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Introduction

Particulate matter (PM) constitutes the main pollutant in the air and is
closely related to the emergence of diseases (Bell et al., 2007). PM is usually
classified based on aerodynamical diameter, fine particles in the air have
aerodynamic diameters up to 2.5 µm and are known as PM2.5 (Laden et al.,
2000; Febrero-Bande et al., 2007; Al-Hamdan et al., 2009. PM2.5 are associated
to chronic respiratory illnesses such as asthma and lung cancer, as well as to
cerebrovascular diseases, among others.

To ensure air quality in urban areas, public and private organizations undertake
the monitoring and controlling the amount of PM in the air. In the city of
Cali, Colombia, the environmental authority in charge is the Administrative
Department of Environmental Management (DAGMA). DAGMA runs the
city’s Air Quality Monitoring System (SVCASC). The SVCASC consists of
nine monitoring stations surveilling air quality variables. However, out of
the nine stations, three of them asses PM2.5. These three stations are named
Compartir (denoted CO on this paper), Base Aérea (BA), and Universidad
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Abstract

Environmental pollution is harmful to human health, as it can lead to chronic
respiratory diseases. In particular, fine particles suspended in the air (PM2.5)
count among the most aggressive air pollutants. PM2.5 levels vary depending
on local conditions. The goal of this work was to compare year-round airborne
PM2.5 readings from three air quality surveillance stations in Cali (Colombia)
to determine whether these show significant spatial and temporal variation. We
subjected the obtained PM2.5 dataset to a functional analysis of variance. We
observed that PM2.5 levels vary significantly among the three measurement sites
on a temporal scale. Whereas in the morning hours PM2.5 levels among the three
sites differed most, in the afternoon and evening hours, the corresponding PM2.5
levels were not significantly different.
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del Valle (UV). Station CO is located at the most east-side residential zone of
the city. It has a heavy impact from mobile sources, especially early in the
morning and early in the evening. Station BA is in the city’s northeast and it
is located in the middle of a small industrial area, it is also close to an air force
base. Station UV is in the city’s southside, in the middle of the Universidad
del Valle main campus, with a moderate impact from mobile sources. It is
encircled by a highly residential and commercial neighborhood.

We analyzed the PM2.5 air pollution data from the stations CO, BA, and UV.
The comparison may help the local environmental authority decide on whether
to keep recording measurements at these three sites. This approach provides
ground to suggest the redesigning of the local surveillance network. In addition,
our results may be used as a guide for the imputation of some missing points at
one or more places. In this PM2.5 air pollution data study, we used a functional
extension of a classical Analysis of Variance (ANOVA), that compares the
variances within each station related to the variance among stations and that
bases decision on an F-test. This extension is known as FANOVA (Ramsay &
Silverman, 2005), its corresponding p-value is a continuous curve, allowing the
user to identify those hours at which differences are statistically significant.

We employed discrete data, namely hourly measurements, which are assumed
to come from an unknown continuous function. The response is a daily
contamination curve. The set of indicator variables representing the stations,
are used as predictors. Some recent work on this paper’s main topic can be
seen in Górecki & Smaga (2017), Górecki & Smaga (2018), Ruiz-Medina (2016),
Estévez-Pérez & Vilar (2013) and Zhang (2013).

Materials and Methods

Particulate matter data

The available data are the PM2.5 hourly averages at three stations in 2015.
For each day without missing points, there would be 24 observations at each
station. Thus, the fine particulate matter levels are discretely measured in
time. According to Ramsay & Silverman (2005), a functional data analysis
(FDA) is appropriate when measurements satisfy this condition, enabling
the adequate representation of the data such that a detailed analysis can be
performed. FDA is advantageous when considerable amounts of information
need to be analyzed (Ramsay & Silverman, 2005).

