Nutrient absorption in *Tithonia Diversifolia*

Julián Mauricio Botero Londoño¹,²*, Arnulfo Gómez Carabali², Mónica Andrea Botero Londoño³

Abstract

Tithonia diversifolia is a robust shrub that has high ecological plasticity and adaptability, high capacity of nutrient absorption and high nutrient contents. These characteristics make *Tithonia diversifolia* be considered as a multi-purpose plant, such as for animal feed, soil decontamination and soil restorer. Likewise, it is a plant with high ecological plasticity and adaptability. The study of the nutrient absorption and the fertilization represent an important advance in the development of productive systems focused on maximizing forage productivity, which guarantees the soil sustainability. Based on this, a split plot design was conducted to study the effects of different levels of fertilization. The results showed an impact of the elements and levels of fertilization on the nutrient absorption capacity, finding that the elements that were incorporated in the fertilization increase the foliar contents and the nutrient absorption in the plant.

Keywords: agroforestry systems, fertilization, pastures and fodder.

Introduction

The *Tithonia diversifolia* is an herbaceous plant or robust shrubby that belongs to the Plantae, *Tiecheobionta* Subrein (vascular plants), *Magnoliophyta* Division (plants with flower), *Magnoliopsida* Class (dicotyledonous), *Asteridae* Subclass, *Asterales* Order and *Asteraceae* family [1]. Several authors have discussed the characteristics of this plant. First, Luo *et al.* [2] describe the *Tithonia diversifolia* as an invasive plant and label it as a threat to biodiversity in the areas introduced due to its rapid and easy spread, since it grows quickly even under unfavorable conditions, multiplies easily by stakes, can withstand pruning at ground level and burning, possesses high nutrients absorption capability,
adapted to different climate conditions and develops in a high range of soil
[3, 4]. Second, Pérez et al [1] define it as a specie with high biomass production
capacity and rapid recovery after cutting. Last, Reis et al [5] found that with
the application of biofertilizers to *Tithonia diversifolia*, soil characteristics
were improved significantly, and the accumulation of nutrients in the plant
was greater.

The establishment of forages increases the cation exchange capacity of the
soil, maintains and increases the mesofauna, contributes to the recycling of
nutrients and the mineralization of phosphorus and nitrogen, optimizes the
biological cycle of carbon, improves soil structure, controls erosion, protects
against soil overheating and over-cooling and is an effective mechanism for
capturing and retaining atmosphere carbon [6, 7, 8].

The basis for the efficient development of crops and soil management is built
on the balance of minerals required by the plant, the contribution of the
soil and the nutrients provided in the fertilization. Ensuring the supply of
nutrients required by the plant based on soil deficiencies guarantees crop
productivity and its sustainability [9]. The nutrient absorption capacity of
the plant depends on its root system and the physical, chemical and biological
conditions of the soil [10].

The knowledge of the nutritional requirements for the plant and the
development of fertilization systems guarantee the maximum productivity
of the crops and their sustainment over time [11]. Soil does not contain the
adequate balance of nutrients for all plants, making it impossible to express
their productive capacity [12]. Interpretation of soil analysis based on the
contributions estimated by this and the requirements of the plant is the basis
for the efficient development of crops and soil management, which warrants
the productivity of the crop and the support of the soil [9]. The concentration
of nutrients in the plant depends on several factors: the contribution in
nutrients of the soil, nature of the plant and state of maturity of the plant.
Some plants have the ability to retain high concentrations of certain elements
[13], thus, knowing the ability of the plant to accumulate certain elements
is essential in the development of crops for specific production purposes. In
this research, the effect of different levels of fertilization on foliar contents
and nutrient absorption of *Tithonia diversifolia* was determined.

This paper evaluates the efficiencies of the nutrient absorption, foliar contents
with different level of fertilization per plant cut from *Tithonia diversifolia.*
The project was developed in an andisol soil of the Colombian Eje Cafetero.
The treatments were determined based on fertilization levels, defined from the
interpretation of soil analysis and the initial nutrient absorption per plant cut
from *Tithonia diversifolia*. The results show that the elements introduced in the fertilization (N-P-K) increases their concentration and their foliar content in the plants as fertilization increases as well.

