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Abstract In the present work, we introduce and study the notion of sta-
tistical probability convergence for sequences of random variables as well as 
the idea of statistical convergence for sequences of real numbers, which are 
defined over a Banach space via the product of deferred Cesàro and deferred 
weighted summability means. We first establish a theorem presenting acon-
nection between them. Based upon our proposed methods, we then prove a 
Korovkin-type approximation theorem with algebraic test functions for a 
sequence of random variables on a Banach space, and demonstrate that our 
theorem effectively extends and improves most (if not all) of the previously 
existing results (in classical as well as in statistical versions). 
Furthermore, an illustrative example is presented here by means of the 
generalized Meyer–König and Zeller operators of a sequence of random 
variables in order to demonstrate that our established theorem is 
stronger than its traditional and statistical versions. Finally, we 
estimate the rate of the product of deferred Cesàro and deferred 
weighted statistical probability convergence, and accordingly establish a 
new result.
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Introduction and Motivation

The gradual evolution on convergence of sequence spaces lead to the de-
velopment of a beautiful concept known as “statistical convergence" and
such concept was first introduced independently by two eminent math-
ematicians Fast [1] and Steinhaus [2]. It is more important than the
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usual convergence because the traditional convergence of a sequence re-
quires that almost all elements are to satisfy the convergence condition,
that is, every element of the sequence needs to be in some neighbor-
hood (arbitrarily small) of the limit. However, such restriction is relaxed
in statistical convergence, where set having a few elements that are not
in the neighborhood of the limit is discarded subject to the condition
that the natural density of the set is zero, and at the same time the
condition of convergence is valid for the other majority of the elements.
Actually, a root of the notion of statistical convergence was discussed by
Zygmund (see [3, p. 181]), where he used the term “almost convergence",
which turned out to be equivalent to the concept of statistical conver-
gence. We also find such concepts in random graph theory (see [4, 5])
in the sense that almost convergence means convergence with probabil-
ity 1, whereas in statistical convergence the probability is not necessarily
1. Mathematically, a sequence of random variables {Xn} is statistically
probability convergent (converges in probability) to a random variable X
if limn→∞ P (|Xn − X| = ε) = 0, for all ε > 0 (arbitrarily small); and
almost convergent to X if P (limn→∞Xn = X) = 1. Recently, this hy-
pothesis is analyzed in the various fields of pure and applied mathematics
such as real analysis, Fourier analysis, measure theory, probability theory,
and approximation theory. For current works see [6–15].

Let N be the set of natural numbers and let K ⊆ N. Also, let

Kn = {k : k 5 n and k ∈ K}

and suppose that |Kn| is the cardinality of Kn. Then the natural density
d(K) of K is defined by

d(K) = lim
n→∞

|Kn|
n

= lim
n→∞

1

n
|{k : k 5 n and k ∈ K}|,

provided that the limit exists.

A given real sequence (xn) is said to be statistically convergent to L if,
for each ε > 0, the set

Kε = {k : k ∈ N and |xk − L| = ε}

has zero natural density (see [1] and [2]). Thus, for each ε > 0, we have

d(Kε) = lim
n→∞

|Kε|
n

= lim
n→∞

1

n
|{k : k 5 n and |xk − L| = ε}| = 0.

In this case, we write
stat lim

n→∞
xn = L.

http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum
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In the year 2002, Móricz [16] initially presented the elementary concept
of statistical Cesàro summability. Later on, Mohiuddine et al. [17] estab-
lished some approximation theorems of the Korovkin-type based upon the
statistical Cesàro summability. Subsequently, Karakaya and Chishti [18]
introduced and studied the concept of weighted statistical convergence
and their definition was later modified by Mursaleen et al. [19]. Fur-
thermore, the fundamental concept of the deferred Cesàro statistical con-
vergence as well as of the statistically-deferred Cesàro summability and
associated approximation theorems was introduced by Jena et al. [20].
Recently, Srivastava et al. [21] introduced the notion of deferred weighted
statistical convergence and proved analogous approximation theorems and
also, in the same year Srivastava et al. [22] proved equi-statistical con-
vergence via deferred Nörlund summability mean and accordingly estab-
lished new approximation of the Korovkin-type theorems. Very recently,
Jena et al. [6] studied product of statistical convergence in probability
and established analogous Korovkin-type approximation theorems for al-
gebraic test functions. Subsequently, Jena et al. [23] also introduced
various fundamental limit concept of statistical probability convergence
and accordingly proved some approximation theorems via deferred Cesàro
summability means. For several other recent developments in this direc-
tion, see for example [21, 22, 24–28].

