,β).

Assumption 3.

The estimated equations turn out to be

u̇ u−
α0

2λ
∂ λ

∂ α
α̇, v̇ u−

β0

2λ
∂ λ

∂ β
β̇, (25)

where λ, ∂ λ∂ α and ∂ λ
∂ β are functions of (α,β).

Without loss of generality, we set θ0 := α0 =β0.

We now take advantage of the appealing language of differential forms to establish
the sought amount of translation. First, we need to choose a convenient 1-form on
V , that is, a smooth section of the cotangent bundle. Although for some surfaces
(spheres, for example) the simple 1-form d u (or d v) suffices, as an easy calculation
shows, in our general setting we might be interested in the 1-form d u + d v, or
something of its sort. After careful consideration, we make use of the Hodge star
operator to obtain an approximation to the form

ω = ?(d u + d v)u
θ0

2

�

∂ logλ
∂ β

dα−
∂ logλ
∂ α

dβ
�

. (26)

The (approximation to the) exterior derivative ofω can be normalized by the metric
coefficient λ, that is,

dω u
θ0

2λ

�

−
∂ 2 logλ
∂ α2

−
∂ 2 logλ
∂ β2

�

λdα∧ dβ

= θ0 K λ dα∧ dβ. (27)

By virtue of Stokes Theorem, the net finite amount of translation resulting from a
deformation cycle –one stroke along a rhombus � in the shape space– can then be
assimilated to the integral

θ0

∫∫

�

K λ dα∧ dβ. (28)
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Atkins R. The Lie Algebra of  Local Killing Fields, The Open 
Mathematics Journal, 4: 5-11, 2011.

doi: 10.2174/1874117701104010005

We summarize the main results in the following

Theorem. Let the Gauss curvature K be non-vanishing on V . Under the assumptions 
1, 2 and 3, a cyclic change or stroke in the shape of the lizard (as described above) leads
to a net translation. The amount of translation equals the product of θ0, the area A(�) 
of rhombus � (in the Riemannian shape space) and the Gaussian curvature K(x) of the 
surface at a point x ∈ V :

θ0 × A(�) × K(x).

The last statement is just but a forthright consequence of the Mean Value Theorem 
for integrals together with the fact that the configuration space and the shape space 
are (locally) isometric.

Concluding remarks

While there are still many questions left unanswered about the dependence of the net 
translation on the Gauss curvature, our aim in this paper was to establish one thing: 
that at least under suitable simplifying assumptions, the proportionality is direct. 
Moreover, we contend that studious examination of infinitesimal transformations 
arising from Killing fields as well as plausible isometries between the configuration 
space and the shape space should be carried out in order to elucidate such a 
dependence.

A makeshift notion of inertial frame makes sense in the cadre of intrinsic Geometry. 
Instead of a fixed Euclidean frame of reference attached to an origin point, it is here 
convenient to consider a moving frame or repère mobile on the surface. In a moving 
frame the linear or translational momentum retains a great deal of its significance.
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Natación en superficies curvas y curvatura gaussiana

Resumen. El paradigma newtoniano de la mecánica establece que, en 
un sistema de referencia inercial, un cuerpo permanece en reposo o se 
mueve uniformemente en una recta, a menos que una fuerza externa actúe 
sobre él. Esta afirmación crucial falla cuando los conceptos clásicos de 
espacio, tiempo y medición son inadecuados. Si, por ejemplo, el espacio 
no es euclidiano, el cuerpo podría abandonar el reposo en ausencia de 
fuerza externa aplicada. En este artículo examinamos matemáticamente 
el movimiento de un pequeño objeto o lagartija en una superficie curva 
cualquiera. En particular, permitimos que la forma del lagarto sufra 
una deformación cíclica debida exclusivamente a fuerzas internas, de 
modo que la cantidad de movimiento lineal se conserva. Además del 
fenómeno de traslación o natación, probamos –bajo ciertas suposiciones 
simplificadoras– que dicha traslación es directamente proporcional a la 
curvatura gaussiana de la superficie en el punto donde yace la lagartija.

Palabras clave: geometría diferencial no-euclidiana; geometría 
riemanniana local; formalismo lagrangiano; ecuaciones de movimiento.

Natação em superfícies curvas e curvatura Gaussiana

Resumo. O paradigma Newtoniano da mecânica prevé que, em 
um referencial inercial (Galileano), um corpo está parado ou se 
movimentando em linha reta e com velocidade constante, a menos que 
uma força externa atue sobre ele. Essa declaração crucial falha quando 
os conceitos clássicos de espaço, tempo e medição são inadequados. Se, 
por exemplo, o espaço não é euclidiano, o corpo pode sair do repouso 
sem ser impelido por uma força externa. Neste artigo, examinamos 
matematicamente o movimento de um pequeno objeto (lagartixa) em 
qualquer superficie curva. Em particular, permitimos que a forma da 
lagartixa sofra uma deformação causada exclusivamente por forças 
internas, de modo que o momento linear seja conservado. Além 
do fenômeno da translação ou da natação, provamos –sob certos 
pressupostos simplificadores– que a translação efetiva é diretamente 
proporcional à curvatura Gaussiana da superfície.

Palavras-chave: geometria diferencial não euclidiana; geometria 
riemanniana local; formalismo lagrangiano; equações de movimento.
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