Materials and methods

Project location

The project was developed in an andisol soil of the Colombian Eje Cafetero, at La Esmeralda farm in the department of Quindío, Colombia, located at 4° and 38’ 24” North Latitude and 75° and 38’ 26” West Longitude at 1680 masl, with rainfall between 2000 and 3000 mm per year and an average temperature of 19 °C.

Soil characteristics

The soils presented acid pH values of 5.2 to 5.4, with high contents of organic matter (8.7 - 10). The average concentration of Ca, Mg, Al I\(^{+}\) and K was 3.82, 0.39, 0.20 and 0.22 cmol (\(+\)) / kg, respectively. The averages in the concentrations of P, Cu, Zn, Mn, Fe and B were 6.7, 3.9, 2.9, 5.7, 143 and 0.54, respectively.

Treatments determination

The treatments were determined based on fertilization levels, defined from the interpretation of soil analysis (see section 2.2.) and the initial nutrient absorption per plant cut from *Tithonia diversifolia* (N:4.61g, P\(_2\)O\(_5\): 0.91g, K\(_2\)O: 3.01g). In a crop with 50 days of recovery and at a height of 30 cm from the soil, 12 plants were taken at random from a previously established crop of 100 plants (without fertilization), to which the production of biomass on a dry basis and the content of nutrients at a leaf level were determined. The proposed treatments were T1: initial absorption (IA), the soil without fertilizers. Subsequently, the percentages of fertilizers and nutrients increased, for example, for T2, the initial absorption with an increase of 25 % (Table 1).

Experimental design

The experimental design consisted of a randomized complete block using units of 50 m\(^2\) each with 50 plants planted per experimental unit, 4 blocks with 6 treatments each, for a total of 24 experimental units, and additionally, 4 experimental cuts were made. These cuts were done every 50 days at 30 cm from the soil. Fertilization was performed the day after each cut. The analyzed variables were foliar contents (N, P, K, Ca, Mg, Mn, Fe, Zn, Cu, B, Na) and...
nutrient absorption. The records of the examined variables were subjected to an analysis of variance according to the experimental design used in the SAS package; when there were differences ($P < 0.05$), Duncan’s multiple range test was used for the separation of means.

Foliar contents and nutrients absorption

For determining the nutrient absorption of the plants, 12 plants were taken per experimental unit to measure the production of biomass on a dry basis and the mineral content at the leaf level, and with the previous results the nutrient absorption was determined. The samples were analyzed based on the following laboratory tests according to the *Protocolo de Laboratorio de Química* de la Universidad Nacional de Colombia Palmira campus [14]: N: Kjeldahl Method; K, Ca, Mg, Mn, Fe, Zn, Cu, B: Atomic Absorption Spectroscopy; P: UV-Vis Spectroscopy.

Results and Discussion

Foliar contents and nutrients absorption

The foliar contents had statistical differences at $P < 0.05$ level for all the elements, except for Na and Cu, finding that the elements that were introduced in the fertilization (N-P-K) show increases in their concentrations in the plants as fertilization increases; however, the elements that were not applied express a decreasing trend with fertilization (Table 2).

Table 1: Amount of nutrient and fertilizer applied per plant and per cut for each treatment studied. Initial Absorption (IA).

