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Abstract

The neotropical otter (Lontra longicaudis) is considered a flagship
species for the conservation of the ecosystems in which it resides
and is currently in a vulnerable state. As a conservation strategy for
this species, rehabilitation, breeding, and reintroduction programs of
captive individuals have been proposed. However, it is likely that the
environment and feeding conditions in captivity result in gut microbial
communities that differ from those in wild animals. Gut microbial
communities have an important role in the physiological performance of
an animal. To determine differences between gut microbial communities
of otters in wild and captive living conditions, the structure and diversity
of their gut bacterial communities were determined using 16S rDNA
molecular markers. Total DNA was isolated from fecal samples of wild
animals from the La Vieja River basin and from captive animals in the
Cali Zoo. As expected, the gut bacterial communities of captive animals
converged to a more similar structure, and their bacterial diversity was
significantly lower than that found in wild animals.

Keywords: Gut bacterial community; Lontra longicaudis; PCR-DGGE
molecular profile; wild and captive otters.

Introduction

The neotropical otter, Lontra longicaudis, is considered a flagship species for
the conservation of the ecosystems in which it resides; its presence indicates
high energy availability and biodiversity [1, 2]. This species is distributed
throughout Central and South America, inhabiting coastal environments,
mangrove zones, arid zones with thorny forests and shrubs, marshy areas,
tropical forests, and sub-Andean forests [3]. The neotropical otter currently
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has the conservation status of vulnerable in Mexico, Venezuela, Colombia,
Belize, and Ecuador. This is a result of the environmental changes generated
by anthropogenic disturbances and the increase in the incidence of bacterial
infections within its populations [4, 5]. It is estimated that the number of
individuals of the species will decline by 25 % in the next 27 years [6].

Breeding and rearing otters in captivity is one strategy to mitigate the decline
that is currently observed in populations of several otter species around
the world including L. longicaudis [7]. Therefore, it is important to seek
the continuous improvement of management practices in captive breeding
programs. Diet is one aspect of management for which information is still
needed to improve living conditions in captivity. Diet is important not

´only because it supports an animal s nutritional demands for growth and
reproduction, but also it is one of the determining factors in the composition
of gut microbiota [8]. In turn, gut microbiota are intimately linked to
the physiology of the animal and are closely related to brain function,
immune system response, digestion and absorption of nutrients, control of

´the body s inflammatory pathways, and neutralization of food toxins [9-16].
Consequently, changes in the intestinal microbiota may have potential effects
on the animal’s fitness [16, 17].

Previous studies on different animal species indicate that captive breeding
programs involve changes in the animal’s diet that may affect the internal
microbial ecology of the gut [18-22]. Comparative studies that focus on
a particular species showed a decrease in the gut microbial diversity of
captive animals compared to animals in the wild [23, 24]. However, a
study in six orders of mammalian taxa concluded that the effect of captivity
is host-specific [22], revealing no microbial diversity differences between
animals in wild and captive conditions for bovids, giraffes, anteaters, and
aardvarks; but, reporting reductions in captive canids, primates, and equids.
On the other hand, a study on woodrats (Neotoma sp.) [25] indicated that
the hosts most susceptible to experience a decrease in the diversity of their
gut microbiota are those with a specialized diet [26-28].

Considering the influence that gut microbiota may have on an animal’s fitness,
we investigated the effect that captivity has on the otter’s gut microbiota.
This is a relevant topic because rearing conditions in captivity could affect
the success of reintroduction of the animal into the wild [29, 30]. Currently,
there are no characterizations of the gut microbiota in the neotropical otter,
making necessary a baseline of knowledge to support future evaluations
of the captivity effects in the animal’s gut microbiota and its relation to
physiological performance. Therefore, the objective of this work was to
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contrast the structure and diversity of the gut bacterial communities in wild 
and captive neotropical otters. We found that the gut bacterial community 
of captive animals converged to a more similar structure and diversity. The 
environment in which the animals live and the low variation in the supplied
food [31], may be affecting the gut microbiota of captive otters.

Materials and Methods

The diversity and structure of the gut bacterial microbiota in wild and 
captive otters were evaluated through the genetic markers, namely the 16S 
rDNA region of fecal bacteria. Total DNA was isolated from fecal samples 
deposited on the ground by wild animals that inhabited the La Vieja River 
basin (in central western Colombia) and by captive animals in the Cali Zoo 
(Valle del Cauca, Colombia), an institution that has been working in the 
field of reproduction of captive otters for two decades. Fecal sampling is a 
noninvasive method that serves as a proxy to study the microbial composition
of the large intestine [32].

