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Abstract

In this paper, we present a smoothing of a family of nonlinear complementarity 
functions and use its properties in combination with the smooth Jacobian 
strategy to present a new generalized Newton-type algorithm to solve a 
nonsmooth system of equations equivalent to the Nonlinear Complementarity 
Problem. In addition, we prove that the algorithm converges locally and 
q -quadratically, and analyze its numerical performance.
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Introduction

Let F : Rn→Rn be a continuously differentiable function. The Nonlinear
Complementarity Problem, NCP for short, is to find a vector x ∈ Rn

satisfying the following conditions

x≥ 0, F (x)≥ 0, xT F (x) = 0.

We say that a vector in Rn is nonnegative if each of its components is
nonnegative.

There are numerous and varied applications of the NCP in Engineering [1, 2]
and Economics [3, 4]. In this last area, complementarity and economic
equilibrium are synonymous.

One technique, perhaps the most popular, to solve nonlinear complementarity
problems is to write them in an equivalent way as a nonlinear system
of equations. In this process, it is used a function ϕ : R2 → R such that
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ϕ(a, b ) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0, (1)

called a complementarity function [5].

The equivalence (1) allows to conclude that a complementarity function is
nondifferentiable due to the lack of smoothness of its trace by the intersection
with the xy plane which is not differentiable at (0,0).

Given a complementarity function ϕ and a function Φ : Rn→Rn, we define
the nonlinear system of equations by

Φ(x) =


...

 

ϕ(x1, F1(x))

ϕ(xn, Fn(x))




= 0, (2)

which is nondifferentiable due to the lack of smoothness of ϕ. From (1), it
follows that a necessary and sufficient condition for a vector x∗ to solve the
NCP is that this vector solves the system (2).

Two examples of complementarity functions, widely used, are the following

ϕ(a, b ) =min{a, b} , ϕ(a, b ) =
p

a2+ b 2− a− b ,

which are called the Minimum function [6] and the Fischer–Burmeister
function [7], respectively.

Other example of complementarity functions is the family ϕλ introduced in
[7] and defined by

Æ

(a− b )2+λab − a− b , (3)ϕλ(a, b ) =

where λ ∈ (0,4) .

It is important to observe that the Minimum function [6] and the Fischer–
Burmeister function are particular cases of the family ϕλ.

The nonsmooth system of nonlinear equations (2), equivalently the NCP,
has been solved using nonsmooth methods of Newton [8] and quasi-Newton
[9, 10, 11, 12] type, and smooth methods [13, 14, 15]. These methods are
based on Clarke’s generalized Jacobian [16] defined by a Lipschitz continuous
function G :Rn→Rn as follows

∂ G(x) = hull
n

lim
k→∞

F ′(xk) ∈R
n×n : xk → x, xk ∈DG

o

,

where DG denotes the set of all points where G is differentiable and hull(A)
is the convex envelope of A. In general, this set is difficult to compute [17];
in this paper, we use the overestimation given by [18, Proposition 2.6.2 (e)],

∂ G(x)T ⊆ ∂ G1(x) × . . .× ∂ Gn(x)≡ ∂C G(x)T , (4)
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where the right-hand side (often easier to compute [19]) denotes the set of
matrices in Rn×n whose i -th column is given by the generalized gradient of the
i -th component function Gi . The set ∂C G(x) is called the C-subdifferential
of G at x.

The nonsmooth Newton methods [8, 19] solve at each iteration the generalized
Newton equation

Hksk =−Φ(xk), (5)

where Hk ∈ ∂ Φ(xk), or Hk ∈ ∂CΦ(xk).

A way to deal with the nonsmoothness of Φ and to solve (2) is to use a Jacobian
smoothing method introduced in [20]. The basic idea of this type of methods is
to approximate Φ by a smooth operator Φµ : Rn→Rn, where µ> 0 denotes
the smoothing parameter, and then to solve a sequence of problems

Φµ(x) = 0, (6)

forcing µ to go to zero. For this, a Jacobian smoothing method tries to solve
at each iteration the mixed Newton equation

Φ
′

µ(xk)sk =−Φ(xk), (7)

where Φ
′

µ(xk) is the Jacobian matrix of the function Φµ at xk . The linear
system (7) uses the unperturbed right-hand side of equation (5), but it replaces
the Hk ∈ ∂ Φλ(xk) by a suitable approximation Φ

′

µ(xk).

The authors in [20] developed the convergence theory of Jacobian smoothing
methods for a special type of functions. A new algorithm for general
functions was presented in [17], where the authors use the strategy of JAcobian
smoothing to solve the NCP by reformulating it as a system of non-linear
equations using the Fischer-Burmeister complementarity function.