The SVCASC takes air contaminant readings every 10 seconds; however, it
only reports the PM2.5 average per hour in µg/m3. Consequently, we had
expected to retrieve 24 observations per day, during 365 days for each station.
However we obtained data corresponding to 164 days for station CO, 82 days
for station BA, and 167 days for station UV. Missing data is a common problem
on these measurement systems.

http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum
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( j=1)

Functional Data Analysis

Ferraty & Vieu (2006) formally define a functional random variable: “A
random variable χ is called a functional variable if it takes values in an infinite
dimensional space (or functional space). An observation x of χ is called a
functional datum”. In this sense, FDA inherits the descriptive and inferential
statistics procedures extended from the scalar case to functions. To proceed
with the FDA, the first step is to convert the discrete measurements into a
smooth curve through smoothing techniques using linear combinations of a
collection of functions. In Ramsay & Silverman (2005), a basis function system
is defined as a set of known functions f j , with j = 1, 2, ..., k, that are linearly
independent and belongs to a functional space. Because the goal is to perform
a comparison, it is necessary to work in a functional space that is defined over
the field of real numbers and that has a norm and inner product, allowing
for the notion of an orthogonal and orthonormal basis as an extension of the
concept of linear independence.

On the other hand, Hastie et al. (2009) and James et al. (2013) mention that
the most used basis function systems for the construction of smooth curves
are Fourier series and B-splines. The former seem to be more appropriate for
data with periodic or cyclic behaviors, whereas B-splines are easily adapted
to behaviors with local changes, so their use extends to different fields.
Ramsay & Silverman (2005) defines a spline as a polynomial function whose
flexibility allows it to easily adapt to the data’s behavior. The functions of
the Fourier series and B-splines form a set of functions { f j }(

∞
j=1). However, a

functional data analysis is conducted on a finite subspace denoted by { f j }k .
In the B-splines case, each function is defined by an order m and a sequence of
nodes τ, and any spline function can be expressed as a linear combination of
the basis functions.

For the construction of the functional data, it is important to confirm that
the measurements have been taken discretely. They are denoted zh , with
h = 1,2, ..., n, where n is the total number of measurements. Subsequently,
the model of equation (1) is fitted, where th is the h − t h time at which the
measurement zh was taken, c j are coefficients to be estimated, and εh is a
random error.

Ẑh = c1 f1(th)+ c2 f2(th)+ c3 f3(th)+ ...+ ck fk(th)+ εh . (1)

Because there are n observations in total, the smoothing can be represented in
a matrix form as in equation (2) where,

http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum
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
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y = F C + ε. (2)

It is important to identify the appropriate number k of functions in the basis,
which, according to Febrero-Bande & Oviedo de la Fuente (2012), can be
performed using the Generalized Cross Validation (GCV) methodology. Thus,
the number k that minimizes equation (3) will be the optimum number of
basis functions that should be chosen.

GCV (k) =
n−1SSE

[1− t r (sk)n−1]
, (3)

In equation (3), t r (sk) is the trace of the smoothing matrix sk , and SSE is the
error sum of squares defined as:

SSE =
∑n

h=1(zh − ẑh)
2

n
.

Smoothing of functional data

After defining the system of basis functions to be used, it is important to
identify the estimation method for finding the c j coefficients of the model in
equation (2), which are implicit in the vector C. To do so, different methods are
proposed, including Ordinary Least Squares (OLS), Weighted Least Squares
(WLS), and Penalized Spline Smoothing (P-Spline).

http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum
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The OLS method seeks to minimize the sum of squares of the distances between
the observed value and the fitted value, considering that the variance of the
errors is constant; however, it is preferable to use the WLS method because it
allows involving the variance and covariance matrix in the model when the
errors exhibit autocorrelation structures. This matrix is generally denoted
as Σε (Ramsay & Silverman, 2005) and in this case, the estimation of the
coefficient vector C is given by equation (4), which is represented in a matrix
form.

Ĉ = (F ′W F )−1F ′W y. (4)

In equation (4), F is a matrix of size n× k that contains the values of the basis
functions evaluated at time th , which is f j (th). W is a weight (or weighting)
matrix taken as (Σε)

−1 of size n×n. Finally, the constructed functional datum
is given by equation (5).