Recalling the probability theory, let Xn (n ∈ N) be a random variable
defined on an event space S with respect to a given class of events ∆.
Let P : ∆ → R (where R is the set of real numbers) be a probability
density function. Then we denote the sequence X1, X2, X3, . . . of random
variables by {Xn}n∈N.

Moreover, this study will be interesting, if there exists a constant c ∈ R
such that for given ε > 0 (arbitrarily small) for which

P (|X − c| < ε) = 1.

Furthermore, for a sequence of random variables {Xn}n∈N, where every
Xn may not satisfy the above property; however it may be possible that,
for sufficiently large n the above property becomes more significant cor-
responding to a constant c ∈ R. Next, the existence of such c will be
addressed by the notion of probability convergence (that is, convergence
in probability) for the sequence {Xn}n∈N.

Suppose that {Xn}n∈N is a sequence of random variables, and each Xn is
defined over the event space (same) S, corresponding to a given class of
events ∆ as the subsets (of S) under the probability function P : ∆→ R.
The sequence {Xn}n∈N is said to be statistically probability convergent

http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum
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(or statistically convergent in probability) to a random variable X (where
X : S → R) if, for any ε > 0 and δ > 0, we have

lim
n→∞

1

n
|k : k 5 n and P (|Xn −X| = ε) = δ| = 0

or, equivalently,

lim
n→∞

1

n
|k : k 5 n and 1− P (|Xn −X| 5 ε) = δ| = 0.

In this case, we write

statP lim
n→∞

P (|Xn−X| = ε) = 0 or statP lim
n→∞

P (|Xn−X| 5 ε) = 1.

We now show by means of the following example that every statistically
convergent sequence is statistically probability convergent, but the con-
verse is not necessarily true.

Example 1.1. Consider a probability density function of Xn given for
n = m2 and for all m ∈ N by

fn(x) =

{
1
3

(0 < x < 3)

0 (otherwise)

and for n 6= m2, for all m ∈ N,

fn(x) =


nxn−1

5n
(0 < x < 5)

(otherwise).0

Let 0 < ε, δ < 1. Then

P (|Xn− 5| = ε) =


1 (n = m2, for all m ∈ N)
3

1− P (|Xn − 5| < ε)

=
(

1− ε

5

)n
(n 6= m2, for all m ∈ N).

This implies that

lim
n→∞

1

n
|{k : k 5 n and P (|Xn − 5| = ε) = δ}|

5
n
lim
→∞

1

n
|{12, 22, 32, · · · , n2}| = 0.

Clearly, it is neither statistically convergent nor ordinarily convergent,
while it is statistically probability convergent to 5.

http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum
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Quite recently, Srivastava et al. [29] first introduced and studied the
fundamental idea of deferred Cesàro statistical probability convergence
of a sequence of random variables as follows.

A given sequence {Xn}n∈N is said to be deferred Cesàro statistically prob-
ability convergent to a random variable X (where X : S → R), if for every
δ > 0 and ε > 0, the set

{k : an < k 5 bn and P (|Xn −X| = ε) = δ}

has natural density zero, that is,

lim
n→∞

1

bn − an
|{k : an < k 5 bn and P (|Xn −X| = ε) = δ}| = 0.

In this case, we write

statDCP lim
n→∞

P (|Xn −X| = ε) = 0.

Several researchers have worked on extending or generalizing the approx-
imation theorems of the Korovkin-type in many different ways and un-
der various different settings, together with Banach spaces, Banach al-
gebras and function spaces etc. In the year 2018, Jena et al. [20] in-
troduced statistically-deferred Cesàro summability for single sequences
in Korovkin-type approximation theorems. Recently, Paikray et al. [30]
established a Korovkin-type theorem based upon the (p, q)-integers for
statistically-deferred Cesàro summability mean. Subsequently, Dutta et
al. [31] demonstrated the Korovkin theorem on C[0,∞) by using the test
functions 1, e−x and e−2x via the deferred Cesàro mean. In another re-
cent work, Srivastava et al. [21] made use of the notion of the deferred
weighted statistical convergence and accordingly proved a Korovkin-type
approximation theorem.

