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Appendix

I. To compute the basic reproductive number of the model (1) with immunity,
we follow [14], [15] to form the next generation matrix, then
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From the last matrix the corresponding characteristic polynomial is
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We cannot use [15], but we can use an extended result, which appears in Part II
of this Appendix. Then we have
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Similarly, if the humoral and cellular immune response is not present, the
basic reproductive number of the model (3) is

R0w =
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The only difference with the previous number R0 is that the immune activity
is not present in the control of free viral particles and infected cells.

II.

Conjecture 12.1. Let the characteristic polynomial of order n corresponding to
the next generation matrix F V −1 be written as

Λ(λ) = λn − an−1λ
n−1− · · ·− a1λ− a0,

with ai ≥ 0, i = 0, . . . , k and a j ≤ 0, j = k + 1, . . . , n − 1. Let R0 denote the
spectral radius of the next generation matrix, that is, R0 = ρ(F V −1) and

R∗0 = a0+ · · ·+ an−1.

Then R∗0 is a threshold value for the disease to take off or to die out in the sense
that:

1. R

2. R

3. R

∗
0 < 1 if and only if R0 < 1.

∗
0 = 1 if and only if R0 = 1.

∗
0 > 1 if and only if R0 > 1.

Proof. It is the same proof as the one of Conjecture 1 in [15, p. 103].