The good results obtained in [17] and the fact that the family of functions
(3) has not been used in connection with the Jacobian smoothing method
motivated us to use that strategy to solve the NCP through its reformulation
as a non-differentiable non-linear system, using a one-parameter family of
complementarity functions (3), which we have analyzed and used recently
in [21, 22]. That is, we consider the nonsmooth nonlinear system of equations

Φλ (x) =







...

ϕλ(x1, F1(x))

ϕλ(xn, Fn(x))






= 0. (8)
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The function Φλ is locally Lipschitz continuous because of the Lipschitz
continuity of ϕλ (see [23]). Therefore, ∂ Φλ(x) exists.

In this paper, we propose and analyze a smoothing of the family of nonlinear
complementarity functions proposed in [7] and we use its properties in
combination with the smooth Jacobian strategy used in [17] to present a new
generalized Newton-type algorithm to solve a nonsmooth system of equations
equivalent to the Nonlinear Complementarity Problem. In addition, we prove
that the algorithm converges locally and q -quadratically, analyzing also its
numerical performance.

The organization of this paper is as follows: In Section 2, we present a
smoothing of a one-parameter family of complementarity functions (3), and
analyze its properties. In Section 3, we present a new algorithm that uses
the Jacobian smoothing strategy and develop its local convergence theory. In
Section 4, we present numerical experiments which permit us to analyze the
performance of the proposed algorithm. Finally, in Section 5, we present our
concluding remarks.

Smoothing a family of complementarity functions

In this section, we define and analyze a smooth approximation of the family
of complementarity functions (3) introduced in [7], which was redefined and
analyzed in detail in [23]. Following this reference, we use the Gλ(a, b )

p

notation for the first term on the right side of (3). That is, Gλ(a, b ) =
(a− b )2 + λab .

Definition 2.1. The function ϕλµ given by

ϕλµ(a, b ) =
Æ

(a− b )2+λab +(4−λ)µ −a− b , λ ∈ (0,4) , µ> 0 (9)

is a smooth approximation of a family of complementarity functions ϕλ.

The function ϕλµ is well defined for all λ ∈ (0,4) and for all µ> 0. Indeed,

�

a b
�

K
a
b

� �

+ (4−λ)µ > 0,(a− b )2+λab + (4−λ)µ=

where

K =
1
2

�

2 λ− 2
λ− 2 2

�

(10)

is a symmetric and positive definite matrix [23].

The following lemma guarantees that ϕλµ is a “perturbed” complementarity
function.

http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum


153Arenas et al. 2020

Universitas Scientiarum Vol. 25 (1): 149-174 http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum

Lemma 2.2. The function ϕλµ satisfies the following equivalence

ϕλµ(a, b ) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab =µ.

Proof. It is a direct consequence of the definition of ϕλµ.

A useful bound for later theoretical developments is given in the following
lemma.

Lemma 2.3. Lets λ ∈ (0,4) and µ > 0. The function Gλµ, defined for all
(a, b ) ∈R2 by

Gλµ(a, b ) =
Æ

(a− b )2 + λab +(4−λ)µ, (11)

Gλµ(a, b ) ≥ pαmin









satisfies the following inequality
�

a
b

�








2
, (12)

where αmin > 0 is the smallest eigenvalue of the matrix K defined by (10).

Proof. Let αmin > 0 be the smallest eigenvalue of the matrix K in (10), then

Gλµ(a, b ) =
Æ Æ

(a− b )2 + λab +(4−λ)µ ≥ (a− b )2 + λab

≥ pαmin









�

a
b

�








2
,

where the last inequality is given by [23, Lemma 1].

Observe that the function ϕλ is nondifferentiable at (0,0) but its smoothing
function ϕλµ is differentiable, and its gradient vector is defined by

∇ϕλµ(a, b ) =








 2(a− b )+λb
2Gλµ(a, b )

− 1

−2(a− b )+λa
2Gλµ(a, b )

− 1











= ∇Gλµ(a, b )−
�

1
1

�

. (13)

For later use, we will denote the partial derivatives of Gλµ as follows

αλµ(a, b ) =
2(a− b )+λb

2Gλµ(a, b )
, and βλµ(a, b ) =

−2(a− b )+λa
2Gλµ(a, b )

, (14)

and the derivatives of Gλ by

αλ(a, b ) =
2(a− b )+λb

2Gλ(a, b )
, and βλ(a, b ) =

−2(a− b )+λa
2Gλ(a, b )

. (15)
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From Gλµ(a, b ) ≥ Gλ(a, b ) and [7, Lemma 2.4], we have

(16)
p

‖∇Gλµ(a, b )‖2 ≤ 2.