<table>
<thead>
<tr>
<th>Treatments</th>
<th>g of applied nutrition</th>
<th>g of applied fertilizer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>P$_2$O$_5$</td>
</tr>
<tr>
<td>T1 - IA</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T2 - IA + 25 %</td>
<td>8.85</td>
<td>3.85</td>
</tr>
<tr>
<td>T3 - IA + 50 %</td>
<td>11.16</td>
<td>4.99</td>
</tr>
<tr>
<td>T4 - IA + 75 %</td>
<td>13.46</td>
<td>6.13</td>
</tr>
<tr>
<td>T5 - IA + 100 %</td>
<td>15.77</td>
<td>7.26</td>
</tr>
<tr>
<td>T6 - IA + 200 %</td>
<td>24.99</td>
<td>11.81</td>
</tr>
</tbody>
</table>
Table 2: Effect of different fertilization levels on nutrient content of *Tithonia diversifolia* leaves. CV: coefficient of variation. Measures in columns followed by different letters are significantly different (P < 0.05) based on Duncan’s multiple range test.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>(g kg⁻¹)</th>
<th>(10⁻³g kg⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Ca</td>
</tr>
<tr>
<td>T1</td>
<td>43.7 c</td>
<td>23.7 a</td>
</tr>
<tr>
<td>T2</td>
<td>44.2 c</td>
<td>21.7 b</td>
</tr>
<tr>
<td>T3</td>
<td>46.1 b</td>
<td>19.1 c</td>
</tr>
<tr>
<td>T4</td>
<td>46.9 b</td>
<td>18.0 d</td>
</tr>
<tr>
<td>T5</td>
<td>48.9 a</td>
<td>16.1 e</td>
</tr>
<tr>
<td>T6</td>
<td>48.4 a</td>
<td>16.0 e</td>
</tr>
<tr>
<td>CV</td>
<td>1.5</td>
<td>3.2</td>
</tr>
</tbody>
</table>

Nitrogen (N) did not have statistical differences at (P < 0.05) level in T1 and T2, T3 and T4, T5 and T6 treatments, but it did between them, i.e., T1 and T2 present statistical differences with T3 and T4; the same situation applies to T5 and T6, indicating an increase in the plant contents as fertilization levels rose (Table 2). Consequently, this element besides stimulating the greater development of the plant, it also increases its concentrations with fertilization. The data are similar to those found by Rivera et al. [15] evaluating *Tithonia diversifolia* in an intensive silvopastoral system developed in soils classified as ultisols and oxisols, with very acidic pH, high aluminum saturation, high iron and phosphorus and low organic matter contents, but superior to those mentioned by Meza et al [16] in 60 day cuts. On the other hand, Aye [17] compared the nutritional value of the leaves of *Tithonia diversifolia, Moringa oleifera* and *Gmelina arborea*, reporting lower values than those discovered in this study of *Tithonia diversifolia*.
Phosphorus (P) had statistical differences at (P < 0.05) level between all treatments and an important effect of the levels of fertilization on its concentration in the plant (Table 2). This component is of great relevance given the cost and importance in animal feeding systems, especially in the secretion of milk, metabolism, synthesis of phospholipids and proteins. Moreover, it has a meaningful effect on food consumption, weight gain, reproductive rates and milk production. Pérez et al. [18] evaluated ten species with forage potential for feeding ruminants established in tropical soils at 80 masl in temperatures ranging between 26 °C and 33 °C and precipitation between 1400 and 1600 mm (Albizia niopoides, Gliricidia sepium, Leucaena leucocephala, Samanea saman, Acacia farnesiana, Mimosa pigra, Moringa oleifera, Brosimun alicastrum, Cordia dentata and Guazuma ulmifolia), founding lower values than those revealed in this study of Tithonia diversifolia. In contrast, Olabode et al. [3] obtained superior values in Tithonia diversifolia harvested at flowering.

Potassium (K) had statistical differences at (P < 0.05) level between T1, T3, T4 and T6 treatments, without showing differences between T1 and T2, T2 and T3, T4 and T5, T5 and T6 treatments. This evidenced a boost in their concentrations with the increase in fertilization (Table 2). Furthermore, Olabode et al. [3] reported values for Tithonia diversifolia harvested at flowering superior to those identified in Tithonia diversifolia for this study, but lower than those reported for Panicum maximum and Chromolaena odorata. On the other hand, Jama et al. [19] reported values in Tithonia diversifolia superior to those found.

Calcium (Ca) had statistical differences at (P < 0.05) level for all treatments, except for treatments T5 and T6, demonstrating a reduction in the concentration of nutrients in the plant as fertilization levels and biomass production increased, showing an average decrease of 9.2 % in each treatment since T1 until T5, where it tends to stabilize (Table 2). These data are within the range of values observed by Rivera et al. [15] and values higher than those presented by Olabode et al. [3].