Motivated essentially by the above-mentioned investigations and results,
we first introduced here the concept of the product of deferred Cesàro
and deferred weighted statistical convergence of real sequences, and then
for the statistical probability convergence of sequences with random vari-
ables. We also established an inclusion relation between them. Moreover,
based upon our proposed methods, we proved a new Korovkin-type ap-
proximation theorem with algebraic test functions for positive sequences
of random variables over a Banach space and demonstrated that our re-
sult is a non-trivial extension of some well-established traditional and
statistical versions of several known results. Finally, we estimated the
rate of the product of deferred Cesàro and deferred weighted statistical
probability convergence and accordingly established a new result.

http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum
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Preliminaries and Definitions

Let (an) and (bn) be sequences of non-negative integers such that, (i)
limn→∞ bn =∞ and (ii) an < bn, then the deferred Cesàro (DC) mean is
given by (see, Agnew [32, p. 414]),

σn =
xan+1 + xan+2 + xan+3 + ...+ xbn

bn − an

=
1

bn − an

b∑n

k=an+1

xk.

It is trivial that, under the above conditions (i) and (ii), DC mean is
regular (also, see Agnew [32]).

Similarly, suppose that (pn) is a sequence of non-negative real numbers
such that

Pn =
b∑n

m=an+1

pm,

then the deferred weighted (DW) mean is defined by (see [22])

θn =
1

Pn

b∑n

m=an+1

pmxm.

It is well known that, DW mean is regular under the above-mentioned
conditions (i) and (ii) (see, for details, Agnew [32]).

We now define the product [D(CW)] of DC and DW means as follows:

Ωn = (σθ)n =
1

(bn − an)

b∑n

m=an+1

(θm)

=
1

(bn − an)

b∑n

m=an+1

1

Pm

b∑m

v=am+1

pvxv.

Moreover, the sequence (Ωn) is summable to L by the product [D(CW)]
summability mean if,

lim
n→∞

Ωn = L.

Also, we assume that the [D(CW)] product mean is regular.

Let us now introduce the following definitions which will be needed in
connection with our proposed investigation here.

Definition 2.1. Let (an) and (bn) be sequences of non-negative integers
and let (pn) be the sequence of non-negative real numbers. A real sequence
{xn}n∈N is said to be deferred Cesàro and deferred weighted statistically
product convergent (or [D(CW )]s convergent) to L if, for each ε > 0, the

http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum
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set given by

{m : m 5 (bn − an)Pn and pm|xm − L| = ε}

has its natural density equal to zero, that is, if

lim
n→∞

1

(bn − an)Pn
|{m : m 5 (bn − an)Pn and pm|xm − L| = ε}| = 0.

In this case, we write

stat[D(CW)] lim
n→∞

xn = L or [D(CW )]s lim
n→∞

xn = L.

Definition 2.2. Let (an) and (bn) be sequences of non-negative integers
and let (pn) be the sequence of non-negative real numbers. Suppose also
that {Xn}n∈N is a sequence of random variables, where each (Xn) is de-
fined on the same event space S with respect to a given class ∆ of subsets
of the event space S and a given probability density function P : ∆→ R.
A given sequence {Xn}n∈N is said to be deferred Cesàro and deferred
weighted statistically probability convergent (or [D(CW )]sp convergent)
to a random variable X (where X : S → R) if, for every δ > 0 and ε > 0,
the set

{m : m 5 (bn − an)Pn and pmP (|Xn −X| = ε) = δ}

has its natural density equal to zero, that is, if

lim
n→∞

1

(bn − an)Pn
|{m : m 5 (bn − an)Pn, pmP (|Xn −X| = ε) = δ}| = 0

or, equivalently,

lim
n→∞

1

(bn − an)Pn
|{m : m 5 (bn−an)Pn, 1−pmP (|Xn−X| 5 ε) = δ}| = 0.

In this case, we write

stat[D(CW)P] lim
n→∞

[D(CW )]sp lim
n→∞

pmP (|Xn −X| = ε) = 0 or

pmP (|Xn −X| = ε) = 0

or, equivalently, we also write

stat[D(CW)P] lim
n→∞

[D(CW )]sp lim
n→∞

pmP (|Xn −X| 5 ε) = 1 or

pmP (|Xn −X| 5 ε) = 1.

We next present a theorem in order to demonstrate that every [D(CW )]s
convergent sequence is [D(CW )]sp convergent. However, the converse is
not true.

http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum
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Theorem 2.3. Let the sequence {xn} of constants be such that
stat[D(CW)]xn → x. Then, assuming it to be a random variable having
a one-point distribution at that point, the sequence {Xn} of random vari-
ables is such that

stat[D(CW)P]Xn → X.

Proof. Let ε > 0 be any arbitrarily small positive real number. Then, by
Definition 2.1, we obtain

lim
n→∞

1

(bn − an)Pn
|{m : m 5 (bn − an)Pn and pm|xm − L| = ε}| = 0.