From (13), (16) and the triangle inequality, we have

‖∇ϕλµ(a, b )‖2 ≤ 2
p

2. (17)

Following [23], we have a matrix expression for ∇Gλµ(a, b ) analogous to the
one given for ∇Gλ(a, b ), namely

∇Gλµ(a, b ) =
1

Gλµ(a, b )
K

a
b

� �

, (18)

where K is the matrix given by (10) which satisfies ‖K‖2 < 2.

An important property of the smoothing function ϕλµ is that it is an
uniformly continuous function; moreover, it is Lipschitz continuous as
guaranteed by the following lemma.

p
2. ThatLemma 2.4. The function ϕλµ is Lipschitz continuous with constant 2

is, for all x,y ∈R2

|ϕλµ(x)−ϕλµ(y)| ≤ 2
p

2 ‖x− y‖2 .

Proof. Let x, y ∈R2. By the Mean Value Theorem, there exists a vector z in
(x,y) such that,

ϕλµ(x)−ϕλµ(y) =∇ϕλµ(z)
T (x− y) .

using a Cauchy–Schwartz inequality and the bound (17), we have
p

|ϕλµ(x)−ϕλµ(y)| ≤ ‖∇ϕλµ(z)‖2 ‖x− y‖2 ≤ 2 2 ‖x− y‖2

thus, we conclude that ϕλµ is Lipschitz continuous with constant 2
p

2 .

Corollary 2.5. The function Gλµ is Lipschitz continuous, that is, for all possible
x,y ∈R2, we have the following bound

|Gλµ(x)−Gλµ(y)| ≤
p

2‖x− y‖2. (19)

Proof. It is analogous to the proof of the previous lemma.

The following lemma guarantees that ∇ϕλµ is also a locally Lipschitz
continuous function.

http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum
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Lemma 2.6. Let ϕλµ the function defined by (9), w a nonzero vector in R2

and B(w;ε) a ball with 0 < ε < 1
2 ‖w‖2 . Then there exists η > 0 such that

for all u,v ∈B(w;ε),






∇ϕλµ(u)−∇ϕλµ(v)2 ≤ η‖u−v‖2 . (20)

Proof. It is similar to the proof of [23, Lemma 5] using (12), (16), (18), and
the Corollary 2.5.

Lemma 2.7. Let ϕλ and ϕλµ the functions defined by (3) and (9), respectively;
w a nonzero vector in R2 and B(w;ε), with 0 < ε < 1

2 ‖w‖2 , a ball that does
not contain (0,0). Then there exists τ > 0 such that, for all u,v ∈B(w;ε),







∇ϕλµ(u)−∇ϕλ(v)2 ≤ τ ‖u−v‖2 . (21)

Proof. It is analogous to the proof of [23, Lemma 5] taking into account the
inequality Gλ(c , d )≤Gλµ(c , d ) and therefore,

�

�

�

�

�

1
Gλµ(a, b )

− 1
Gλ(c , d )

�

�

�

�

�

=

�

�

�

�

�

Gλ(c , d )−Gλµ(a, b )

Gλµ(a, b )Gλ(c , d )

�

�

�

�

�

≤
�

�

�

�

�

Gλµ(c , d )−Gλµ(a, b )

Gλµ(a, b )Gλ(c , d )

�

�

�

�

�

.

Algorithm and convergence theory

Following the idea of Jacobian smoothing methods presented in the
introduction of this paper, we propose the following basic algorithm for
solving the nonsmooth nonlinear system of equations (8).

Algorithm 3.1. Given x0, an initial point, λ ∈ (0,4), and {µk} a sequence
that converges to zero, for k = 1,2, . . . , compute

Φ
′

λµ(xk)sk =−Φλ(xk),

xk+1 = xk + sk , (22)

′
where Φλµ(xk) is the Jacobian matrix of the function Φλµ at xk .

It is important to observe that we use the matrix Φ
′

λµ(xk) instead of Hk ∈
∂CΦλ(xk).

The first result characterizes the matrices of the C-subdifferential of Φλ at x.

Proposition 3.2. For an arbitrary x ∈Rn, we have

∂C G(x)T = Dα(x) + F ′(x)T Dβ(x),

http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum
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where Dα(x) = diag(α1(x), . . . ,αn(x)) and Dβ(x) = diag(β1(x), . . . ,βn(x))
are diagonal matrices whose i -th diagonal element is given by

βi (x) =βλ(xi , Fi (x))− 1.αi (x) = αλ(xi , Fi (x))− 1,

if (xi , Fi (x)) 6= (0, 0), and by

αi (x) = ξi − 1, βi (x) = χi − 1,

for every (ξi ,χi ) ∈ R2 such that ‖(ξi ,χi )‖ ≤ 2 −
λ(4−λ)

8
, in the case

(xi , Fi (x)) = (0, 0).

