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Abstract

The averaged Hausdorff distance ∆p is an inframetric, recently introduced
in evolutionary multiobjective optimization (EMO) as a tool to measure the
optimality of finite size approximations to the Pareto front associated to a
multiobjective optimization problem (MOP). Tools of this kind are called
performance indicators, and their quality depends on the useful criteria they
provide to evaluate the suitability of different candidate solutions to a given MOP.

We present here a purely theoretical study of the compliance of the∆p -indicator
to the notion of Pareto optimality. Since ∆p is defined in terms of a modified
version of other well-known indicators, namely the generational distance GDp ,
and the inverted generational distance IGDp , specific criteria for the Pareto
compliance of each one of them is discussed in detail. In doing so, we review some
previously available knowledge on the behavior of these indicators, correcting
inaccuracies found in the literature, and establish new and more general results,
including detailed proofs and examples of illustrative situations.

Keywords: averaged Hausdorff distance; generational distance; inverted
generational distance; multiobjective optimization; Pareto optimality;
performance indicator.

Introduction

A fundamental task in evolutionary multiobjective optimization (EMO)
consists in the explicit computation of the set of solutions (known as the
Pareto set) and their images (the Pareto front) corresponding to the problem of
simultaneous optimization of multiple objective functions, or multiobjective
optimization problem (MOP), for short. It is an important fact (see, e.g. [7])
that every non-trivial MOP admits more than one solution, i.e., there is no
single point that simultaneously optimizes all the objective functions. A
solution is called Pareto optimal if there is no objective function that can be
improved without degrading the rest. Even though the Pareto set P of a MOP,



334 On the Pareto Compliance of  Δp

Universitas Scientiarum Vol. 23 (3): 333-354 http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum

consisting of the set of all optimal solutions, turns out to be a compact subset
of Rn in common situations, generally it cannot be calculated in a purely
analytical way, and the use of numerical algorithms becomes essential.

It is often desirable (and even necessary) to approximate P with a subset
A⊂Rn, called archive, that resembles P and its properties as closely as possible.
Archives are usually assumed to consist of a finite number of points that can
be numerically found, and EMO algorithms are an important tool employed
for achieving that aim. To measure their accuracy, the distance between
an outcome archive A and the original Pareto set P should be defined in
an appropriate sense, but several inequivalent notions of distance can be
considered, and their values are not necessarily attained in a unique manner.
This means that the set of candidate approximations is usually not unique.

A readily available notion of distance between sets that can be used in this
setting is the Hausdorff distance (see, e.g. [4]), but due to its definition,
it allows for undesirable ambiguities, and heavily punishes single outlier
solutions. Alternative performance indicators have been introduced in the
literature (see, e.g. [10]) and among them, the averaged Hausdorff distance∆p

was recently proposed in [9] by modifying the well-known generational (GD)
and inverted generational (IGD) indicators, in such a way that their values
correspond to useful averages. As a result, ∆p does not punish individual
but collective behavior, fixing some drawbacks of the standard Hausdorff
distance. Other properties of ∆p have been investigated in the literature,
for example, from the theoretical side that we are interested here, explicit
analytical calculations of optimal archives with∆p for particular Pareto fronts
have been obtained in [8].

In this work, we establish conditions ensuring the Pareto compliance of the
GDp and IGDp indicators by means of mathematical criteria involving the
behavior of candidate solutions, and summarize at the end the consequences
for the compliance of the averaged Hausdorff distance. The proofs require
only simple properties of ∆p (or the intermediate GDp and IGDp ) derived
from their definitions, which will be recalled in the section on preliminaries.

It is expected that these criteria for compliance with Pareto optimality can
help to elucidate advantages and possible drawbacks of∆p as a performance
indicator for the evaluation of MOEAs. This is a necessary step in view of
the possibility to modify and generalize the averaged Hausdorff distance with
the purpose of enhancing its usefulness for applications. In fact, promising
generalizations are already appearing in the literature for both, the cases of
finite and continuous approximations (see [12] and [1], respectively). Further
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work in this direction requires a detailed understanding of the behavior of the
original p-indicators, and the treatment presented here reveals also relevant
aspects that should be considered.

This paper is organized as follows: In Section 2, we briefly present the
background and notation required for the understanding of the rest of the
manuscript. The core of this work appears in Section 3, where different
criteria for the Pareto compliance of all the indicators, GDp , IGDp and ∆p

are provided, including complete proofs, particular examples and important
observations. Finally, conclusions and perspectives for future research are
pointed out in Section 4.

Preliminaries

Throughout the document we will employ the abbreviations R∗ := RK{0}
and R+ := [0,∞) whenever necessary.

Multiobjective Optimization Given a decision space X ⊂Rn and a vector
valued function F : X ⊂Rn→Rk defined on it, a multiobjective optimization
problem consists in the simultaneous minimization of its k components
f1, . . . , fk . A solution is called Pareto-optimal when the elements of the image,
or objective space, Y = F (X ) are non-dominated in the sense of Pareto [7].
This notion is defined in terms of a partial order relation that in this context
and for our purposes can be introduced directly on X ⊂Rn, as follows.