We now let δ > 0, so that the set

{m : m 5 (bn − an)Pn and pmP (|Xn −X| = ε) = δ} ⊆ K,

where

K = {m : m 5 (bn − an)Pn and pm|xm − L| = ε}.

Thus, by Definition 2.2, we may write

stat[D(CW)P]Xn → X.

We now present below an example to show that a sequence of random
variables is [D(CW )]sp convergent, whenever it is not [D(CW )]s conver-
gent.

Example 2.4. Let an = 2n− 1, bn = 4n− 1 and pn = n. Suppose that
the probability density functions of Xn is given by n = m2, for all m ∈ N,

fn(x) =

{ 1

2
(0 < x < 2)

(otherwise)0

and n 6= m2, for all m ∈ N,

fn(x) =

{
(n+ 1)xn

5n+1 (0 < x < 5)

(otherwise).0

Let 0 < ε, δ < 1. Then

P (|Xn−5| = ε) =


1

2

1− P (|Xn − 5| < ε) =
(

1− ε

5

)n when n = m2

when n 6= m2.

Consequently, we have

lim
n→∞

1

2n2
|{m : m 5 2n2 and nP (|Xn − 5| = ε) = δ}| = 0.

Clearly, we observe that (Xn) is neither convergent nor [D(CW )]s con-
vergent; however, it is [D(CW )]sp convergent to 5.

http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum
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A New Korovkin-type Theorem

In this section, we extend here the result of Jena et al. [20] and Srivastava
et al. [21] by using the product deferred Cesàro and deferred weighted
convergence (that is, [D(CW )]sp convergence) of sequences of random
variables over a Banach space.

Let C(X) be the continuous real valued probability functions defined over
a compact set X (X ⊂ R) with the supremum norm ‖.‖∞. Also let C(X)

be a Banach space. Then, for each f ∈ C(X), the norm of f (denoted by
‖f‖∞) is given by,

‖f‖∞ = sup{|f(x)|}.
x∈X

We say that the operator L is a sequence of random variables of positive
linear operator provided that

L(f ;x) = 0 whenever f = 0.

Now we prove the following theorem by using the product deferred Cesàro
and deferred weighted [D(CW )]sp convergence.

Theorem 3.1. Let
Lm : C(X)→ C(X)

be a sequence of random variables of positive linear operators. Then, for
all f ∈ C(X),

stat[D(CW)P] lim
m→∞

‖Lm(f ;x)− f(x)‖∞ = 0, (1)

if and only if

stat[D(CW)P] lim
m→∞

(2)

stat[D(CW)P] lim
m→∞

‖Lm(1;x)− 1‖∞ = 0,

‖Lm(x;x)− x‖∞ = 0,

and

stat[D(CW)P] lim
m→∞

‖Lm(x2;x)− x2‖∞ = 0. (3)

Proof. Since each of the following functions

f0(x) = 1, f1(x) = x, and f2(x) = x2

belonging to C(X) are continuous, the implication given by (1) implies
(2) to (3) is fairly obvious. Next, for the completion of the proof of the
Theorem 3.1, we first assume that the conditions (2) to (3) hold true. If
f ∈ C(X), then there exists a constantM > 0 such that

|f(x)| 5M (∀ x ∈ X).

http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum
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We thus find that

|f(s)− f(x)| 5 2M (s, x ∈ I).

Clearly, for given ε > 0, there exists δ > 0 such that

|f(s)− f(x)| < ε (4)

whenever
|s− x| < δ, for all s, x ∈ I.

Let us choose
ϕ1 = ϕ1(s, x) = (s− x)2.

If |s− x| = δ, then we obtain

|f(s)− f(x)| < 2M
δ2

ϕ1(s, x). (5)

From equation (4) and (5), we get

|f(s)− f(x)| < ε+
2M
δ2

ϕ1(s, x),

which implies that

−ε− 2M
δ2

ϕ1(s, x) 5 f(s)− f(x) 5 ε+
2

2

M
δ

ϕ1(s, x).

Now since Lm(1;x) is monotone and linear, applying the operator
Lm(1;x) to this inequality, we have

Lm(1;x)

(
−ε− 2M

δ2
ϕ1(s, x)

)
5 Lm(1;x)(f(s)− f(x))

5 Lm(1;x)

(
ε+

2M
δ2

ϕ1(s, x)

)
.