Sample collection

A total of eight fresh fecal samples from wild animals, characterized by large
quantities of spines and/or scales, fishy odor and greenish secretion with 
liquid consistency [33, 34], were collected in a 10 km boat sailing along the 
La Vieja River basin (Fig. 1). This green liquid evaporates completely within
an hour and a half of being evacuated by the animal [Personal observation]. 
In this study, we only collected samples in which this green liquid was 
still present. Upon finding a  f resh s ample, a  p ortion o f approximately 
15 g was extracted from the center of the fecal mound with a sterile flat 
stick, excluding matter in contact with the environment. Subsequently, the 
sample was identified and stored in airtight bags at 4 °C. At the end of the 
10 km transect, the samples were transported to the laboratory and stored 
at -27 °C until analysis. It is not known how many different wild animals 
the collected samples came from. However, considering the dispersal radius 
of the neotropical otter in the La Vieja River basin and the location of the
sampled fecal matter [35], it is estimated that these samples could come from 
three different animals.

In the Cali Zoo, fecal samples were collected from the animal enclosures 
following the procedure described above. Each fecal sample was left one hour 
after being evacuated under the weather of the enclosure area in order to 
simulate the collection conditions of samples from wild animals. Given the 
captivity conditions, 12 samples were collected from three different otters 
on different days. These otters were living together in the same enclosure.

http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum
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Figure 1. Location of sampling sites on the map of Colombia, South America.

In both, La Vieja River basin and the Cali Zoo, the samples were collected
between 9 and 12 pm because this was the time window in which it was
possible to observe fresh fecal matter. The number of samples per sampling
site, sampling date, and sampling location coordinates are reported in Table 1.
Location of sampling sites are shown on the map of Colombia, South
America (Fig. 1).

Nucleic acid analysis

Total DNA was extracted in triplicate from each fecal sample. The similarities
among the PCR-DGGE banding patterns obtained from these three
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Sampling 
site

Sample 
ID

Sampling point
(Coordinates)

Animal 
source

Sampling 
date

La Vieja 
River basin

VR_FS 1 N 4° 46' 0.466''
W 75° 50' 44.545'' n/a 25-03-16

VR_FS 2 N 4° 46' 14.498''
W 75° 50' 46.672'' n/a 25-03-16

VR_FS 3 N 4° 46' 31.458''
W 75° 50' 53.962'' n/a 25-03-16

VR_FS 4 N 4° 46' 41.977''
W 75° 51' 18.842'' n/a 25-03-16

Feces 
from wild 
animals

VR_FS 5 N 4° 46' 41.912''
W 75° 51' 18.874'' n/a 25-03-16

VR_FS 6 N 4° 46' 31.901''
W 75° 52' 20.535'' n/a 25-03-16

VR_FS 7 N 4° 46' 31.836''
W 75° 52' 20.6'' n/a 26-03-16

VR_FS 8 N 4° 45' 58.007''
W 75° 52' 43.572'' n/a 26-03-16

Cali Zoo

CZ_FS 1

All the samples 
were collected at 
N 3° 26' 54.041''

W 76° 33' 24.932''

O_1 02-06-16
CZ_FS 2 O_1 07-06-16
CZ_FS 3 O_1 09-06-16
CZ_FS 4 O_1 13-06-16

Feces from 
captive 
animals

CZ_FS 5 O_1 15-06-16
CZ_FS 6 O_2 01-06-16
CZ_FS 7 O_2 03-06-16
CZ_FS 8 O_2 05-06-16
CZ_FS 9 O_2 07-06-16
CZ_FS 10 O_3 05-06-16
CZ_FS 11 O_3 08-06-16
CZ_FS 12 O_3 15-06-16

Table 1. Fecal samples collected in the La Vieja River basin (VR) and the Cali 
Zoo (CZ). (FS) = Fecal sample, O= Otter, (n/a) = Data not available.

subsamples were used to assess the spatial heterogeneity of the bacterial
community composition in a particular fecal sample. Afterwards, the genetic
profiles obtained from the different samples were compared.
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DNA extraction and molecular analysis

The total DNA in 0.5 g of each fecal subsample was isolated as described
in Santamaría et al. [36]. Later, a first PCR was performed with the 16S
rDNA universal primers 8F 5’-AGA GTT TGA TCC TGG CTC AG-3’-
and 1541R 5’-AAG GAG GTG ATC CAG CCG CA-3’ to assess the quality
of the isolated total DNA. Next, the oligonucleotides 968F-GC 5’-CGC
CCG CCG CGC GCG GCG GGC GGG GCG GGG GCA CGG GGGG
AAC GCG AAG AAC CTT AC-3 ’and 1401R 5’- CGG TGT GTA CAA
GAC CCG GGA ACG-3’ [36] were used to amplify a 433 bp long region
of the 16S rDNA using the isolated total DNA as a template. These 433 bp
amplification products were the fragments analyzed by Denaturing Gradient
Gel Electrophoresis-DGGE. Two PCRs were carried out, with each isolated
total DNA as technical replicates.