Magnesium (Mg) had statistical differences at (P < 0.05) level between T1 and T2, T3, T4, T5 and T6 treatments, without showing differences between the previous ones. This shows as in Ca, a decrease in its concentrations with fertilization and biomass production (Table 2). In this study, it was found higher data than the ones reported in the literature by Olabode et al. [3] for Tithonia diversifolia harvested at flowering and similar data to those found by Figueiredo & Grassi [20] in sunflower plants with nitrogen fertilization from different sources.
Micronutrients presented differences ($P < 0.05$) for Zn, Mn, Fe and B without finding differences between treatments T5 and T6 in any of these elements, showing a decrease in concentrations as fertilization levels increased (Table 2). Like the Ca and the Mg, the Zn, Mn, Fe and B, the elements that were not incorporated in the fertilization, showed a reduction when the biomass production increased, and a tendency to stabilize in T6. The effect in forages properties when the production of biomass and the fertilization increased, showed the importance of the study in techniques of soils management and fertilizers for the handling of crops. The values found in micronutrients are within the upper ranges of concentrations in the plants estimated by the Geographical Institute Agustín Codazzi [21], showing the efficiency of the plant in the absorption of nutrients.

Nutrient absorption

All the elements (N, Ca, Mg, K, P, Cu, Zn, Mn, Fe and B), except Na, showed differences ($P < 0.05$) of T1 compared to the rest. On the other hand, N and Mn showed differences between all treatments, and Ca, P, K and Fe presented differences between all treatments, except between T2 and T3 treatments, finding increases in the absorption of all elements with the rise in the levels of fertilization, given by the greater production of biomass and therefore, nutrients production (*Fig. 1, Table 3*).

![Figure 1: Effect of different fertilization level on nutrient absorption per plant cut.](image-url)
Table 3: Effect of different fertilization level on nutrient absorption per hectare of *Tithonia Diversivolia* plants in a year. CV: coefficient of variation. Measures in columns followed by different letters are significantly different (P < 0.05) based on Duncan’s multiple range test.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>N (kg ha⁻¹)</th>
<th>Ca (kg ha⁻¹)</th>
<th>Mg (kg ha⁻¹)</th>
<th>K (kg ha⁻¹)</th>
<th>Na (kg ha⁻¹)</th>
<th>P (kg ha⁻¹)</th>
<th>Cu (kg ha⁻¹)</th>
<th>Zn (kg ha⁻¹)</th>
<th>Mn (kg ha⁻¹)</th>
<th>Fe (kg ha⁻¹)</th>
<th>B (kg ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>211.7c</td>
<td>116.4e</td>
<td>31.0d</td>
<td>107.2c</td>
<td>4.5</td>
<td>23.9e</td>
<td>0.10e</td>
<td>0.59d</td>
<td>0.60e</td>
<td>0.62e</td>
<td>0.31d</td>
</tr>
<tr>
<td>T2</td>
<td>341.6e</td>
<td>171.7d</td>
<td>46.7c</td>
<td>177.6d</td>
<td>6.7</td>
<td>45.2d</td>
<td>0.16d</td>
<td>0.89e</td>
<td>0.92e</td>
<td>0.96d</td>
<td>0.48c</td>
</tr>
<tr>
<td>T3</td>
<td>442.0d</td>
<td>188.6d</td>
<td>55.4c</td>
<td>227.6d</td>
<td>8.8</td>
<td>61.3d</td>
<td>0.19c</td>
<td>1.13b</td>
<td>1.07d</td>
<td>1.12d</td>
<td>0.60cb</td>
</tr>
<tr>
<td>T4</td>
<td>528.7c</td>
<td>209.6c</td>
<td>61.8b</td>
<td>288.0c</td>
<td>9.4</td>
<td>79.5c</td>
<td>0.23b</td>
<td>1.20b</td>
<td>1.19c</td>
<td>1.28c</td>
<td>0.69b</td>
</tr>
<tr>
<td>T5</td>
<td>741.0b</td>
<td>249.9b</td>
<td>84.8a</td>
<td>391.1b</td>
<td>11.5</td>
<td>116.8b</td>
<td>0.31a</td>
<td>1.54a</td>
<td>1.49b</td>
<td>1.60b</td>
<td>0.82a</td>
</tr>
<tr>
<td>T6</td>
<td>829.9a</td>
<td>283.8a</td>
<td>96.9a</td>
<td>461.9a</td>
<td>12.0</td>
<td>141.2a</td>
<td>0.33a</td>
<td>1.64a</td>
<td>1.71a</td>
<td>1.79a</td>
<td>0.93a</td>
</tr>
<tr>
<td>CV</td>
<td>7.8</td>
<td>7.8</td>
<td>13.1</td>
<td>13.6</td>
<td>13.7</td>
<td>15.1</td>
<td>8.2</td>
<td>10.0</td>
<td>8.1</td>
<td>10.3</td>
<td>12.7</td>
</tr>
</tbody>
</table>