We note that x is fixed and so f(x) is a constant number. Therefore, we
have

−εLm(1;x)− 2M
δ2

Lm(ϕ1;x) 5 Lm(f ;x)− f(x)Lm(1;x)

5 εLm(1;x) +
2

2

M
δ

Lm(ϕ1;x). (6)

But

Lm(f ;x)− f(x) = [Lm(f ;x)− f(x)Lm(1;x)] + f(x)[Lm(1;x)− 1].

(7)

http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum
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Using (6) and (7), we have

Lm(f ;x)− f(x) < εLm(1;x) +
2M
δ2

Lm(ϕ1;x) + f(x)[Lm(1;x)− 1].

(8)

We now estimate Lm(ϕ1;x) as follows:

Lm(ϕ1;x) = Lm((s− x)2;x) = Lm(s2 − 2xs+ x2;x)

= Lm(s2;x)− 2xLm(s;x) + x2Lm(1;x)

= [Lm(s2;x)− x2]− 2x[Lm(s;x)− x]

+ x2[Lm(1;x)− 1].

Using (8), we obtain

Lm(f ;x)− f(x) < εLm(1;x) +
2M{[Lm(s2;x)− x2]
δ2

− 2x[Lm(s;x)− e−x] + x2[Lm(1;x)− 1]}
+ f(x)[Lm(1;x)− 1].

= ε [Lm(1;x)− 1] + ε+
2M{[Lm(s2;x)− x2]
δ2

− 2x[Lm(s;x)− x] + x2[Lm(1;x)− 1]}
+ f(x)[Lm(1;x)− 1].

Since ε > 0 is arbitrary, we can write

|Lm(f ;x)− f(x)| 5 ε+
(
ε+

2M
δ2

+M
)
|Lm(1;x)− 1|

+
4M
δ2
|Lm(s;x)− x|+ 2M

δ2
|Lm(s2;x)− x2|

5 K(|Lm(1;x)− 1|+ |Lm(s;x)− x|
+ |Lm(s2;x)− x2|),

where
K = max

(
ε+

2M
δ2

+M,
4M
δ2

,
2M
δ2

)
.

Now, for a given r > 0, there exists δ, ε > 0, such that ε < r. Then, by 
setting

Ωm(x; r) = {m : m 5 (bn − an)Pn   pmP (|Lm(f ; x) − f(x)| = r)} = δ. 

Also, for i = 0, 1, 2, the set Ωi,m(x; r) equals{
m : m 5 (bn − an)Pn   pmP

(
|Lm(fi;x)− fi(x)| = r − ε

3K

)
= δ

}
,;

;

http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum
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so that,

Ωm(x; r) 5
∑2
i=0

Ωi,m(x; r).

Clearly, we have

‖Ωm(x; r)‖C(X)

(bn − an)Pn
5
∑2
i=0

‖Ωi,m(x; r)‖C(X)

(bn − an)Pn
. (9)

Now, using the above assumption about the implications in (2) to (3)
and by Definition 2.2, the right-hand side of (9) is seen to tend to zero as
n→∞. Consequently, we get

lim
n→∞

‖Ωm(x; r)‖C(X)

(bn − an)Pn
= 0 (δ, r > 0).

Hence, the implication (1) holds true. Which completes the proof of
Theorem 3.1.

Now, by using the Definition 2.1, we present the following corollary as
the consequence of Theorem 3.1.

Corollary 3.2. Let Lm : C(X) → C(X) be a sequence of positive linear
operators. Also let f ∈ C(X). Then

stat[D(CW)P] lim
m→∞

‖Lm(f ;x)− f(x)‖∞ = 0

if and only if

stat[D(CW)P] lim
m→∞

stat[D(CW)P] lim
m→∞

‖Lm(1;x)− 1‖∞ = 0,

‖Lm(x;x)− x‖∞ = 0,

and

stat[D(CW)P] lim
m→∞

‖Lm(x2;x)− x2‖∞ = 0.

We consider below an example for the sequence of random variables of
positive linear operators which does not satisfy the conditions of the ap-
proximation theorems of Korovkin-type proved earlier by Jena et al. [20],
Srivastava et al. [21] and Paikray et al. [24], but which satisfies the con-
ditions of our Theorem 3.1. Consequently, our Theorem 3.1 is stronger
than the results established earlier by both Jena et al. [20] and Srivastava
et al. [21].
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We now recall the operator

x(1 + xD)

(
D =

d

dx

)
,

that was considered by Al-Salam [33] and, very recently, by Viskov and
Srivastava [34] (also see [35] the monograph by Srivastava and Manocha
[36]). Here, in our Example 3.3 below, we use this operator in conjunction
with the Meyer–König and Zeller operators.