Definition 2.1. For x, x ′ ∈ X the Pareto partial order � associated to F is
defined by

x � x ′ if and only if fi (x)¶ fi (x
′) for all i = 1, . . . , k .

Additionally:

1. An element x ∈X is said to be dominated by x ′ ∈X and denoted x ′ ≺ x,
if x ′ � x and f (x) 6= f (x ′).

2. An element x ∈X is dominated by A⊂X , written A� x, if there exists
some a ∈A such that a � x, otherwise it is said to be non-dominated by
it, A� x.

3. A subset A⊂X is dominated by a subset B ⊂X , and written B �A, if
for every a ∈A there exist some b ∈ B such that b � a. If this is not the
case A is said to be non-dominated by B and denoted B �A.

4. An element x ∈ X is called Pareto-optimal if it is non-dominated, i.e.,> x ′ ∈X : x ′ ≺ x, and the set P , of all Pareto-optimal points is called
the Pareto set.
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5. The Pareto front is defined as the image F (P ) of the Pareto set P ⊂X .

Throughout the rest of this document we make use of the following handy
abbreviations

Notation 2.2. For A,B ⊂X and an arbitrary x ∈X we define the subsets:

A• �x := {a ∈A | a � x}, and A�x := {a ∈A | a � x}.

• A�B := {a ∈A | ∃b ∈ B : a � b}, and A�B := {a ∈A | >b ∈ B : a � b}.

Clearly for any x ∈ X , or any B ⊂ X we have that: A = A�x t A�x , and
A=A�B tA�B , where t denotes a disjoint union. Similar notations can be
used in terms of ≺, �, and �, according to the needs of the situation.

Typically, we want to approximate P with a set of the form F (A)where A⊂X
is an appropriate subset called archive, which is often assumed to be finite.
More precisely,

Definition 2.3. A subset A⊂X will be called an approximation set or archive
if it consists only of mutually non-dominated points. Equivalently, ∀a ∈A,
∀a′ ∈A: a � a′ =⇒ a = a′.

In this work we are interested only in finite archives. Those are the ones for
which the definition of the (modified) Generational Distance GDp defined
below, makes sense.

Now, we introduce a set of minimal conditions that will be assumed to
hold in all the forthcoming results. They are part of the criteria required to
ensure the compliance of all indicators with Pareto optimality. Given their
omnipresence, they will be collectively employed to define a notion that we
call well-dominance.

Definition 2.4. For two archives A,B ⊂ X we say that A is well-dominated
by B if

1. A is dominated by B , written B � A, i.e., ∀a ∈ A, ∃b ∈ B s.t. b � a,
and

2. B contains only dominating points, i.e., ∀b ∈ B , ∃a ∈A s.t. b � a.

If, in addition,

3. ∃b ∈ BKA, ∃a ∈AKB such that b ≺ a,

we will say that A is strictly well-dominated by B .
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The Averaged Hausdorff Distance Let (X , d ) denote a general metric
space X carrying a distance function, or metric, d : X ×X →R+, satisfying
the standard properties of non-negativity with identity of indiscernibles,
symmetry, and the triangle inequality.

Definition 2.5. For x ∈ X and arbitrary A,B ⊂ X , the Hausdorff distance
dH (·, ·) is defined by extending d to subsets of X through the following steps:

1. A distance between points and sets: d(x,A) := inf{d (x,a) | a ∈A}.

2. A pre-distance between sets: d(B ,A) := sup{d(b ,A) | b ∈ B}.

3. The Hausdorff distance between sets: dH (A,B) :=max{d(A,B),d(B ,A)}.

It is well-known that endowed with dH , the setK (X )⊂P (X ) of all non-empty
compact subsets of X turns into a metric space itself. Moreover, (K (M ), dH )
is a complete metric space if (X , d ) is also complete (cf. [4]).

In our context, the metric space under consideration will always be a subset
X ⊂ Rn (or Rk ) endowed with the Euclidean distance d (x, x ′) := ‖x − x ′‖
induced by its standard 2-norm.

Definition 2.6. For p ∈ N, and finite subsets A,B ⊂ Rn the (modified)
Generational Distance between them is given by

GDp(A,B) :=
� 1
|A|

∑

a∈A

d (a,B)p
�

1
p
,

while the (modified) Inverted Generational Distance is

IGDp(A,B) :=
� 1
|B |

∑

b∈B

d (b ,A)p
�

1
p
.

Finally, their Averaged Hausdorff Distance is defined as

∆p(A,B) :=max{GDp(A,B), IGDp(A,B)}.

The indicator∆p can be viewed as a composition of slight variations of the
Generational Distance (GD, see [13]) and the Inverted Generational Distance
(IGD, see [2]). From ∆p the standard Hausdorff distance can be obtained
as limp→∞∆p = dH , but for finite values of p the indicator ∆p returns a
p-power mean or p-average of the distances considered for dH .