The N, K and P absorption since T2 until T5 increased in average 2.37 g of N, 1.25 g of K and 0.41 g of P per every 2.3 g of N, 1.25 g of K₂O and 1.14 g of P₂O₅. On the other hand, in T6, the absorption of N, K and P increased with fertilization 1.6 g, 1.1 g and 0.44 g, respectively for each 9.22 g of N, 5.02 g of K₂O and 4.55 g of P₂O₅. Moreover, in biomass production, since T2 until T5 it was observed an increase in 44.3 g of dry matter (DM) per every 8.6 g fertilizer established. By contrast, in T6, the DM increase 35.9 g per every 34.4 g fertilizer incorporated. These results showed that nutrient uptake for N, K and P was better in T5 than T6, where a considerably decrease was found.

When the increase in absorption of N, P and K (3.9, 5.9 and 4.3 times, respectively) was observed (T1-T6), the absorption of those elements that were not included in fertilization also increases between 2.5 and 3.3 times. This demonstrates that the application of major elements has an effect on the total absorption of elements (Table 3).
The nutrient absorption per hectare year expressed in N, P₂O₅ and K₂O presented in the T1 extractions of 212.54 and 129 kg ha⁻¹ of N, P₂O₅ and K₂O, respectively, and in the T6 extractions of 830, 324 and 557 kg ha⁻¹ of N, P₂O₅ and K₂O accordingly, evidencing high increases with fertilization. Likewise, it is of paramount importance to highlight the low absorption per hectare year of the minor elements such as Cu, Zn, Mn, Fe and B (Table 3). This demonstrates the sensitivity of the incorporation of these elements in the soil since the greater percentage of tropical soils has acidic characteristics, which present adequate or excessive concentrations of such elements.

Fallas et al. [22] studied the absorption curves of nutrients in papaya during the vegetative period until the beginning of the harvest, finding extractions of 354, 101 and 498 kg ha⁻¹ year of N, P₂O₅ and K₂O respectively. Additionally, Estrada [23] reported extractions in 12 different pastures in a data collection; it was found that the only species one that presented values higher or similar to those exposed by Tithonia diversifolia was Pennisetum Purpureum. This demonstrates the ability of Tithonia diversifolia to extract and produce large amounts of biomass and nutrients. Moreover, González [24] studied the efficient use and apparent recovery of nitrogen in forage maize with different doses of fertilization of N in clay and sandy soils, showing the importance of the interaction between fertilization and soil to the ability of extracting nutrients in plants and of studying the efficiency on fertilization.

The results found in this work are consistent with those presented by Jama et al [19], Opala et al [25] George et al and Mustonen et al [26] who found that with the addition of P in fertilization, the concentration and absorption of this element was increased.

Conclusions

The relation of nutrients shows an interesting behavior in the development of the crop, finding that the elements that are introduced in the fertilization (N-P-K) display significant increases in the foliar contents. However, the elements that were not applied show a tendency to decrease with fertilization. Nevertheless, the absorption of plant nutrients presents an increase in all elements with the rise in fertilization levels, demonstrating that the plant has a high nutrient absorption capacity that translates into high biomass production and converts the plant into an important fodder material for animal production and other uses.

Acknowledgements

The authors thank Universidad Nacional de Colombia for its support in the research, el laboratorio de Química of Universidad Nacional de Colombia,
Palmira campus for their support in the analysis of the samples and the company Ganadería Agroforestal La Esmeralda for allowing the development of the research at La Esmeralda farm, located in Circasia (Quindío, Colombia, South America).

Conflict of interest

The authors declare no conflict of interest.