Example 3.3. Let X = [0, 1] and we consider Meyer–König and Zeller
operators Mn(f ;x) on C[0, 1] given by (see [37]),

∑∞
k + n+ 1 k

(
k

)(
n+ k

)
Mn(f ;x) = f xk(1− x)n+1.

k=0

Also let Lm : C[0, 1]→ C[0, 1] be sequence of operators defined as follows:

Lm(f ;x) = [1 +Xm]x(1 + xD)Mm(f) (f ∈ C(X)), (10)

where (Xm) is a sequence of random variables defined in Example 2.4.
Now,

Lm(1;x) = [1 +Xm]x(1 + xD)1 = [1 +Xm]x,

Lm(s;x) = [1 +Xm]x(1 + xD)x = [1 +Xm]x(1 + x),

and

Lm(s2;x) = [1 +Xn]x(1 + xD)

{
x2
(
n+ 2

n+ 1

)
+

x

n+

}
= [1 +Xn(x)]

{
x2
[(

n+ 2

n+ 1

)
x+ 2

(
1

n+ 1

1)
+2x

(
n+ 2

n+ 1

)]}
,

so that we have

stat[D(CW)P] lim
m→∞

stat[D(CW)P] lim
m→∞

‖Lm(1;x)− 1‖∞ = 0,

‖Lm(x;x)− x‖∞ = 0,

and

stat[D(CW)P] lim
m→∞

‖Lm(x2;x)− x2‖∞ = 0,

that is, the sequence Lm(f ;x) satisfies the conditions (2) to (3). Therefore
by Theorem 3.1, we have

stat[D(CW)P] lim
m→∞

‖Lm(f ;x)− f‖∞ = 0.
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Hence, it is deferred Cesàro and deferred weighted statistically probability
convergent (or, [D(CW )]sp convergent). However, since (Xm) is neither
Cesàro convergent nor weighted statistically convergent, so it is not de-
ferred Cesàro and deferred weighted statistically [D(CW )]s convergent.
Thus, we conclude that earlier works in [20] and [21] are not valid for the
operators defined by (10), where as our Theorem 3.1 still works for the
operators defined by (10).

Rate of Statistical Probability Convergence

In this section, we study the rates of the product of deferred Cesàro
and deferred weighted statistical probability [D(CW )]sp convergence of a
sequences of random variables of positive linear operator L(f ;x) defined
on C(X) by using the modulus of continuity.

We begin by introducing a definition as follows.

Definition 4.1. Let (pn) be a sequence of non-negative real numbers and
let (un) be a positive non-increasing sequence. A given sequence (Xm)

of random variables is deferred Cesàro and deferred weighted statistically
probability convergent (or [D(CW )]sp convergent) to a random variable
X with the rate o(un) if, for every ε > 0 and δ > 0,

lim
n→∞

|{m : m 5 (bn − an)Rn and pmP (|Xm −X| = ε) = δ}|
(bn − an)Rnun

= 0.

In this case, we may write

Xm − L = stat[D(CW)P] o(un) or Xm − L = [D(CW )]sp o(un).

We need a basic lemma as follows.

Lemma 4.2. Let (un) and (vn) be two positive non-increasing sequences.
Let (Xm) and (Ym) be two sequences of random variables such that

Xm −X1 = stat[D(CW)P] o(un)

and
Ym −X2 = stat[D(CW)P] o(vn),

respectively. Then the following conditions hold true

(i) (Xm + Ym)− (X1 +X2) = statD(CW)P o(wn);

(ii) (Xm −X1)(Ym −X2) = statD(CW)P o(unvn);

(iii) λ(Xm −X1) = statD(CW)P o(un) (for any scalar λ);
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(iv)
√
|Xm −X1| = statD(CW)P o(un),

where
wn = max{un, vn}.

Proof. In order to prove the implication (i) of Lemma 4.2, for ε > 0 and
x ∈ X, we define the following sets:

An(x; ε)= |{m : m 5 (bn−an)Rn, pmP (|Xm+Ym−X1+X2| = ε) = δ}| ,

A0,n(x; ε) =

∣∣∣∣{m : m 5 (bn − an)Rn, pmP (|Xm −X1| = ε) =
δ

2

}∣∣∣∣
and

A1,n(x; ε) =

∣∣∣∣{m : m 5 (bn − an)Rn, pmP (|Ym −X2| = ε) =
δ

2

}∣∣∣∣ .
Clearly, we have

An(x; ε) ⊆ A0,n(x; ε) ∪ A1,n(x; ε).