Performance Indicators Let Y = F (X ) ⊂ Rk be the objective space of a
MOP. In this context, a performance indicator is a function I :P (Y )→R+
used to measure the suitability of solution sets. In standard terminology,
such an indicator is said to be Pareto-compliant if for subsets F (A), F (B)⊂ Y
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the strict dominance condition A � B and B � A implies the inequality
I (F (A))¶I (F (B)), or a stronger sense when it impliesI (F (A))<I (F (B)).
Additional details can be found, e.g., in [15] (see also [3] and [14]).

If A⊂ X denotes a candidate archive, the explicit values of the GDp , IGDp ,
and∆p -performance indicators assigned to A are given, respectively, by

I GD
p (A) :=GDp(F (A), F (P )), Ip

IGD(A) := IGDp(F (A), F (P )), and

I ∆p (A) :=∆p(F (A), F (P )).

Remark. We will calculate the GDp and IGDp distances between subsets of
the objective space Y = F (X ) that are images through F of subsets A⊂ X
which, by definition, are assumed to consist of mutually non-dominated
points (like archives or the Pareto set itself). This implies that the restriction
F |A : A→ F (A) is injective, thus a bijection onto its image. Since |A|= |F (A)|,
in the finite case the elements of F (A) can be labelled by those of its preimage
A in decision space X ⊂Rn, and all sums will appear over subsets of X .

In practice, additional assumptions on the sets of comparable archives may
be necessary for the required inequalities of Pareto-compliance to hold, and
even knowledge on the behavior of the underlying Pareto set P , or its front
F (P ), can be necessary. Although, in real applications, information on the
Pareto set is not usually obtainable, from a purely theoretic point of view
those assumptions can help to determine the usefulness of an indicator by
elucidating its behavior, and by comparison with known examples.

Compliance to Pareto Optimality

For the Generational Distance We begin by recalling a useful property of
GDp -distances proved in [9], and valid for pointwise solutions under simple
hypotheses on the Pareto front. Variations of this property will appear as
assumptions in the statement of further results on GDp -values for arbitrary
finite sets. For calculating the GDp -indicator it is not necessary to assume
that P is finite, it can be infinite, continuous, or even piecewise continuous.
If necessary, it will be assumed to be compact where explicitly stated.

Lemma 3.1. Let a, b ∈X ⊂Rn and suppose that the Pareto front F (P )⊂Rk is
connected, or that for each i = 1, . . . , k there is an element y (i) ∈ F (P ) such that
the components y j

(i) = f j (b ), for all j 6= i . Then:

∀a ∈A, ∀b ∈ B: b ≺ a =⇒ GDp(F (b ), F (P ))<GDp(F (a), F (P )).

Proof. The proofs are direct consequences of [9, Prop. 1, Prop. 2].
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Briefly speaking, the property established by Lemma 3.1 says that if an archive
B can be obtained from another archive A by only replacing one dominated
solution a ∈A with a dominating one b ∈ B , the value of the GDp indicator
decreases. Namely, if for archives B := {b , x2, . . . , xn} and A := {a, x2, . . . xn},
we have b ≺ a, then GDp(F (A), F (P )) < GDp(F (B), F (P )), i.e., the Pareto
compliance holds when comparing individual solutions.

In [9, Prop. 3] the Pareto compliance of the Generational Distance GDp is
also considered. In particular, it is stated that for finite archives A,B ⊂ Rn,
where A is well-dominated by B , the extra assumption

∀a ∈A, ∀b ∈ B : b ≺ a =⇒ d(F (b ), F (P ))< d(F (a), F (P )),

suffices to ensure that GDp(F (B), F (P ))<GDp(F (A), F (P )). Unfortunately,
the last step of the proof is not correct under the generality of the original
assumptions. In fact, scenarios shown in Example 3.2 and Figure 1 indicate
that the conclusion does not always hold. This is because the behavior
of the p-average distance for a dominating archive B , could be worst than
the corresponding p-average for a dominated set A having more points in
its image close to F (P ) than those of B . A remedy to those situations is
introduced in Theorem 3.4 by imposing assumptions on the sizes of some
dominated/dominating sets of points.

Example 3.2. A simple case violating [9, Prop. 3]:

Pareto Front F (P ) := segment from (0,5) to (5,0),

Dominated Archive F (A) := {(1,6), (2,5), (6,4)},
Dominating Archive F (B) := {(1,5), (5,4), (6,3)},

Smaller Indicator GD2(F (A), F (P )) =
p

19.3,

Larger Indicator GD2(F (B), F (P )) =
p

22. 0 2 4 6 8
0

2

4

6

8
F (B)
F (A)
F (P )

Nevertheless, a slight modification (regarding the uniqueness of the elements
whose existence is ensured by the hypotheses) already makes the conclusion
of the original proposition true. The complete corrected statement is a
consequence of the more general result stated in Theorem 3.4 and reads as
follows

Proposition 3.3. Let A,B ⊂Rn be finite archives such that:

1. ∀a ∈A, ∃! b ∈ B such that b � a;

2. ∀b ∈ B, ∃!a ∈A such that b � a;

3. ∃b ∈ BKA, ∃a ∈AKB such that b ≺ a;

4. ∀a ∈A, ∀b ∈ B: b ≺ a =⇒ d(F (b ), F (P ))< d(F (a), F (P )).
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F (B)
F (A)
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f1

f 2

Figure 1. Two different situations where the GDp value of archive A turns out
to be better (smaller) than the GDp value of archive B , even though B � A and
the original assumptions of Prop. 3 of [9] are satisfied. Notice the number and
distribution of dominated/dominating points in relation to F (P ).