ŷ = d = F Ĉ = F (F ′W F )−1F ′W y. (5)

However, the P-Spline method adds to the OLS method (which considers
W = I ) a penalty for lack of smoothness given by the parameter λ, which
can be estimated using GCV by only varying λ. In this case, the estimated
coefficients are the solutions to the minimization of equation (6).

n−1
n
∑

h=1

(Zh − Ẑh)
2+λ
∫ 1

0
ŷ ′′(t )2d t . (6)

In practice, there are N functional data. Once the smoothed curves have been
obtained, the following step is the calculation of their functional mean and
variance, which are defined in equations (7) and (8), respectively, where N is
the total number of curves in the sample.

ȳ(t ) =
∑N

i=1 ŷi (t )
N

. (7)

va r [y(t )] =
∑N

i=1[ŷi (t )− ȳ(t )]2

N − 1
. (8)

Modeling in FDA

Sometimes, it is of interest to identify whether the variation of a functional
variable can be explained by a model based on other independent or regression
variables. To do so, it is appropriate to fit functional regression models. In this

http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum
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case, the model considers a functional response and indicator covariates. The
model is very useful in studies involving the identification of characteristics of
the response variable according to variables represented in factors. Ramsay
& Silverman (2005) illustrate the case with functional temperature modeling,
evaluating the effect of the geographic zone in which the weather station
is located. In this case, it is necessary to perform a FANOVA because the
response variable is functional.

The model is formally given by equation (9), where µ is the global mean of
ŷ without considering the effect of the treatment or of the group g (in our
case, stations CO, BA and UV), G is the number of groups, αg is the specific
effect of group g on the response variable, and εi is the unexplained variation
in individual i , i = 1,2, ...,N .

d̂i (t ) =µ(t )+αg (t )+ εi (t ). (9)

Thus, d̂i is ŷ̂i and H is defined as the design matrix of size N × (G + 1); if
β1 = µ, and β(G+1) = αG, then there is the functional parameter vector
β= (µ,α1, ...,αG)

′.

In this way, the model of equation (9) can be represented as in equation (10).
On the other hand, the matrix representation of model (10) is D =Hβ+ ε;
therefore, using the general linear model theory, the estimator vector β̂ is
obtained via OLS as in equation 11.

d̂i (t ) =
G
∑

+1

j=1

Hi jβ j (t )+ εi (t ), i = 1,2, ...,N . (10)

β̂= (H ′H )−1H ′D . (11)

In the functional field, the analysis of variance table looks exactly the same as
a scalar data table; its main difference lies in that there are no scalar sums of
squares but curves as seen in the Table 1. Owing to this analysis, the hypothesis
testing is performed, which allows identifying whether some of the parameters
associated with one of the groups are statistically significant. The statistical
hypotheses are:

H0 :β2 =β3 = ...=βG+1 v s H1 :β j −βi 6= 0,

for some i , j = 2, ...,G+ 1, i 6= j .

http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum
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Table 1. Pointwise FANOVA.

Test statistics F (t ) (Table 1) is the F−statistics evaluated pointwise, as proposed
by Ramsay & Silverman (2005). Thus, we compute the pointwise p-value as
follows:

p(FG−1,N−G > F (t )).

The procedures to construct the functional data needed for the FANOVA
analysis are carried out using The R Project packages fda (Ramsay et al., 2018)
and fda.usc (Febrero-Bande & Oviedo de la Fuente, 2012).

Results and Discussion

To convert 24 discrete hourly measurements from one day into a smooth curve,
we selected the B-spline approach, since we do not have evidence of any kind of
periodicity in the data, and have empirical evidence of a lack of periodicity for
some days of the week. We also chose the cubic polynomials approach, because
of its flexibility and adaptability, given the high variability of the response.
B-splines have been chosen by some other authors (Al-Hamdan et al., 2009)
for fine particulate matter analysis based on FDA. Thus, the daily curves of
the available complete days for the entire year were constructed. For this, we
picked the best number k of third-degree B-splines to form a smooth-curves
generating set. That selection is based on the GCV criterion, which minimizes
the mean quadratic error of the smooth curve estimator. Similarly, the value
of the penalization parameter λ is chosen, in this case, the optimum values are
k = 20 and λ= 1.