Moreover, since
wn = max{un, vn},

by the condition (1) of Theorem 3.1, we obtain

‖Am(x; ε)‖C(X)

wn(bn − an)Rn

5
‖A0,n(x; ε)‖C(X)

un(bn − an)Rn

+
‖A1,n(x; ε)‖C(X)

vn(bn − an)Rn

.

Now, by the conditions (2) to (3) of Theorem 3.1, we obtain

‖An(x; ε)‖C(X)

wn(bn − an)Rn

= 0,

which establishes the implication (i) of Lemma 4.2. Since the proofs of
the other implications (ii) to (iv) of Lemma 4.2 are similar, we choose to
omit the analogous details involved.

We now remind that the modulus of continuity of a function f ∈ C(X) is
given by

ω(f, δ) = sup
|y−x|5δ : x,y∈X

|f(y)− f(x)| (δ > 0),

which implies that

|f(y)− f(x)| 5 ω(f, δ)

(
|x− y|
δ

+ 1

)
. (11)

We state and prove a result in the form of the following theorem.
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Theorem 4.3. Let Lm : C(X)→ C(X) be a sequence of random variables
of positive linear operators. Assume that the following conditions hold
true:

(i) ‖Lm(1;x)− 1‖C(X) = stat[D(CW)P] o(un),

(ii) ω(f, λm) = stat[D(CW)P] o(vn),

where
λm =

√
Lm(ϕ2;x) and ϕ1(y, x) = (y − x).

(12)

Then, for all f ∈ C(X), the following statement holds true:

‖Lm(f ;x)− f‖C(X) = stat[D(CW)P] o(wn),

where wn = max{un, vn}.

Proof. Let f ∈ C(X) and x ∈ X. Using (11), we have

|Lm(f ;x)− f(x)(| 5 Lm(|f(y)−)f(x)|;x) + |f(x)||Lm(1;x)− 1|

5 Lm
|x− y|
λm

+ 1;x ω(f, λm) + |f(x)||Lm(1;x)− 1|

5 Lm

(
1 +

1

λ2m

)
Lm(x− y)2;x ω(f, λm) + |f(x)||Lm(1;x)− 1|

5

(
Lm(1;x) +

1

λ2m
Lm(ϕ2

1;x)

)
ω(f, λm) + |f(x)||Lm(1;x)− 1|.

Putting λm =
√
Lm(ϕ2;x), we get

‖Lm(f ;x)− f(x)‖C(X) 5 2ω(f, λm) + ω(f, λm)‖Lm(1;x)− 1‖C(X)

+ ‖f(x)‖‖Lm(1;x)− 1‖C(X)

5M{ω(f, λm) + ω(f, λm)‖Lm(1;x)− 1‖C(X)

+ ‖Lm(1;x)− 1‖C(X)},

where
M = {‖f‖C(X), 2}.

Thus,∥∥∥∥pn b∑n

m=an+1

Lm(f ;x)− f(x)

∥∥∥∥
C(X)

5M
{
ω(f, λm)pn + ω(f, λm)

∥∥∥∥× pn

b∑n

m=an+1

Lm(f ;x)− f(x)

∥∥∥∥
C(X)

∥∥∥∥+ pn

b∑n

m=an+1

Lm(f ;x)− f(x)

∥∥∥∥
C(X)

}
.

Now, under the conditions (i) and (ii) of Theorem 4.3, in conjunction
with Lemma 4.2, we reach at the statement (12) of Theorem 4.3. Which
completes the proof of Theorem 4.3.
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Discussion

In the last concluding section of our study, we consider various further
remarks and observations associated with different results which we have
established here.

Remark. Let (Xm)m∈N be a sequence of random variables given in Ex-
ample 2.4. Then, since

stat[D(CW)P] lim
m→∞

Xm = 5 on [0, 1],

we have

stat[D(CW)P] lim
m→∞

‖Lm(fi;x)− fi(x)‖∞ = 0 (i = 0, 1, 2). (13)

Thus, by applying Theorem 3.1, we can write

stat[D(CW)P] lim
m→∞

‖Lm(f ;x)− f(x)‖∞ = 0, (i = 0, 1, 2), (14)

where
f0(x) = 1, f1(x) = x, and f2(x) = x2.