Then, GDp(F (B), F (P ))<GDp(F (A), F (P )).

Proof. It is a simple consequence of Theorem 3.4 below.

Figure 2 illustrates two examples where the conditions of Proposition 3.3
hold, and therefore, the Pareto-compliance conclusion applies. In both cases,
each element of B dominates only one element of A, and each element of A
is dominated by only one of B , so that the archives are equal sized. In these
examples the assumptions of the original statement in [9, Prop. 3] hold.

Notice that the only difference between Proposition 3.3 and [9, Prop. 3] is
that conditions 1 and 2 ask for the existence of unique dominating (b ∈ B)
and dominated (a ∈A) elements, respectively. Without these clarifications the
conclusion can easily become false, but with them there is still the problem
that the assumptions turn out to be unnecessarily restrictive. In fact, they
imply that the archives A and B have the same size. However, simple cases
already presented in [9] and shown in Figure 3 suggest that it should be
possible to keep the conclusion under milder conditions.

Our next result provides a general statement from which Proposition 3.3
follows as the simplest non-trivial case.

Theorem 3.4. Let A,B ⊂Rn be finite and strictly well-dominated archives with
B �A, such that

1. ∀a ∈A, ∀b ∈ B: b ≺ a =⇒ d(F (b ), F (P ))< d(F (a), F (P ));

2. ∀a ∈A, ∀b ∈ B: b � a =⇒
|B�a|
|B |
=
|A�b |
|A|

.

F (B)
F (A)
F (P )
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Figure 2. Two different situations where B � A and the adjusted assumptions
of Proposition 3.3 are valid. In these cases the GDp value of archive B is better
(smaller) than the GDp value of archive A.

Then, GDp(F (B), F (P ))<GDp(F (A), F (P )).

Proof. By condition 1, for arbitrary a ∈A and b ∈ B�a we have the inequality
d(F (b ), F (P ))p ¶ d(F (a), F (P ))p . After taking the average over all b ∈ B�a at
the left-hand side, we obtain

1
|B�a|

∑

b∈B�a

d(F (b ), F (P ))p ¶ d(F (a), F (P ))p,

and averaging both sides again over all a ∈A yields

1
|A|

∑

a∈A

�

1
|B�a|

∑

b∈B�a

d(F (b ), F (P ))p
�

¶
1
|A|

∑

a∈A

d(F (a), F (P ))p . (1)

From property 2 we can write the left-hand side as

|A|
∑

a∈A

∑

b∈B�a

1 1
|B�a|

d(F (b ), F (P ))p

=
1
|A|

∑

a∈A

∑

b∈B�a

|A|
|B |

1
|A�b |

d(F (b ), F (P ))p (2)

=
1
|B |

∑

a∈A

∑

b∈B�a

1
|A�b |

d(F (b ), F (P ))p .

Now, realizing that each b ∈ B will appear |A�b |-times in the total it becomes

=
1
|B |

∑

b∈B

|A�b |
|A�b |

d(F (b ), F (P ))p

=
1
|B |

∑

b∈B

d(F (b ), F (P ))p .

F (B)
F (A)

F (B)
F (A)
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Returning to (1) we conclude that GDp(F (B), F (P ))p ¶GDp(F (A), F (P ))p .
Finally, property 3 of Definition 2.4 for strictly well-dominated sets ensures
that the inequality has to be strict, and the claim follows.

0 1 2 3 4 5
0
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5

f1

f 2
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f 2
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4

5

f1

f 2

0 1 2 3 4 5
0

1

2

3

4

5

f1

f 2

Figure 3. Four different scenarios where the GDp value of archive B is better
(smaller) than the GDp value of archive A independently of the Pareto front F (P ),
and where the additional assumptions made in Theorem 3.4 are easily verifiable.

From the step leading to (2) in the proof of Theorem 3.4 it is apparent that the
conclusion is still valid if we change the “=” sign between the involved ratios

in condition 2 by “¶”, because then |B�a|−1 ¶ |A|
|B |
|A�b |−1, and (2) becomes

a “¶”-inequality. Nevertheless, the following result asserts that there is no
difference in making that change.

Lemma 3.5. Let A,B ⊂Rn be finite archives. Then, assuming all the involved
sets are non-empty, the following conditions are equivalent:

|B�a|
|B |
=
|A�b |
|A|

,1. ∀a ∈A, ∀b ∈ B: b � a =⇒

2. ∀a ∈A, ∀b ∈ B : b � a =⇒
|B�a|
|B |
¶
|A�b |
|A|

.

