Global dynamics of humoral and cellular immune responses to virus infection

Appendix

I. To compute the basic reproductive number of the model (1) with immunity, we follow [14], [15] to form the next generation matrix, then

$$
\begin{gathered}
F=\left[\begin{array}{cc}
0 & \beta_{I} \frac{k_{s}}{\mu_{s}} \\
N_{1}\left(\mu_{I}+\mu_{s}\right) & -N_{2} \beta_{I} \frac{k_{s}}{\mu_{s}}
\end{array}\right], \quad V=\left[\begin{array}{cc}
\alpha_{I} \frac{k_{T}}{\mu_{T}}+\left(\mu_{I}+\mu_{s}\right) & 0 \\
0 & \alpha_{v} \frac{k_{B}}{\mu_{B}}+\mu_{v}
\end{array}\right] \\
F V^{-1}=\left[\begin{array}{cc}
0 & \beta_{I} \frac{k_{s}}{\left(\alpha_{v} \frac{k_{B}}{\mu_{B}}+\mu_{v}\right) \mu_{s}} \\
N_{1} \frac{\left(\mu_{I}+\mu_{s}\right)}{\alpha_{I} \frac{k_{T}}{\mu_{T}}+\left(\mu_{I}+\mu_{s}\right)} & N_{2} \beta_{I} \frac{k_{s}}{\left(\alpha_{v} \frac{k}{B}_{\mu_{B}}^{\mu_{v}}+\mu_{v}\right) \mu_{s}}
\end{array}\right] .
\end{gathered}
$$

From the last matrix the corresponding characteristic polynomial is

$$
\lambda^{2}-\left(-N_{2} \beta_{I} \frac{k_{s}}{\left(\alpha_{v} \frac{k_{B}}{\mu_{B}}+\mu_{v}\right) \mu_{s}}\right) \lambda-N_{1} \frac{\left(\mu_{I}+\mu_{s}\right)}{\alpha_{I} \frac{k_{T}}{\mu_{T}}+\left(\mu_{I}+\mu_{s}\right)} \beta_{I} \frac{k_{s}}{\left(\alpha_{v} \frac{k_{B}}{\mu_{B}}+\mu_{v}\right) \mu_{s}} .
$$

We cannot use [15], but we can use an extended result, which appears in Part II of this Appendix. Then we have

$$
\begin{equation*}
R_{0}=\frac{\beta_{I}\left[\frac{\left(\mu_{s}+\mu_{I}\right)}{\left(\alpha_{I} \frac{k_{T}}{\mu_{T}}+\mu_{s}+\mu_{I}\right)} N_{1}-N_{2}\right] k_{s}}{\left(\alpha_{v} \frac{k_{B}}{\mu_{B}}+\mu_{v}\right) \mu_{s}} . \tag{35}
\end{equation*}
$$

Similarly, if the humoral and cellular immune response is not present, the basic reproductive number of the model (3) is

$$
\begin{equation*}
R_{0 w}=\frac{\beta_{I}\left[N_{1}-N_{2}\right] k_{s}}{\mu_{v} \mu_{s}} . \tag{36}
\end{equation*}
$$

The only difference with the previous number R_{0} is that the immune activity is not present in the control of free viral particles and infected cells.

II.

Conjecture 12.1. Let the characteristic polynomial of order n corresponding to the next generation matrix $F V^{-1}$ be written as

$$
\Lambda(\lambda)=\lambda^{n}-a_{n-1} \lambda^{n-1}-\cdots-a_{1} \lambda-a_{0}
$$

with $a_{i} \geq 0, i=0, \ldots, k$ and $a_{j} \leq 0, j=k+1, \ldots, n-1$. Let R_{0} denote the spectral radius of the next generation matrix, that is, $R_{0}=\rho\left(F V^{-1}\right)$ and

$$
R_{0}^{*}=a_{0}+\cdots+a_{n-1} .
$$

Then R_{0}^{*} is a threshold value for the disease to take off or to die out in the sense that:

1. $R_{0}^{*}<1$ if and only if $R_{0}<1$.
2. $R_{0}^{*}=1$ if and only if $R_{0}=1$.
3. $R_{0}^{*}>1$ if and only if $R_{0}>1$.

Proof. It is the same proof as the one of Conjecture 1 in [15, p. 103].