Proof. It follows directly from the definition of the C-subdifferential and from
[7, Proposition 2.5].

By the differentiabilty of Φλµ at xk , the Jacobian matrix Φ
′

λµ(xk) is given by

Φ′λµ(xk) =




...

 

∇ϕλµ(x1
k , F1(xk))

T

∇ϕλµ(xn
k , Fn(xk))

T




,

where its i -th row ∇ϕλµ(xi
k , Fi (xk))

T , denoted by [Φ′λµ(xk)]i , has the form

[Φ′λµ(xk)]i = αλµ (xi
k , Fi (xk) )− 1

�

ei
T + βλµ(xi

k , Fi (xk))− 1
� � �

∇Fi (xk)
T ,

with e1, . . . ,en, the canonical vectors in Rn, and where αλµ and βλµ are the
functions defined by (14), that is

αλµ (xi
k , Fi (xk) ) =

2(xi
k − Fi (xk))+λFi (xk)

2
Æ

(xi
k − Fi (xk))2+λxi Fi (xk)+ (4−λ)µ

,

βλµ (xi
k , Fi (xk) ) =

−2(xi
k − Fi (xk))+λxi

k

2
Æ

(xi
k − Fi (xk))2+λxi Fi (xk)+ (4−λ)µ

·

The next lemma guarantees that, as the parameter µ tends to zero, the
′ ′

distance between the matrix Φλµ(x) and the set ∂CΦλ(x) also tends to zero.
Therefore, it is reasonable to replace the generalized Newton iteration (5) by
the iteration (22).

Lemma 3.3. Let x ∈Rn be arbitrary but fixed and µ> 0 . Then we have

lim
µ↓0

dist
�

Φ
′

λµ(x),∂CΦλ(x)
�

= 0. (23)

http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum
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Proof. Since

lim
µ↓0

dist
�

Φ
�′

λµ(x),∂CΦλ(x) = lim
↓µ 0

inf
H∈∂CΦλ(x)



Φ


=
∈

inf
H ∂CΦλ(x)

lim
µ↓0



Φ


′

λµ(x)−HF

′

λµ(x)−HF ,

′
in order to prove (23) it is enough to prove that is the limit of Φλµ(x)
when µ → 0 is in ∂CΦλ(x). To do this, let us define the index set Γ (x) =
{ i : xi = Fi (x) = 0} . We have

lim
µ↓0
[Φ′λµ(x)]i




T(αλ(xi , Fi (x) )− 1)ei +(βλ(xi , Fi (x))− 1)∇Fi (x)
T , i ∈/ Γ (x)

i ∈ Γ (x)
=
−eT −∇Fi (x)

T ,

= [H ]i ,

then the matrix H has the form described in Proposition 1 with (ξi ,χi ) =
(0,0), for i ∈ Γ (x), therefore, H ∈ ∂CΦλ(x). Thus, the infimun is zero and
(23) is satisfied.

The following hypotheses allow to prove that the Algorithm 3.1 is well defined
and converges to a solution of (8).

H1. The system (8) has a solution x∗ ∈Rn.

H2. The Jacobian matrix of F is locally Lipschitz continuous.

H3. The matrices of ∂CΦλ(x∗) are nonsingular.

By the compactness of ∂ Φλ(x∗) (cf. [18]) and from H3, there is a constant β
such that

‖H−1
∗ ‖ ≤ β, (24)

for all H∗ ∈ ∂CΦλ(x∗).

Next, we present a technical lemma that will be useful in the proof of
Lemma 3.5.

Lemma 3.4. Assume H1 and H3, and r ∈ (0, 1). There exists a positive constant
ε such that, if ‖x−x∗‖∞ < ε then the function Q defined by

(25)Q(x) = x−Φ′λµ(x)
−1Φλ(x),

is well defined, and

‖Q(x)−x∗‖∞ ≤ r ‖x−x∗‖∞ . (26)

http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum
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Moreover, if the Jacobian matrix of F satisfies Assumption H2 then

‖Q(x)−x∗‖∞ ≤ c ‖x−x∗‖
2
∞ . (27)

∗

Proof. In order to prove that Φ′λµ(x) is


nonsingular, we use


the Banach’s
Lemma [14]. To do this, we find a bound for Φ′λµ(x)−H∗, where H∗ ∈
∂CΦλ(x∗). Using the definition of C-subdifferential, we have that the matrix
H has the form

H∗ =







[H∗]1
...