F (B)
F (A)

F (B)
F (A)

F (B)
F (A)

F (B)
F (A)
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Proof. Clearly 1 implies 2. For the converse, using 2 with any b � a we have
the inequality

|A|
|A�b |
¶
|B |
|B�a|

. (3)

It is clear that if at both sides of (3) we take the sum over all a ∈A and b ∈ B
for which b � a we find that,

|A|
∑

b�a

1
|A�b |
¶ |B |

∑

b�a

1
|B�a|

, (4)

where the left-hand side of (4) can be rewritten as

|A|
∑

b�a

1
|A�b |

= |A|
∑

a∈A

∑

b∈B�a

1
|A�b |

= |A|
∑

b∈B

|A�b |
|A�b |

= |A| |B |,

and similarly for the right-hand side we have

|B |
∑

b�a

1
|B�a|

= |B |
∑

b∈B

∑

a∈A�b

1
|B�a|

= |B |
∑

a∈A

|B�a|
|B�a|

= |B | |A|.

Hence, both sides of (4) are actually equal. This could not have been the case
if for some b � a the inequality (3) were strict, i.e., it has to be always an
equality. This implies condition 1.

We end our consideration of the GDp indicator with an alternative form in
which the original statement in [9, Prop. 3] can be fixed without asking for
unique dominated/dominating elements. The drawback is that it requires
previous knowledge on the behavior of the indicator for non-dominating
subsets of the dominated archive A.

Proposition 3.6. Let A,B ⊂Rn be finite archives such that:

1. ∀a ∈A, ∃b ∈ B: b � a;

2. ∀b ∈ B, ∃a ∈A: b � a, and d(F (a), F (P ))¶GDp(F (A�b ), F (P ));

3. ∃b ∈ BKA, ∃a ∈AKB: b ≺ a;

4. ∀a ∈A, ∀b ∈ B: b ≺ a =⇒ d(F (b ), F (P ))< d(F (a), F (P )).

Then, GDp(F (B), F (P ))<GDp(F (A), F (P )).

Proof. For any b ∈ B , it follows from condition 4 by taking p-averages over all
elements a ∈A�b that the inequality d(F (b ), F (P ))p ¶GDp(F (A�b ), F (P ))p

holds. Moreover, for any a ∈A�b we know using conditions 2 and 4 that

d(F (b ), F (P ))p ¶ d(F (a), F (P ))p ¶GDp(F (A�b )), F (P ))p .
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Since A = A�b tA�b , adding the previous inequalities shows that for any
b ∈ B ,

(|A�b |+ |A�b |)d(F (b ), F (P ))p ¶
∑

a∈A�b

d(F (a), F (P ))p +
∑

a∈A�b

d(F (a), F (P ))p

=
∑

a∈A

d(F (a), F (P ))p ,

in other words, d(F (b ), F (P ))p ¶GDp(F (A), F (P ))p . Finally, averaging over
all b ∈ B yields the conclusion, taking into account that condition 3 ensures
the strict inequality.

For the Inverted Generational Distance Now we will concentrate on the
Inverted Generational indicator IGDp . In this context we will always assume
that the Pareto front F (P ) is either finite or a finite size approximation has
been chosen to be able to use the expression given in Definition 2.6. The
following is a simple property that will be required among the hypotheses of
the remaining results.

Lemma 3.7. Let A,B ⊂Rn be finite archives and P a Pareto set approximation.

∀a ∈A, ∀b ∈ B , ∀x ∈ P�b : b ≺ a =⇒ d(F (b ), F (x))< d(F (a), F (x)).

Proof. Suppose that for a ∈ A, b ∈ B , and x ∈ P , we have x � b ≺ a,
then d(F (b ), F (x)) = ‖F (b )− F (x)‖< ‖F (a)− F (x)‖= d(F (a), F (x)). This
property clearly holds for all x ∈ P�b .

Strenghtening the previous property to the whole Pareto set, we obtain our
first Pareto compliance criterion.

Proposition 3.8. Let A,B ⊂Rn be finite and strictly well-dominated archives
with B �A and P a finite Pareto set approximation such that

∀a ∈A, ∀b ∈ B , ∀x ∈ P : b ≺ a =⇒ d(F (b ), F (x))< d(F (a), F (x)).

Then: IGDp(F (B), F (P ))< IGDp(F (A), F (P )).

In the particular case when an approximation P to the Pareto set satisfies
P � B (i.e., P�B = P ) it is clear that the conditions of Proposition 3.8
hold immediately by Lemma 3.7, thus in this case the validity of the Pareto
compliance for the IGDp -indicator is guaranteed.

Proof of Proposition 3.8. By the hypothesis, taking succesive infima over all
x, x ′ ∈ P at both sides of the initial inequality, it follows that if F (P ) is a
compact subset, for all a ∈A and b ∈ B the dominance relation b ≺ a implies

d(F (b ), F (P )) =
∈

inf
x X

d(F (b ), F (x))<
′
inf
∈x X

d(F (a), F (x ′)) = d(F (b ), F (P )), (5)
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or only that d(F (b ), F (P )) ¶ d(F (a), F (P )) if F (P ) were not known to be
compact, because in the first case the infimum (actually minimum) at the
right-hand side of (5) is reached at some point F (x0) on the Pareto front F (P ),
ensuring an strict inequality

d (F (b ), F (P ))¶ d (F (b ), F (x0))< d (F (a), F (x0) = d (F (a), F (P )).

