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Abstract

The aim of this paper is to broaden the scope of a recent adaptive model in
order to obtain predictions of total column ozone (TCO) trends over the
Amazon Inter-Tropical Confluence Zone (ITCZ). The adaptive model
makes daily TCO predictions over the tropical equator-Andes-Region,
relying on seasonal patterns and the solar cycle. This study uses daily
observations of the sunspot number cycle, given by the World Data
Center for the production, preservation and dissemination of the
international sunspot number (Royal Observatory of Belgium), and
satellite total-column ozone data, collected by NASA (January 1979 to
April 2018), for two Colombian locations: one in and one adjacent to
the ITCZ. The agreement between daily total-column predictions by the
adaptive model and satellite observations is excellent. Daily averaged
relative errors around of 3.7 % and 2.8 % for both locations are reported
herein.

Keywords: inter-tropical confluence zone; solar radiation; sunspot number;

total column ozone.

Introduction

In the second half of the 20*” century, several studies looked for a possible
relationship between the variations of the total column ozone (TCO) and the cycles
of solar activity (e.g., Willett 1962, Keating et al. 1981, Angell 1989, Labitzke &
Van Loon 1997, Zerefos 1997, Haigh ez al. 2010, Miyagawa et al. 2014) with no
success in establishing such an acceptable statistical relationship.

Attempts to produce phenomenological models that describe the effects of solar
activity on the ozone layer did not show a specific dependency with respect to a
geoposition on Earth and to the day of the year (Soukharev & Hood 2006, Randel
& Wu 2007). Moreover, approximations to show the effect of solar activity, not
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for stratospheric but for tropospherical ozone, have been proposed, e.g., Selvaraj et
al. (2010) achieve a 0.88 pearson correlation coefficient between tropospheric ozone
and solar activity for a tropical rural coastal site in India. That study used annual
averages for 9 years of data. Other studies report the combined influence of the solar
activity and terrestrial effects (e.g., Quasi-Biennial Oscillation) on the stratospheric
ozone (Kuttippurath & Nair 2017, Roscoe & Haigh 2007).

Based on the foregoing, and the need for a model to predict the evolution of the
ozone layer (Stolarski & Frith 2006) since a vast set of data taken by different
satellite missions have been available from 1978, the aim of this paper is to extend
the use of an adaptive model to study the behavior and make daily predictions
of TCO over the Inter-Tropical Confluence Zone (ITCZ). The adaptive model
(Gonzalez-Navarrete & Salamanca 2018) is build upon a direct relationship between
TCO and the solar activity by means of the sunspot number, which reports daily
predictions of TCO over the equator-Andes-Colombian region.

In order to analyze the behavior of the ozone layer over the ITCZ, a data set of
39 years of National Aeronautics ans Space Administration (NASA) observational
satellite data are taken into account (McPeters 2018). In this study, the ITCZ region
is characterized by two locations: Leticia, the southern city of Colombia, which is
located very deep in the Amazon Region and lies inside the ITCZ all the year long;
and Riohacha, the northernmost city of Colombia, found adjacent to the ITCZ
from November to July, and inside of it from August to October.

TCO satellite data

TCO measurements over Leticia (4.09 S, 69.57 W) and Riohacha (11.32 N,
72.56 W) were given by NASA satellite missions Nimbus-7, Earth-Probe, Aura
(Latin for breeze), and Russian satellite mission Meteor-3. Table 1 lists satellite
mission data sets for this study, with comments on the instrumentation used to
obtain observational data and its continuity.

Satellite data were chosen by studying the missions’ timing overlap, when one
mission comes to the end and the other one starts its operation. For example, Aura
mission started its operations on July 2004 and Earth Probe ended in 2005-2006;
for consistency, data for 2004 was taken from Earth-Probe, and for 2005 from Aura.

As a result of a change in on-board satellite instrumentation for measuring TCO,
available data sets from NASA have two different geopositional resolutions. While
Nimbus-7, Meteor-3 and Earth-Probe data have a resolution of 1.25 degrees in
longitude and 1.0 degrees in latitude (Text format), Aura data resolution (HDF
format) have 0.25 degrees for both, longitude and latitude. Grid resolutions were
consistently taken into account in this study.

Fig. 1 and Fig 2 show the historical TCO data for Leticia and Riohacha from 1979
to 2018.
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Figure 1. Daily TCO satellite data for Leticia (in Dobson Units, DU) from 1979
to 2018. Satellite-instrument source: TOMS, OML.

For both locations, a cyclic seasonal behavior is found. It exhibits a minimum value
of total ozone around January, rises up to the maximum in September and finally
decreases until December.