[H∗]n







k
= lim

→∞
Φ′λ(y

k) =











lim
k→∞

∇ϕλ
�

y1
k , F1(y

k)
�T

...
lim

k→∞
∇ϕλ

�

yn
k , Fn(y

k)
�T











,

where the sequence
�

yk
	

converges to x∗ and satisfies that Φ′λ(y
k) exists.



We bound Φ′λµ(x)−H∗


 using the definition of infinite matrix norm. Thus,
for some j ∈ {1,2, ..., n}, we have



Φ′


λµ(x)−H∗∞ =






�

Φ′λµ(x∗)
�





j
− [H∗] j 1



≤ n ∇ϕλµ(x j , F j (x))
T − lim

k→∞
∇ϕλ

�

y j
k , F j (y

k)
�T 




∞

≤ n lim
k→∞





∇ϕλµ(x j , F j (x))
T −∇ϕλ

�

y j
k , F j (y

k)
�T 




∞
.

By Lemma 2.7, we have



Φ′λµ(x)−H∗




∞ ≤ n τ lim
k→∞













 

x j − y j
k !













≤
p

2 n τ













 

x j − x j
∗

F j (x)− F j (x∗)

F j (x)− F j (y
k)

!













∞

≤
p

2 n τ max
�

|x j − x j
∗|, |F j (x)− F j (x∗)|

	

. (28)

By de continuity of F , for all ε̂, there exists δ̂ > 0 such that, if we have
‖x−x∗‖∞ < δ̂ then |F j (x)− F j (x

∗)|< ε̂. Let ε′ = min{ε̂, δ̂}. We consider
the two possibilities for the maximum in (28).

|x j − x j
∗|, |F j (x)−F j (x∗)|

� 	

= |x j − x j
∗| ≤ ‖x−x∗‖∞ ≤ ε′ < ε̂.1. If max

2. If max
�

|x j − x j
∗|, |F j (x)− F j (x∗)|

	

= |F j (x
k)− F j (x∗)| < ε̂.
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Thus, from (28), for any ε̂


Φ′


λµ(x)−H∗∞ <
p

2 n τ ε̂ ·

Let ε̂ <
1

2
p

2ρnβ

 

, then Φ′λµ(x)−H∗∞ ≤ τ nε̂ <
1

2β
· Now,



H−1
∗ Φ









′
λµ(x)− I ∞ ≤ H−1

∗




∞



Φ
′

λµ(x)−H∗∞ ≤ β
1

2β
=

1
2

,



 Φ′


thus H∗
−1

λµ(x)− I ∞ < 1; therefore, there exists Φ′λµ(x)
−1 (Banach’s

Lemma [14]) and the functionQ is well defined. In addition,



Φ




′
λµ(x)

−1
∞ ≤



H−1
∗




∞


1− H−1
∗ Φ′λµ



(x)− In


∞

≤
β

1− 1
2

= 2β.

In the second part of the proof, we prove (26). For this, subtracting x∗ in (25),
using ‖ · ‖∞, and performing some algebraic manipulations, we have









































 

Q(x)−x∗ ∞ = (x−x∗)−Φ
′
λµ(x)

−1Φλ(x) ∞

= Φ′λµ(x)
−1[Φ′λµ(x)(x−x∗)−Φλ(x)+Φλ(x∗)] ∞ (29)

≤ Φ′λµ(x)
−1

∞ Φ′λµ(x)(x−x∗)−Φλ(x)+Φλ(x∗) ∞

≤ 2βΦ′λµ(x)(x−x∗)−H (x−x∗)+H (x−x∗)−Φλ(x)+Φλ(x∗)∞

≤ 2β




∗
�

Φ′λµ(x)−H ‖x−x ‖∞+






H (x−x∗)−Φλ(x)+Φλ(x∗)∞
�

By Lemma 3.3, for all δ > 0, there exists ε1 > 0 such that, if ‖x−x∗‖∞ < ε1,


Φ′


λµ(x)−H < δ.

thus, for δ <
r

4β
, there exists εr > 0 such that, if ‖x−x∗‖∞ < εr ,



Φ
′

λµ(x)−H <
r

4β
· (30)

Moreover, by Theorem 2.3 in [7], for all ρ> 0, there exists ε2 > 0, such that,
if ‖x−x∗‖∞ < ε1 then ‖H (x−x∗)−Φλ(x)+Φλ(x∗)‖∞ < ρ ‖x−x∗‖∞ .

r
4β

, there exists ε̄r > 0 such that, if ‖x−x∗‖∞ < ε̄rIn particular, for ρ <

then

‖H (x−x∗)−Φλ(x)+Φλ(x∗)‖∞ <
r

4β
‖x−x∗‖∞ . (31)
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Thus, for ε = min{ε′,εr , ε̄r } , we have (29), (30), and (31), therefore

‖Q(x)−x∗‖∞ ≤ r ‖x−x∗‖∞ ,

and we have proved (26).