In addition, the weekday variable was introduced in the analysis such that
seven separated models are constructed, one for each day of the week, seeking
to refine the analysis for determining whether the curves of the three stations
are significantly different. The number of complete days (those with 24 valid
observations) is not the same at each station because of randomness of missing
data points. Similarly, neither we have the same number of complete days. It
means that we do not have the same number of curves per station, nor per
day. Thus, the optimum values of the number of basis functions k and the
smoothing parameter λ (modes are chosen in both cases) are k = 15 and λ= 1.

Source of Sum of Degrees Means F0
Variation Squares of freedom(df) Square

Regression SSR(t ) =∑Ni=1[d̂i (t )− ȳ(t )]2 d fR =G− 1 M SR(t ) = [SST (t )−
R

SSE(t )]
d f F (t ) = M

M
S
S

E
R(
(
t
t
)
)

Residuals SSE(t ) =
∑N

i=1[di (t )− d̂i (t )]
2 d fE =N −G M SE(t ) = SS

d
E
fE

(t )

Total SST (t ) =
∑N

i=1[di (t )− ȳ(t )]2 d fT =N − 1
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Analysis of results with smoothing parameters without specifying day of
the week

Fig. 1 shows the observed data points (Fig. 1A) together with the smoothed
data (Fig. 1B). The hourly averages per station (Fig. 1C) and the functional
mean (Fig. 1D) are also depicted.

The current Colombian air quality regulation (Resolución 2254 de 2017,
Ministerio del Medio Ambiente y Desarrollo Territorial) dictates that the
maximum hourly average allowed for PM2.5 is 37 µg/m3. We compared the
observed hourly averages against the standard using datapoints (Fig. 1C) as
well as their functional means (Fig. 1D). We noted that the observed hourly
averages never exceeded the established upper limit at any of the three stations.
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Figure 1. Observed and Functional Particulate Matter (PM2.5) data are shown
in panels A and B, respectively, along with hourly averages and functional means
(Panels C and D). Green color is used for Station BA, red for Station CO,
and blue for Station UV. Orange dotted lines on panels C and D indicate the
Colombian standard for PM2.5.
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Figure 2. Results for the functional analysis of variance for the entire year. The
green curve (solid line) in panel A corresponds to Station BA functional mean,
the red color curve (dotted line) to Station CO, and the blue one (dashed line) to
station UV. Panel B shows the pointwise p-values (solid black line); the dashed
light blue line represents the level of significance of the test.

For the yearly global estimation, a functional analysis of variance test was
performed to gain a general idea of air pollution in the three stations. Results
are shown in Fig. 2 Fig. 2A depicts the PM2.5 functional means at each of
the three stations; Fig. 2B shows the pointwise p-value for the functional
analysis of variance, from which we concluded that PM2.5 concentrations show
significant differences for hours from 0 to 15 on an average day at all three
assessed stations.

Analysis with smoothing parameters per day and per station

Environmental pollution could be influenced by the day of the week due to
the impact of mobile sources because the circulation of internal combustion
vehicles is consistently higher during some days of the week. To evaluate
the results in light of this fact, a day-to-day analysis was performed. Fig. 3
reveals that air pollution on an average Monday resembles that of the entire
year (Fig. 2). This behavior is similar on Tuesdays, Saturdays and Sundays;
but differs on Wednesdays, Thursday and Fridays, as shown in Fig. 4D for
Thursdays, where the curves between stations are not significant during most
of the day. In fact, even though significant differences were identified during
the first hours of the day, atypical observations occur during those hours,
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corresponding to the first hours of the year, especially during New Year
celebrations, as shown in Fig. 4 A and B.

These results lead to the conclusion that the three stations behave differently,
as observed in the global analysis for the year 2015, confirming the importance
of taking air quality readings in all three sites.
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Figure 3. Results for the construction of the curves and the functional analysis
of variance for Mondays. Observed and Functional data are shown in panels A
and B, respectively. Green color is used for Station BA, red for Station CO, and
blue for Station UV. Fig. 3C displays the stations functional means and panel D
the pointwise p-values (solid black line); the dashed light blue line represents the
level of significance of the test.
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Figure 4. Results for the construction of the curves and the functional analysis
of variance for Thursdays. Observed data and Functional data are shown in
panels A and B. Green color is used for Station BA, red for Station CO, and blue
for Station UV. Panel C displays the stations functional means and panel D the
pointwise p-values (solid black line); the dashed ligth blue line represents the
level of significance of the test.