The adaptive TCO predicting model

The model has three specific aspects: seasonal patterns, behavior of solar radiation
and the interactions between ultraviolet solar radiation and TCO. Its functional
form is written as:

O5(n,m,YY,T)=A[S,(n)|G[ L., n]F(m,YY —T), (1)

where A[S,(n)] accounts for part of the seasonal patterns and TCO-
ultraviolet-radiation interactions regarding the sunspot number S,, G[I,7]
describes fractional variations between daily solar extraterrestrial radiation at
location (I;) relative to the solar constant (), and F(m,YY — T') is an empirical
function that takes into account all physical ultraviolet radiation-matter interaction
processes of stratospheric ozone entangled in data (Gonzalez-Navarrete &

Salamanca 2018).

It should be noted that the model depends on the day 7 of the year, the year
Y'Y for which the daily prediction of TCO will be made, the month m of the
year, and the solar cycle period of daily sunspot number 7. This sunspot cycle
period corresponds to 11 years with an uncertainty of £+ 14 months as reported
by Hathaway (2010). Fig. 3 clearly shows the cyclic behavior of sunspot number
observations as a function of 7 since 1818.

Figure 2. Daily TCO satellite data for Riohacha (in Dobson Units, DU) from
1979 to 2018. Satellite-instrument source: TOMS, OMI.
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Table 1. Satellite mission data sets by year, from 1979 to 2018. At present,
quality of TCO-NASA data is enhanced by Version-8 algorithm, which accounts
for time and geopositional corrections by reflectivity over TOMS diffuser plate
(Total Ozone Mapping Spectrometer), refinement of correction algorithms for
data-homogenization, systematic errors between TOMS and SBUV/OMI (Solar
Backscatter Ultra Violet/Ozone Mapping Instrument), extreme conditions as
dust, solar reflection from ocean and ice and wide zenith angle corrections, among
other improvements (Wellemeyer ez al. 2004).

Time Window Satellite Mission Comments

1979-1993 Nimbus-7
1994-1995 Meteor-3
1996-2004 Earth-Probe
2005-2018 Aura

Only 30% annual data reported for 1993.
Instrumentation: TOMS.

No data reported for 1995. 30 % of annual data reported
for 1994. Instrumentation: TOMS.

Only 30% of annual data reported for 1996.
Instrumentation: TOMS.

Instrumentation: OMI.

The adaptive model only takes sunspot data from 1979 to 2018.

500 ® Data by day of the year
= Yearly smoothed data

400
=300
w

200

l'llllllllllllllllll
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Figure 3. Daily sunspot number from 1818 to 2018. Data records are given by
the World Data Center for the production, preservation and dissemination of the
international sunspot (SILSO 2018).
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A[S,(n)]: TCO averages as a function of sunspot number (S,)

The adaptive model proposes a relationship between TCO satellite measurements
for a specific location on Earth, O (), and S, () reported observations, both
functions of 7.

Time parametric equations regarding TCO and S, measurements allow the model
to describe a O; ., (7)-S,, () phase space for 39 years of historical data, from 1979
to 2018. Fig. 4 (left panel) shows a well defined pattern followed by the phase space
that suggests a functional relationship between O; ., and §,,.

As it can be seen, there is a corresponding set of O;, measurements for each
integer value of §,. By computing O, averages for a single S,, which are
named as A[S,,(7)] in the model, Figure 4 (right panel) reveals a well-defined linear
relationship between A[S ()] and S, (7) for Leticia and Riohacha. These results are
consistent with a well-defined linear relationship discovered by the adaptive model
for the city of Bogota (Gonzalez-Navarrete & Salamanca 2018).

From fitting results, the y?/ndf statistical test values of 1.32 and 1.31 (y?/ndf,
chi-squared test divided by number of degrees of freedom, ndf), respectively for
Leticia (LET) and Riohacha (RCH), allows a functional linear relation between
A(S,) and S, to be established as:

A, gr[S,(n)]=255.5+0.036 S, (n), @)
ApcnlS, (7)]=261.8+0.032 S, (n), 3)

x2 / ndf 384.2/291
a, (DU) 255.5 +0.2039
a,(DU) 0.03614 + 0.001433
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E : : : ! ! 2 el 38167292
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Figure 4. Linear relationship between TCO and sunspot observations for Leticia
and Riohacha. Left panel: O, (7) versus S, (7). Right panel: A[S, (»)]-S,(n)
phase space fitting results.
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where A[ S, ()] is expressed in Dobson Units (DU) and the slope can be understood
as a change of TCO averages per unit of sunspot number.

G(I

i»7): Fractional extraterrestrial solar radiation.