The third part of the proof consists in obtaining (27) under the hypothesis H2.
By [7, Theorem 2.3], there exists a positive constant γ such that

‖H (x−x∗)−Φλ(x)+Φλ(x∗)‖∞ ≤ γ ‖x−x∗‖
2
∞ . (32)

 

On the other hand, adding and subtracting H∗ in Φ′λµ(x)−H∞ and using
the triangle inequality, we have



Φ
    ′

λµ(x)−H∞ ≤ Φ
′
λµ(x)−H∗∞+

H∗−H∞. (33)

p
2 n τM , where

M = max |x j − x j |, |F j (x)− F j (x∗)|

By (28), a bound for the first term of (33) is
� ∗ 	

,

p
2 n ηM , where ηand by [23, Lemma 4.2] the second term is bounded by

is the Lipschitz constant of ∇ϕλ. Then,


Φ
′

λµ(x)−H∞ ≤
p

2 n (τ+η)M . (34)

Moreover,

1. If M = |x j − x j
∗| then M ≤ ‖x−x∗‖∞.

2. If M = |F j (xk)−F j (x∗)| then M ≤ ‖F (xk)−F (x∗)‖∞≤ ζ ‖xk−x∗‖∞,

where the last inequality is given by [14, Lemma 4.1.16], because F is
continuously differentiable and its Jacobian matrix is Lipschitz continuous in
a neighborhood of x∗.

Let ζ̄ = max{1,ζ }. From (34) and the previous cases about M ,


Φ
′

λµ(x)−H∞ ≤
p

2 n (τ+η) ζ̄ ‖xk −x∗‖∞ = θ‖xk −x∗‖∞, (35)

with θ =
p

2 n (τ+η) ζ̄ . Thus, from (29), (32), and (35),
� �

θ ‖x−x∗‖
2
∞+ γ ‖x−x∗‖

2
∞ ≤ 2β (θ+γ )‖x−x∗‖

2
∞ .

‖Q(x)−x∗‖∞ ≤ c ‖x−x∗‖
2
∞ ,

‖Q(x)−x∗‖∞ ≤ 2β

Therefore,

with c = 2β (θ+ γ ).
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The following lemma guarantees that the proposed algorithm is well defined,
it converges linearly and it gives a sufficient condition for q -quadratic
convergence.

Lemma 3.5. There exists a positive ε0 such that, if ‖x0−x∗‖∞ < ε0 then

xk+1 = xk −Φ
′
λµ(xk)

−1Φλ(xk) (36)

generates a well defined sequence {xk}which converges tox∗, and given r ∈ (0, 1),
satisfies







(37)







 (38)

xk+1−x∗


∞ ≤ r ‖xk −x∗‖∞ .

Moreover, if the Jacobian matrix of F satisfies the assumption H2 then

xk+1−x∗ ∞ ≤ c ‖xk −x∗‖
2
∞ ,

where c is the constant of Lemma 3.4.

Proof. Let Q be defined in (25). Thus, for k = 0,1, . . .

xk+1 = Q(xk) = xk −Φ
′
λµ(xk)

−1Φλ(xk).

Let r ∈ (0, 1) and ε0 ∈ (0,ε), where ε is the constant of Lemma 3.3. The
proof is by induction on k .

• For k = 0, if ‖x0−x∗‖∞ ≤ ε0 < ε, by Lemma 3.3, x1 = Q(x0) is
well defined and verifies

‖x1− x∗‖∞ ≤ r ‖x0−x∗‖∞ .

Moreover, if the Jacobian matrix of F is Lipschitz continuous in a
neighborhood of x∗,

‖x1−x∗‖∞ ≤ c ‖x0−x∗‖
2
∞ .

• Induction hypotheses. For all 0< k ≤ m−1, we have ‖xk−x∗‖∞ < ε0.
Then, by Lemma 3.3, xm = Q(xm−1) is well defined and

‖xm −x∗‖∞ = ‖Q(xm−1)−x∗‖∞ ≤ r ‖xm−1−x∗‖∞. (39)

Moreover, ‖xm −x∗‖∞ ≤ c ‖xm−1−x∗‖2
∞, if the Jacobian matrix of

F is Lipschitz continuous at x∗.