Without the compactness assumption, the infimum at the right-hand side
could reach the one to its left,

⋃

but of course this is not the case here with F (P )

a∈A Bfinite. Finally, using that B = �a the claim follows from

IGDp(F (B), F (P ))p

=
1
|P |

∑

x∈P

d(F (x), F (B))p =
1
|P |

∑

x∈P

min
a∈A

<
1
|P |

∑

x∈P

min
a∈A

d(F (x), F (a))p =
1
|P |

∑

x∈P

d(F (x), F (B�a))
p

d(F (x), F (A))p

= IGDp(F (A), F (P ))p ,

as stated.

Remark. Notice that in Proposition 3.8 the Pareto compliance of the Inverted
Generational Distance IGDp does not depend explicitly on the size of the
sets A, B , or their subsets, in contrast to what was found in Theorem 3.4
for the Generational Distance GDp . This is in part due to the strength of
the assumption used for this proposition, which in many cases of interest
will unfortunately not hold for all x ∈ P . It is clear from the proof that this
assumption can be replaced by any of the following slightly weaker ones:

1. ∀a ∈A, ∀x ∈ P : d(F (B�a), F (x))< d(F (a), F (x)),

2. ∀b ∈ B , ∀x ∈ P : d(F (b ), F (x))< d(F (A�b ), F (x)).

⋃

bIndeed, the proof using condition 1 is asically the same, and the one using
condition 2 just requires to write A= b∈B A�b in order to see that

∑

x∈P

min
b∈B

d(F (x), F (b ))p ¶
∑

x∈P

min
b∈B

d(F (x), F (A�b ))
p =

∑

x∈P

d(F (x), F (A))p .

Still, these conditions are strong and do not necessarily apply when B does not
cover the whole spectrum of admissible optimal solutions, thus alternatives
are desirable.

Figure 4 displays two cases where the assumptions of Proposition 3.8 are valid.
In fact, for both of them it is easy to see that P � B �A, so that their validity
is a consequence of Lemma 3.7. Whenever these dominance relations hold,
the size or form of the archives under comparison do not matter, and the
Pareto compliance of the IGDp -indicator is satisfied.
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Figure 4. Two different scenarios where the IGDp value of archive B is better
(smaller) than the IGDp value of archive A, where the hypotheses of Proposition 3.8
hold.

For the following statement, we recall that given a finite archive A⊂X and a
fixed point x ∈ P there always exists at least one element a0(x) ∈A such that
a0(x) ∈ argmina∈A d(F (x), F (a)). The minimal p-average distance between
points F (a) and F (P�B) will be abbreviated by

δA := 1
|P�B |

min
a∈A

n

∑

x∈P�B

d(F (x), F (a))p
o

=
∈

min
a A

IGDp(F (a), F (P�B))
p .

Theorem 3.9. Let A,B ⊂Rn be finite and strictly well-dominated archives with
B �A, such that any of the following conditions hold true:

1. ∀a ∈A,∀b ∈ B: b ≺ a =⇒ IGDp(F (b ), F (P�B ))< IGDp(F (a), F (P�B )).

2. ∃a0 ∈A such that ∀x ∈ P�B : a0 ∈ argmina∈A d(F (x), F (a));

3. ∀x ∈ P�B : d(F (A), F (x))p = δA;

then, IGDp(F (B), F (P ))< IGDp(F (A), F (P )).

Proof. First, notice that Lemma 3.7 and Proposition 3.8 imply that we always
have IGDp(F (B), F (P�B))¶ IGDp(F (A), F (P�B)). From condition 1, and by
a similar calculation to the one in the proof of Proposition 3.8 (but restricted
to P�B ) it follows that IGDp(F (B), F (P�B)) ¶ IGDp(F (A), F (P�B)). Since
P = P�B tP�B , the conclusion easily follows in this case by adding |P�B | times
the first inequality with |P�B | times the second, and dividing both sides by
|P |.

Second, notice that for A⊂X the following inequality always holds
∑

x∈P�B

min
a∈A

d(F (x), F (a))p ¶
∈

min
a A

∑

x∈P�B

d(F (x), F (a))p , (6)

F (B)
F (A)
F (P )

F (B)
F (A)
F (P )
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because at the left-hand side the minimum of each term may be reached for
different a ∈A, while at the right-hand side the same a ∈A is required in all
terms. For both sides to be equal it is enough (although not necessary) the
existence of some fixed a0 ∈ A at which the distance from F (x) to F (A) is
reached for all x ∈ P�B . Explicitly, ∀x ∈ P�B : d(F (x), F (A)) = d(F (x), F (a0)).
Indeed, in this case both sides of (6) attain the same minimum possible value
at the point a0. Before we proceed with the final calculation, notice that from
both conditions 2 and 3 we have

min
a∈A

∑

x∈P�B

d(F (x), F (a))p =

(by 2) =
∑

x∈P�B

d(F (x), F (a0))
p =

∑

x∈P�B

d(F (x), F (A))p , and (7)