Conclusions

• The environmental pollution data, when measured in an infinite and
continuous space, in this case time, turn out to be appropriate for the
analysis of functional data. This analysis to summarize in a smooth curve
the information of n scalar values of a variable that varies continuously
and is discretely observed.

 A  B

 C  D
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• The results obtained through the data exploration are reflected in
the functional analysis of variance because in general, environmental
pollution in the three monitoring stations shows significant differences
noticeable during morning hours and almost imperceptible during
afternoon-evening hours.

• Thanks to this analysis, we determined that the station with the
highest average pollution levels per day is station BA. Consequently, the
inhabitants of this zone, which is to the north-east of the city, are exposed
to a higher risk of contracting chronic respiratory diseases. Revealling
the need for implementing environmental policies that to reduce PM2.5
levels in such zones of the city.

• According to the present functional exploratory analysis (Fig. 1), stations
CO and UV seem to show similar average PM2.5 levels, even if local
environmental conditions differ from one station to another. A further
analysis is needed on this issue.

• Due to the large amount of missing data, the functional data were
reduced. An option to tackle this drawback would be the imputation
of missing data to complete the dataset. In this way, a greater number
of curves will be available for analysis, since only days with complete
hourly measurements are considered in the present work.

• Finally, as a matter of priority, we recommended to evaluate the
correlations between measurements of different stations, which could
be high because the studied pollutant can be airborne. This suggests a
possible spatial and temporal correlation between monitoring stations.
In addition, in order for the correlation to have greater meaning,
measurements should be taken on the same dates at the studied stations,
although this implies a reduction in the database.
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Análisis de varianza funcional de la contaminación del 
aire causada por partículas finas

Resumen: La contaminación ambiental es perjudicial para la salud 
humana, ya que puede conducir a enfermedades respiratorias crónicas. 
En particular, las partículas finas suspendidas en el aire (PM2.5) se 
cuentan entre los contaminantes atmosféricos más agresivos. Los niveles 
de PM2.5 varían según las condiciones locales. El objetivo de este trabajo 
fue comparar las lecturas de PM2.5 aerotransportadas realizadas durante 
todo el año en tres estaciones de vigilancia de la calidad del aire en Cali 
(Colombia) para determinar si estas muestran una variación espacial y 
temporal significativa. Sometimos el conjunto de datos PM2.5 obtenido 
a un análisis de varianza funcional. Observamos que los niveles de PM2.5 
varían significativamente entre los tres sitios de medición en una escala 
temporal. Mientras que en las horas de la mañana los niveles de PM2.5 en 
estos tres sitios diferían más, en las horas de la tarde y la noche los niveles 
de PM2.5 correspondientes no fueron significativamente diferentes.

Palabras clave: partículas en el aire; contaminación ambiental; datos 
funcionales.

Análise de variância funcional da poluição do ar causada 
por partículas finas

Resumo: A poluição ambiental é prejudicial à saúde humana, pois 
pode levar a doenças respiratórias crônicas. Em particular, partículas 
finas suspensas no ar (PM2.5) contam entre os poluentes atmosféricos 
mais agressivos. Os níveis de PM2.5 variam dependendo das condições 
locais. O objetivo deste trabalho foi comparar as leituras de PM2.5 no ar 
realizadas ao longo do ano em  três estações de vigilância da qualidade 
do ar em Cali (Colômbia) para determinar se elas mostram variação 
espacial e temporal significativa. Submetemos o conjunto de dados 
PM2.5 obtido a uma análise de variância funcional. Observamos que os 
níveis de PM2.5 variam significativamente entre os três locais de medição 
em escala temporal. Enquanto nas horas da manhã os níveis de PM2.5 
nesses três locais diferiam mais, nas horas da tarde e da noite, os níveis 
correspondentes de PM2.5 não eram significativamente diferentes.

Palavras-chave: partículas em suspensao; poluição ambiental; dados 
funcionais.
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