From (39), we have,

‖xm−x∗‖∞ ≤ r ‖xm−1−x∗‖∞ ≤ r m ‖x0−x∗‖∞ ≤ r m ε0 < ε,
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thus, Lemma 3.3 guarantees that xm+1 is well defined and satisfies

‖xm+1−x∗‖∞ ≤ r ‖xm −x∗‖∞,

and, if H2 is verified then xm+1 satisfies

‖xm+1−x∗‖∞ ≤ c ‖xm −x∗‖
2
∞.

Therefore, we conclude that (37) and (38) are true for all k = 0,1, . . ..

Numerical experiments

In this section, we analyze numerically the Jacobian smoothing algorithm
introduced in the previous section (Algorithm 1). To do this, we compared
our algorithm with the one proposed in [17] (which is a particular case of
our algorithm when λ= 2 ), which we call Algorithm 2, and with a Newton
method that uses matrices in the C-subdifferential of Φλ at xk .

For the variation of parameter µ, we consider the sequences
� −k

	

µ0 2 and
�

µ0 100−k
	

, with µ0 = 2
α

κ
, κ=

p
2n, α ∈ (0, 1) given in [17]. Moreover, in

both, the proposed algorithm and in the Newton method, the parameter λ
varies from λ= 10−1 to λ= 3.9 with increments of 10−1. It is important to
mention that in the Algorithm 2 proposed in [17], λ= 2 and µ depend on
the function F .

We use five test problems, four of them were chosen from [6]. The fifth
function is [24, Example A]. We describe each of these functions below, as
well as the initial point used (x0 ) and the solutions found (x∗ ).

1. Billups problem [6]. Let F : R→R be defined by

F (x) = (x − 1)2 − 1.1,

x0 = 0 and x∗ = 2.0488.

2. Mathiesen-modified problem [6]. Let F : R4→R4 be defined by

F (x) =

























−x2+ x3+ x4

x1−
4.5x3+ 2.7x4

x2+ 1

5− x1−
0.5x3+ 0.3x4

x3+ 1

3− x1

























,

x0 = (1 1 1 1)T and x∗ = (a 0 0 0)T , with a ∈ [0,3] .
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3. Kojima-Shindo problem [6]. Let F : R4→R4 be defined by

F (x) =











3x1
2+ 2x1x2+ 2x2

2+ x3+ 3x4− 6
2x1

2+ x2
2+ x1+ 10x3+ 2x4− 2

3x1
2+ x1x2+ 2x2

2+ 2x3+ 9x4− 9
x1

2+ 3x2
2+ 2x3+ 3x4− 3











,

x0 = (1 1 1 1)T and x∗ =
�p

6/2 0 0 1/2
�T

.

4. Kojima-Josephy problem [6]. F : R4→R4 be defined by

F (x) =











3x1
2+ 2x1x2+ 2x2

2+ x3+ 3x4− 6
2x1

2+ x2
2+ x1+ 3x3+ 2x4− 2

3x1
2+ x1x2+ 2x2

2+ 2x3+ 3x4− 9
x1

2+ 3x2
2+ 2x3+ 3x4− 3











,

x0 = (1 1 1 1)T and x∗ =
�p

6/2 0 0 1/2
�T

.

5. Example A in [24]. F : R5→R5 be defined by

F (x) =



















x1 + x2x3x4x5/50

x2 + x1x3x4x5/50 − 3

x3 + x1x2x4x5/50 − 1

x4 + x1x2x3x5/50 − 0.5

x5 + x1x2x3x4/50



















,

x0 = (1 − 1 2 − 2 5)T and x∗ = (0 3 1 0 0)T .

To write the codes of the algorithms and the test functions, we used the
software M AT L A B® and we performed the numerical tests on a computer
with a processor Intel(R) Core(TM) i5-4200M CPU @2.50 GHZ. We used as
convergence criterion ‖Φλ(xk)‖ < 10−6 or ‖Φλµ(xk)‖ < 10−6, according to
the case. We declared divergence if the number of iterations exceeded 500.

For each problem and with each algorithm, we compared the number
of iterations and the time (in seconds) used by the algorithm to obtain
convergence for each value of λ. The results obtained are presented below in
ten graphics.

Fig. 1 shows that the Newton method converges only for λ≥ 3.3, with more
iterations than the proposed algorithm, which converges for λ≥ 2, and the
number of iterations is the same for the two sequences {µk} used, therefore
its graphics match (Fig. 1A). On the other hand, Algorithm 2 diverges. In
addition, Algorithm 1 is the most efficient.
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Figure 1. For the Billups function, the Algorithm 2 has a better performance in
both number of iterations (A) and computational time (B). For λ ∈ [0, 2) there is 
no graph because Algorithms 1 and 2 diverge.