Extraterrestrial solar irradiance at location is directly related to the solar activity. It
can be delineated by a fractional variation of daily extraterrestrial radiation at any
location on Earth, I, relative to the solar constant, I ., weighted by the cosine of
the solar zenith angle, z.

Since z is a function of the day 7 of the year, G(I,7) is expressed as
(Gonzalez-Navarrete & Salamanca 2018):

G(I, /I cosO( )

sel 1 sel

Here, cos@,(n) is computed by:
cos@,(n) =cos¢cosd, cosw, +singsind, (5)

where ¢ is the local latitude, & is the current declination of the Sun, and w; is the
hour angle.

Although there is an accepted value of I, = 1360.8 + 0.5 Wm™ reported
by Kopp G & Lean JL (2011), this study does not account for experimental
measurements of extraterrestrial solar irradiance at location for estimating the
I../I ratio. Therefore, fractional extraterrestrial irradiation changes are computed

by (Dufﬁe & Beckman 2013):

/1. =140.033cos360°7/365, 6)

SCl

where 7 is the day of the year.

Fig. 5 describes the behavior of G(I;,7) for Leticia and Riohacha during the year.
Leticia shows larger fractional changes at the beginning and the end of the year in
contrast with Riohacha, which has more significant changes at the middle of the
year.

It must be noted that G(I;, ) depends upon the Earth’s rotation, which is related
to the zenith solar angle, and the Earth-Sun distance (Earth’s translation around the
Sun) by means of the extraterrestrial solar irradiance at location. Overall, G(I;, 7)

sets in seasonal changes into the adaptive model.
The form factor F(m,YY —T)

From the fractional changes in solar radiation and seasonal patterns, the adaptive
model describes an empirical function, F(m,YY’) (depending on the month m
and the related year YY), that accounts for all unknown physical interaction
processes between total column ozone and ultraviolet solar radiation, and daily
discontinuities of TCO observations entangled in data:
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Figure 5. G(I,n): Fractional extraterrestrial solar irradiance changes as a

function of the day 7 of the year, for Leticia and Riohacha.

N

E(m, YY) = GlL(m)] —, @)
YY

N

where TCO monthly averages, A, are evaluated for a specific year Y'Y, with a
corresponding TCO yearly average Ayy.

The fractional changes in the monthly TCO averages with respect to the yearly
TCO average, A, /Ayy, are modulated by monthly averages of G[1;(m)]. Fig. 6
and Fig. 7 illustrate dimensionless F(7,YY") form factors for 39-years of Leticia’s
and Riohacha’s historical data.
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Figure 6. Dimensionless F(m,YY') function for 39-years of historical data at
Leticia’s location.
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Figure 7. Dimensionless F(m,YY’) function for 39-years of historical data at
Riohacha’s location.

Results and discussion: TCO adaptive model predictions for
Leticia and Riohacha

With the building blocks described above, the adaptive model O;(n,m,YY,T)
given by Eq. (1), which is constantly fed by current TCO satellite measurements and
S, data, can predict ozone behavior up to 11 years (from current data). Nonetheless,

predictions for 11 years from now can be improved by adding daily current data.
Fig. 8 and Fig. 9 show daily TCO predictions for Leticia and Riohacha.

= 300
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Figure 8. Comparative analysis between daily TCO satellite and predicted data
for Leticia. The figure has 11 panels arranged horizontally because of the sunspot
cycle period, T = 11 years; this allows related years to be compared.
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Figure 9. Comparative analysis between daily TCO satellite and predicted data
for Riohacha. The figure has 11 panels arranged horizontally because of the
sunspot cycle period, 7' = 11 years; this allows related years to be compared.

Since smoothed values of sunspot number depend on daily observations, as shown
in Fig. 3, the variations associated with these sunspot average values can be modeled
as a function of the day.

As stated above, and from the fact that the satellite values of the ozone layer are
related to the sunspot number (see Fig. 4), the model presented here suggests that
the variability of daily ozone values are directly related to the daily sunspot number
observations, which is periodically repeated, on average, every 7' = 11 years.

Consequently, the corrections made by the form factor to predict ozone layer of a
specific day in the future take into account the values of the form factor of the day,
corresponding, on average, to the previous 11 years. This is why, for a specific year
Y'Y, the adaptive model uses the profile’s form factor of the previous T years, that
istosay F(m,YY —T).

As depicted in Fig. 8-9, adaptive model predicted data for 1990, 1992, 1993, 1994 and
1996 fit very accurately, day-by-day, with the observed satellite data; even though,
available satellite data for 1993, 1994 and 1996 were scarce. From 1997 through
2018, the adaptive model showed a considerable uniformity with respect to satellite
data for the two locations.