However, since (Xm) is neither statistically convergent nor uniformly con-
vergent in the ordinary sense, the classical and statistical Korovkin-type
theorems do not work here for the operators defined by (10). Hence,
clearly, this application indicates that our Theorem 3.1 is a non-trivial
generalization of the classical as well as the statistical Korovkin-type the-
orem (see [1] and [38]).

Remark. Let (Xm)m∈N be a sequence of random variables as given in
Example 2.4. Then, since

stat[D(CW)P] lim
m→∞

Xm = 5 on [0, 1],

(13) holds true. Now by applying (13) and Theorem 3.1, the condition
(14) holds true. However, since the sequence (Xm) of random variables
is not deferred Cesàro [20] and deferred weighted [21] statistically con-
vergent, the results of Jena et al. [20] and Srivastava et al. (see [21]) do
not work for our operator defined in (10). Thus, naturally, our Theorem
3.1 is also a non-trivial extension of the results of Jena et al. [20] and
Srivastava et al. [21] (see also [24, 25]). Based upon the above results, it
is concluded here that our proposed method has successfully worked for
the operators defined in (10) and, therefore, it is stronger than the classi-
cal and statistical versions of the Korovkin-type approximation theorems
(see [21, 24, 25]) which were established earlier.
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El producto de las convergencias estadísticas en 
probabilidad diferida de Cesàro con y sin peso, y sus 
aplicaciones a teoremas del tipo Korovkin

Resumen: En este trabajo introduciremos y estudiaremos la 
convergencia estadística en probabilidad de secuencias de variables 
aleatorias así como la convergencia estadística de secuencias de 
números reales, definidas sobre un espacio de Banach mediante 
el producto de las medias aditivas diferidas de Cesàro con y sin 
peso. Primero pesentaremos un teorema que conecta ambas 
convergencias. Basados en los métodos propuestos, a continuación 
probaremos un teorema de aproximación del tipo Korovkin con 
funciones algebraicas de prueba, para una secuencia de variables 
aleatorias sobre un espacio de Banach, y mostraremos que 
dicho teorema extiende y mejora la mayoría (sino todos) de los 
resultados existentes (en sus versiones clásicas y estadísticas). Más 
aún, presentaremos un ejemplo ilustrativo usando los operadores 
generalizados de Meyer-König y de Zeller para una secuencia de 
variables aleatorias, y así demostrar que nuestro resultado es más 
fuerte que sus versiones tradicionales y estadísticas. Finalmente, 
estimaremos la razón entre el producto de convergencias 
estadísticas en probabilidad diferidas de Cesàro con y sin peso, y 
por lo tanto estableceremos un nuevo resultado.

Palabras clave: convergencia estadística; convergencia estadística 
en probabilidad; media producto diferida de Cesàro con y sin 
peso; operador lineal y positivo; secuencia de variables aleatorias; 
espacio de Banach; teoremas del tipo Korovkin; razón de la 
convergencia estadística en probabilidad.
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Produto de Cesàro diferido e convergência de 
probabilidade estatística ponderada diferida e suas 
aplicações a teoremas do tipo Korovkin

Resumo: No presente trabalho, apresentamos e estudamos a noção 
de convergência de probabilidade estatística para sequências de 
variáveis aleatórias, bem como a ideia de convergência estatística 
para sequências de números reais, que são definidas sobre um 
espaço de Banach através do produto de médias do somabilidade 
Cesàro diferidas e ponderadas diferidas. Primeiro estabelecemos 
um teorema apresentando uma conexão entre eles. Com base 
em nos sos métodos propostos, provamos um teorema de 
aproximação do tipo Korovkin com funções de teste algébrico para 
uma sequência de variáveis aleatórias em um espaço de Banach e 
demonstramos que nosso teorema efetivamente estende e melhora 
a maioria (se não todos) dos resultados existentes anteriormente 
(tanto nas versões clássicas como nas estatísticas). Além disso, um 
exemplo ilustrativo é apresentado aqui por meio dos operadores 
generalizados de Meyer-König e Zeller de uma sequência de 
variáveis aleatórias, a fim de demonstrar que nosso estabelecido 
teorema é mais forte que suas versões tradicionais e estatísticas.
Por fim, estimamos a razão entre o produto das convergências de 
probabilidade estatística de Cesàro diferida e ponderada diferida, 
e em conformidade, estabelecemos um novo resultado.

Palavras-chave: convergência estatística; convergência de 
probabilidade estatística; média do produto Cesàro diferida e 
ponderada diferida; operadores lineares positivos; sequência de 
variáveis aleatórias; espaço de Banach; teoremas do tipo Korovkin; 
taxa de convergência de probabilidade estatística.
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