Fig. 2 shows that convergence was obtained for all the algorithms and all
the values of λ. The number of iterations for the Newton method is slightly
smaller than the others ones (Fig. 2A); the proposed smoothing has a fairly
competitive behavior. In terms of computational time, the proposed algorithm
lies between the generalized Newton method and the Algorithm 2 (Fig. 2B).

http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum


165Arenas et al. 2020

Universitas Scientiarum Vol. 25 (1): 149-174 http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum

0 1 2 3 4
0
1
2
3
4
5
6
7
8
9

Parameter λ

N
um

be
r 

of
 it

er
at

io
ns

A

•

Algorithm 1, µk =µ02−k

Algorithm 1, µk =µ0100−k

Algorithm 2, λ= 2 and µk as in [13]
Newton

0 1 2 3 4
0

0.002

0.004

0.006

0.008

Parameter λ

T
im

e 
(s

ec
on

ds
)

B

•

Algorithm 1, µk =µ02−k

Algorithm 1, µk =µ0100−k

Algorithm 2, λ= 2 and µk as in [13]
Newton

Figure 2. For the Mathiesen function, the algorithms are competitive in number of 
iterations (A) and computational time (B).

In Fig.3, we observe that the generalized Newton method converges for λ≥
1.8, and the proposed algorithm converges for λ≥ 1.5; in terms of number of
iterations and convergence time, these two methods have a similar behavior
for 1.5≤ λ≤ 3.1. For λ > 3.1 the proposed algorithm is the best.

Fig.4 shows that the generalized Newton method and the proposed algorithm
converge for λ ≥ 2; the number of iterations is the same for the two
sequences {µk} used and for the generalized Newton method; In addition,
the Algorithm 2 converges using more iterations and spending more
computational time than the other methods.
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Figure 3. For the Kojima-Shindo function, the algorithm proposed is better than 
the other ones from λ > 3.1 in both number of iterations (A) and computational 
time (B). For λ ∈ [0, 1.8) there are no graphs because Algorithms 1 and 2 diverge.

Finally, in Fig.5, we observe convergence of all the considered methods, for
all values of λ . Again, it is shown that the proposed algorithm, Algorithm 1,
is quite competitive with respect to the Newton method. On the other hand,
in our proposal, the selection of the sequence µk has an important role in
the convergence rate.
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Figure 4. For Kojima–Josephy function, Algorithm 1 (with two sequences used) 
and the Newton method have the same number of iterations, for this reason their 
graphics coincide (A). The Algorithm 2 is slower computationally (B). In addition,
for λ ∈ [0, 2) there is no graph because Algorithms 1 and 2 diverge.
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Figure 5. NCP with the function given by Example A in [24] shows another case 
in which the proposed algorithm is better than the other algorithms in number of
iterations and computational time.

Concluding remarks

In this paper, we propose a new generalized Newton-type algorithm for
solving Nonlinear Complementarity Problems based on its reformulation
as a nonsmooth system of equations. To do this, we introduce a smoothing
of the family of nonlinear complementarity functions presented in [7] and
analyze its properties in combination with the smooth Jacobian strategy used
in [17]. We prove local and quadratic convergence for the new algorithm.
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Un método local de suavización Jacobiana para resolver 
Problemas de Complementariedad No Lineal

Resumen: En este artículo, presentamos un método de suavización 
para una familia de funciones de complementariedad no lineales 
y utilizamos sus propiedades, en combinación con la estrategia 
Jacobiana para el caso suave, con el propósito de introducir un 
nuevo algoritmo generalizado de tipo Newton para resolver 
un sistema no suave de ecuaciones equivalente al Problema de 
Complementariedad No Lineal. Además, demostramos que el 
algoritmo converge localmente y q-cuadráticamente, y analizamos 
su rendimiento numérico.

Palabras clave: problema de complementariedad no lineal; 
función de complementariedad; método de Newton generalizado; 
convergencia Q-cuadrática.

http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum
http://doi.org/10.1109/81.995659


173Arenas et al. 2020

Universitas Scientiarum Vol. 25 (1): 149-174 http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum

Um método local de regularização Jacobiana para 
resolver Problemas de Complementaridade Não-lineares

Resumo: Neste artigo, apresentamos um método de suavização 
para uma família de funções de complementaridade não lineares 
e utilizamos suas propriedades, em combinação com a estratégia 
Jacobiana para o caso suave, a fim de introduzir um novo algoritmo 
generalizado do tipo Newton para resolver um sistema não suave 
de equações equivalentes ao Problema de Complementaridade 
Não Linear. Além disso, demonstramos que o algoritmo converge 
localmente e q-quadraticamente, e analisamos seu desempenho 
numérico.

Palavras-chave: problema de complementaridade não linear; 
função de complementaridade; método de Newton generalizado; 
convergência Q-quadrática.
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