(by 3) = |P�B |δA=
∑

x∈P�B

δA=
∑

x∈P�B

d(F (x), F (A))p . (8)

From these observations, and using that P�B � B with Proposition 3.8, it
follows that

IGDp(F (B), F (P ))p =
1
|P |

∑

x∈P

d(F (x), F (B))p

¶
1
|P |

h

∑

x∈P�B

min
a∈A

d(F (x), F (B�a))
p +

∑

x∈P�B

min
a∈A

�

d(F (x), F (B�a))
p	
i

¶
1
|P |

h

∑

x∈P�B

min
a∈A

n

d(F (x), F (a))p +
∈

min
a A

min
b�a

∑

x∈P�B

d(F (x), F (b ))p
oi

¶
1
|P |

h

∑

x∈P�B

d(F (x), F (A))p +
∈

min
a A

∑

x∈P�B

d(F (x), F (a))p
i

,

where we used condition 1 to recast the second term. Using (7) or (8) we
conclude that

=
1
|P |

h

∑

x∈P�B

d(F (x), F (A))p +
∑

x∈P�B

d(F (x), F (A))p
i

=
1
|P |

∑

x∈P

d(F (x), F (A))p = IGDp(F (A), F (P ))p .

Remark. Condition 2 of Theorem 3.9 requires that for some a0 ∈A we have

a0 ∈
⋂

x∈P�B

argmin
a∈A

d(F (a), F (x)) 6=∅.

In dimension n = 2, from the fact that A and P consist only of mutually
non-dominating points, it is possible to show that the intersection admits
more than one element only when |P�B | = 1 and |A| > 1, otherwise, the
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condition is that the intersection should be precisely a0. For n > 2 the
situation is, in general, more complicated. Also, condition 3 of Theorem 3.9
can be rephrased by saying that each x ∈ P�B has an associated element ax ∈A
at which its distance to A is reached, and for any of those x this distance has
the same value δA (given by the average of all distances d(x,a) to points a ∈A),
i.e.,

min
a∈A

d(F (a), F (x))p = d(F (ax), F (x))p = δA.

Note that from the definition ofδA as a minimal average, the seemingly weaker
condition∀x ∈ P�B : d(F (A), F (x))p ¾ δA, implies that all the “¾”-inequalities
need to be actual equalities, because a collection of values cannot all be greater
than, or equal to their average, unless all are equal to it.

Figure 5 illustrates four situations where Theorem 3.9 applies. At the upper
left appears a variant of the second case in Figure 4 where condition 1 holds,
while at the upper right the diamond in the corner of F (A) corresponds to the
image F (a0) of the point a0 required in condition 2. Finally, both of the lower
diagrams correspond to cases where the points of F (P ) are equidistant of F (A)
so that condition 3 holds, and δA is precisely this distance (to the power p).

Remark. We conclude our analysis of the IGDp -indicator highlighting useful
cases where each one of the assumptions needed for Theorem 3.9 hold, and
which are illustrated in Figure 5.

1. The first condition holds, in particular, whenever P � B �A.

2. The second condition is valid when the dominated archive A is much
more convex than the Pareto front. For example, this can occur if
F (P ) is concave, or flat, and A is sufficiently convex (i.e., curved in the
opposite direction of F (P )).

3. The third condition holds whenever the Pareto front F (P ) and the
dominated archive A have corresponding equidistant points.

Consequences for the Averaged Hausdorff Distance Criteria for the
Pareto compliance of∆p can now be stated as a consequence of the compliance
of their intermediate generational indicators GDp and IGDp . Using the same
notation for δA as in the previous part, we can add up the results of the
previous sections in the following

Theorem 3.10. Let A,B ⊂Rn be finite and well-dominated archives with B �A
such that

∀a ∈A, ∀b ∈ B: b � a =⇒
|B�a|
|B |
=
|A�b |
|A|

,
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Figure 5. Four situations where the IGDp value of archive B is smaller (better)
than the IGDp value of archive A, and where the conditions of Theorem 3.9 are
satisfied.

and any of the following conditions hold

1. ∀a ∈A, ∀b ∈ B, ∀x ∈ P: b ≺ a =⇒ d(F (b ), F (x))< d(F (a), F (x));

2. ∃a0 ∈A such that ∀x ∈ P�B : a0 ∈ argmina∈A d(F (x), F (a));

3. ∀x ∈ P�B : d(F (A), F (x))p = δA;

Then, ∆p(F (B), F (P ))<∆p(F (A), F (P )).

Proof. From condition 1 it follows easily that

b ≺ a =⇒ d(F (b ), F (P ))< d(F (a), F (P )),

which is precisely condition 1 of Theorem 3.4, and furthermore, it also implies
condition 1 of Theorem 3.9. Hence, this list of conditions satisfy all the
requirements of Theorems 3.4 and Theorem 3.9. From the definition of∆p

we immediately arrive at the desired conclusion.