References

Retrieved from: https://payfo.ihatuey.cu/index.php?journal=pasto&page=article&op=view&path%5B%5D=652&path%5B%5D=154

doi: 10.3732/apps.1600011

Retrieved from https://pdfs.semanticscholar.org/0d9b/e6920f9fa8c05bfa-ba9786a5af1ab93ef16.pdf?_ga=2.94115741.1617898098.1519524432-40271175.1519524432

Retrieved from http://www.redalyc.org/articulo.oa?id=10402108

Retrieved from: https://payfo.ihatuey.cu/index.php?journal=pasto&page=article&op=view&path%5B%5D=1782&path%5B%5D=2930

doi: 10.15446/rfmvz.v61n3.46874

doi: 10.5251/ajfn.2016.6.1.23.32

Retrieved from http://hdl.handle.net/11250/2467521

doi: 10.1023/A:1006339025728

doi: 10.4067/S0718-27912009000300007

doi: 10.1007/s10705-009-9294-3

Resumen. Tithonia diversifolia es un arbusto robusto que tiene alta plasticidad ecológica y adaptabilidad, alta capacidad de absorción de nutrientes y alto contenido de nutrientes. Estas características hacen que Tithonia diversifolia sea considerada una planta multipropósito, tanto para alimento animal como para descontaminación y restauración del suelo. El estudio de la absorción de nutrientes y la fertilización representa un avance importante en el desarrollo de sistemas productivos enfocados en la maximización de la productividad de forraje, lo cual garantiza la sostenibilidad del suelo. Con base en esto, se llevó a cabo un diseño experimental de parcelas divididas con el fin de estudiar los efectos de diferentes niveles de fertilización. Los resultados mostraron un impacto de los elementos y los niveles de fertilización en la capacidad de absorción de nutrientes; se encontró que los elementos que fueron incorporados en la fertilización incrementan los contenidos foliares y la absorción de nutrientes en la planta.

Palabras clave: sistemas agroforestales; fertilización; pastizales; forraje.
Absorção de nutrientes em *Tithonia diversifolia*

Resumo. *Tithonia diversifolia* é um arbusto robusto que tem alta plasticidade ecológica e adaptabilidade, alta capacidade de absorção de nutrientes e alto conteúdo de nutrientes. Estas características fazem com que *Tithonia diversifolia* seja considerada uma planta multipropósito, tanto para alimento animal como para descontaminação e restauração do solo. O estudo da absorção de nutrientes e da fertilização representa um avanço importante no desenvolvimento de sistemas produtivos enfocados na otimização da produtividade de forragem, o que garante a sustentabilidade do solo. Baseado em isto, se realizou um desenho experimental de parcelas divididas com a finalidade de estudar os efeitos de diferentes níveis de fertilização. Os resultados mostraram um impacto dos elementos e dos níveis de fertilização na capacidade de absorção de nutrientes. Se encontrou que os elementos que foram incorporados na fertilização incrementam os conteúdos foliares e a absorção de nutrientes na planta.

Palavras-chave: Sistemas agroflorestais; fertilização; pastagens; forragem.
Julian Mauricio Botero Londoño

Is an animal productor scientist, graduated from the Universidad de Santa Rosa de Cabal (Unisarc), Santa Rosa De Cabal, Colombia. MSc in Agricultural Science and PhD in Agricultural Science, both degrees awarded by Universidad Nacional de Colombia, Palmira, Colombia. Currently, Professor at the Universidad Industrial de Santander.

ORCID: 0000-0002-4318-8221

Arnulfo Gómez Carabali

Is an Agronomic Engineer graduated from Universidad Nacional de Colombia, Palmira, Colombia. MSc in Range Sciences and PhD in range sciences, both degrees awarded by New Mexico State University. Currently, Professor at Universidad Nacional de Colombia, Palmira, Colombia.

Mónica Andrea Botero Londoño

Is an Electrical Engineer graduated from the Escuela Colombiana de Ingeniería “Julio Garavito”, Bogotá, Colombia. MSc in Physics from Universidad Nacional de Colombia, Manizales, Colombia. PhD in Science-Physics at Universidad Nacional de Colombia, Bogotá, Colombia. Currently, Professor at the Universidad Industrial de Santander, Bucaramanga, Colombia.

ORCID: 0000-0003-1706-3182