In order to validate the model’s adaptive predictions, daily-based relative errors of
the observed satellite data were computed as shown in Fig. 10 and Fig. 11.
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Relative Error

Figure 10. Relative error between satellite and predicted TCO data for Leticia.

On average, yearly percentage errors between the Oy(n, m,YY, T) adaptive model
and the experimental satellite data range between 2.1 % to 5.8 %, and 1.6 % to 4.8 %,
for Leticia and Riohacha, respectively; for the entire two samples, Leticia presents
a 3.7% and Riohacha 2.8%. This provides a reliable consistency in predicting
experimental data by having, at least, 11 years of data or the corresponding sunspot
cycle period.

Although there is no data for 1995 to compare with the 2006 predicted data, the
reliable values of percentage errors allow the adaptive model to reconstruct any
missing data from 1990 to 2018.

Conclusions

This study finds a linear relationship between sunspot number and TCO satellite
observations for Riohacha and Leticia, consistent with the results for the city of
Bogota, where a direct relationship was found as well.

Extended adaptive model predictions of TCO for Leticia and Riohacha agree with
TCO satellite data within a comparative yearly average errors up to 5.8 % and 4.8 %,
and, whole-sample average errors of 3.7 % and 2.8 %, respectively.

Despite different latitudes the adaptive model makes significant daily predictions of
TCO from 1990 to 2018. Adding to this, adaptive model predictions of TCO for
the city of Bogota in the Andes mountains (Gonzalez-Navarrete & Salamanca 2018)
seem to be transparent to the altitude. Bogota rises high to an altitude of 2600 masl
(meters above sea level) while Leticia and Riohacha lie very close to the sea level.

Relative Error

Figure 11. Relative error between satellite and predicted TCO data for Riohacha.
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Further studies from other locations outside of the ITCZ can use the
O;(n,m,YY, T) adaptive model as a starting point to predict total column ozone.
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Predicciones de modelos adaptativos de columna total de
ozono diaria en la Zona de Confluencia Inter-Tropical
del Amazonas

Resumen: El objetivo de este documento es ampliar el alcance
de un reciente modelo adaptativo para hacer predicciones sobre
tendencias de la columna total de ozono (CTO) sobre la Zona de
Confluencia Inter-Tropical Amazoénica (ZCIT). El modelo adaptativo
hace predicciones diarias de CTO sobre la regién ecuatorial-tropical
de los Andes, basandose en patrones estacionales y el ciclo solar.
Este estudio utiliza observaciones diarias del ciclo del nimero de
manchas solares, suministradas por el Centro Mundial de Datos para
la produccién, preservacion y diseminacién del nimero de manchas
solares internacional (Observatorio Real de Bélgica), y datos satelitales
de columna total de ozono recolectados por NASA (enero 1979 a abril
de 2018) para dos lugares geograficos en Colombia: uno dentro y el
otro adyacente a la ZCIT. El acuerdo entre las predicciones diarias de
la columna total hechas por el modelo adaptativo y las observaciones
satelitales es excelente. Se repotan errores relativos promedio diarios
alrededor de 3.7 % y 2.8 % para ambos lugares.

Palabras clave: zona de confluencia inter-tropical; radiaciéon solar;
numero de manchas solares; columna total de ozono.
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Predi¢oes de modelos adaptativos da coluna total de
ozdnio didria na Zona de Confluéncia Inter-Tropical da
Amazonia

Resumo: AO objetivo deste documento é expandir o escopo de um
modelo adaptativo recente para fazer predigoes sobre as tendéncias do
coluna total de oz6nio (CTO) na Zona de Confluéncia Inter-Tropical da
Amazoénia (ZCIT). O modelo adaptativo faz predi¢des diarias da coluna
total de ozonio sobre a regido equatorial-tropical dos Andes, com base
em padroes sazonais e no ciclo solar. Este estudo usa observagdes diarias
do ciclo do numero de manchas solares, fornecido pelo Centro Mundial
de Dados para a produgao, preservacao e divulgacio do numero de
manchas solares internacional (Observatério Real da Bélgica), e dados de
satélite da coluna total de ozbénio estratosférico colectados pela NASA
(janeiro de 1979 a abril de 2018), para duas localizagdes geograficas na
Colombia: uma dentro e outra adjacente a ZCIT. A concordancia entre
as predi¢Oes didrias da coluna total feitas pelo modelo adaptativo e as
observacoes dos satélites é excelente. Neste documento, erros relativos
médios diarios em torno de 3.7% e 2.8% sao relatados para ambos os
locais.

Palavras-chave: zona de confluéncia inter-tropical; radiagao solar;
numero de manchas solares; coluna total de ozono.
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