F (B)
F (A)
F (P )

F (B)
F (A)
F (P )

F (B)
F (A)
F (P )

F (B)
F (A)
F (P )
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It is possible to study in detail which of the GDp or IGDp -distances to the
Pareto front is larger for two candidate archives, in order to find the indicator
that will correspond to the value of ∆p in each case. We will not explore
this question further, but clearly, if the same indicator realizes the value of
∆p for both archives the compliance can be evaluated through the previously
presented results for that indicator alone.

Conclusions and Perspectives

In this study, different criteria have been obtained to establish the Pareto
compliance for the averaged Hausdorff distance, and its associated generational
p-indicators, when dealing with finite solutions/approximations. Inaccuracies
found in the current literature have also been corrected, and as far as the
constraints and scope of the problem permits, general results have been
provided. As an important observation, from Theorem 3.4 and the examples
presented, it can be stated that the Pareto compliance of GDp (and therefore of
∆p ) is not, in general, completely independent on the size of the solution sets
to be compared (except under very particular circumstances). Additionally,
two alternative conditions were given to guarantee the compliance of the
IGDp -indicator and that help to elucidate its behavior. Although the conditions
depend on the characteristics of the Pareto set under consideration, it is
important to note that they are useful in cases where the convexity/concavity
of the solutions and/or the expected ones of the Pareto set are known.

As it was already mentioned in the introduction, it is natural to consider
generalizations of GDp , IGDp , and ∆p that can enhance their usefulness.
Some proposals have already been made for GDp , e.g., in [6], and furthermore,
a (p, q)-averaged Hausdorff distance∆p,q has been introduced in [12] for the
case of finite archives, and in [1] for continuous ones, in terms of generalized
generational distances GDp,q and IGDp,q suited to each context.

From a theoretical perspective, further consideration of the convenience of
those generalizations require not only a deeper understanding of the properties
of GDp , IGDp and∆p as indicators themselves, but also a set of well-established
and testable assumptions allowing for appropriate comparisons. This work is
an intermediate contribution to that aim from the purely theoretical side, and
its extension to the (p, q)-generalizations is a matter of further investigation.

Apart from EMO algorithms, performance indicators play an important
role on all set oriented methods, i.e., methods that generate an entire set of
solutions in one run of an algorithm. This is the case, e.g., of subdivision and
cell mapping techniques (see [11, 5]). It is a matter of futher study how the
results presented here can be extended to those contexts.
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Sobre la Sujeción de Pareto para la Distancia Promedio 
de Hausdorff como Indicador de Desempeño

Resumen. La distancia promedio de Hausdorff  Δp es una inframétrica 
recientemente introducida en optimización multiobjetivo evolutiva (EMO) 
como una herramienta para medir la optimalidad de aproximaciones 
finitas al frente de Pareto asociado con un problema de optimización 
multiobjetivo (MOP). Presentamos aquí un estudio puramente teórico 
sobre la sujeción del indicador Δp a la noción de optimalidad de Pareto. 
Puesto que Δp está definida en términos de una versión modificada de 
otros indicadores bien conocidos como lo son la distancia generacional 
GDp y la distancia generacional invertida IGDp, discutimos en detalle 
criterios específicos para la sujeción de tipo Pareto de cada uno de 
ellos. Adicionalmente, presentamos una revisión del comportamiento 
previamente conocido de estos indicadores, corrigiendo imprecisiones 
que se encuentran en la literatura y establecemos resultados nuevos y 
más generales, incluyendo pruebas detalladas y ejemplos ilustrativos.

Palabras clave: distancia promedio de Hausdorff; distancia generacional; 
distancia generacional invertida; optimización multiobjetivo; optimalidad 
de Pareto; indicador de desempeño.

Sobre a Sujeição de Pareto para a Distância Média de 
Hausdorff como Indicador de Desempenho

Resumo A distância média de Hausdorff  Δp é uma inframétrica 
introduzida recentemente em otimização multiobjetivo evolucionária 
(EMO) como uma ferramenta para medir a otimalidade de aproximações 
finitas para o frente de Pareto associado com um problema de optimização  
multiobjetivo (MOP). Apresentamos aqui um estudo puramente teórico 
sobre a sujeição do indicador Δp à noção de otimalidade de Pareto. 
Desde Δp é definido em termos de uma versão modificada de outros 
indicadores bem conhecidos, tais como a distância geraçional GDp e a 
distância geraçional invertida IGDp, discutimos em detalhes critérios 
específicos para a sujeição de Pareto de cada um deles. Além disso, 
apresentamos uma revisão do comportamento previamente conhecido 
desses indicadores, corrigindo imprecisões encontradas na literatura e 
estabelecemos novos e mais gerais resultados, incluindo testes detalhados 
e exemplos ilustrativos.

Palavras-chave: distância média de Hausdorff; distância geraçional; 
distância geraçional invertida; otimização multiobjetivo; otimalidade de 
Pareto; indicador de desempenho.
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