Amplification reactions were carried out as in Santamaría et al. [36]. PCR
thermocycling program for the 8F and 1541R primers were the same as
in Lofler et al. [37]. PCR cycling temperatures for the 433 bp fragment
amplification with the 968F and 1401R primers were as follows: 94 °C for
3 min (1 cycle); 94 °C for 50 s, 48 °C for 20 s, and 72 °C for 45 s (30 cycles);
followed by a final step at 72 °C for 5 min. The DGGE analysis of the 433 pb
PCR products was performed according to Santamaría et al. [38], using a
different denaturing gradient (37 % to 65 %) and an electrophoresis run time
of 17 h at 35 V and 60 °C.

Diversity and structure of bacterial communities

It is impossible to determine whether more than one fecal sample came from
the same animal in the wild; therefore, each of the fecal samples collected
in this study, including samples of animals in captivity, was treated as an
independent sample.

To compare the gut bacterial community between wild and captive otters,
a UPGMA dendogram was created from a similarity matrix, which was
calculated with the jaccard Index by comparing the 16S rDNA DGGE
samples profiles. Comparisons among triplicates from each fecal sample
were carried out in the same way. Larger differences between wild and
captive otters than differences within each group, were evaluated with an
analysis of similarity test (ANOSIM) using the animals’ condition (captive
and wild) as a grouping factor.

The abundance of each the fragments produced by PCR-DGGE does not
mirror the abundance of different microbial species in a sample, mainly
because the same set of primers amplify different DNA templates with
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variable efficiencies. Thence, in this study, richness (S, equation 1) was used
to estimate the gut bacterial community diversity in the collected samples to
avoid a diversity evaluation based on a biased PCR abundance estimation
[39, 40].

S =Σband s p r e s ent i nasam p l e (1)

The S value was calculated from a binary table that shows the presence or
absence of a particular band observed in the DGGE banding profile. This
table was built using the Gel Compare II 5.0, Applied Maths NV software
(Sint-Martens-Latem, Belgium).

The difference between the S values of gut bacterial communities from wild
and captive animals was evaluated with a one-way ANOVA test. This analysis
used the average richness value calculated from the three subsamples of each
fecal sample. Data normality (W = 0.94, p > 0.05) and homogeneity of
variances were evaluated with the Shapiro-Wilk and Levene tests.

As stated before, each sample was treated as an independent sample. However,
when assuming that all samples are independent there is a likelihood that
the results are over inflated because the models do not control for repeated
sampling. Hence, the scenario that the fecal samples from wild otters come
from three different animals was also considered, and a second ANOVA
analysis was performed to compare the average bacterial diversity in the
samples from each of the three animals in captivity with that of samples from
the three possible wild individuals. So, the eight fecal samples collected from
wild otters were randomly organized and averaged to reflect three different
animals. Four different set combinations of the fecal samples were evaluated.

The XLSTAT software (MS Excel, Addinsoft, NY, USA) was used for the
clustering and ANOVA analyses. The R package Vegan was employed for
the ANOSIM. For all statistical tests, p < 0.05 was the applied significance
level.

Results and Discussion

The 433 pb 16S rDNA amplification products were obtained from all
evaluated total DNA isolates except from subsamples 2 and 3 from fecal
sample (FS) 8 collected at the La Vieja River (Table 1).

Bacterial composition similarities among fecal subsamples

The DGGE profiles obtained from the three subsamples of each captive FSs
were identical in 83 % of the cases (Fig. 2). The exceptions were subsample
1 from FS 2, with a similarity of 86 % to the other two subsamples, and
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Figure 2. A) DGGE banding profiles of the fecal samples coming from captive 
otters in the Cali Zoo (CZ) and B) their respective clustering ordination data.
(O) = Otter, (FS) = Fecal sample, (1, 2, 3) = Indicate the three bands in the
DGGE image associated with each fecal sample. Each band shows the genetic
profile of each subsample.

subsample 2 from FS 8, with a similarity of 88 %. In both cases, the other
two subsamples were 100 % similar to each other. This result suggests that
the bacterial species composition is relatively homogeneous throughout the
FSs of captive otters.

http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum
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Sample spatial heterogeneity in relation to species composition was evident
in FSs collected from wild animals. In this case, the DGGE profiles among
subsamples of the same FS were more dissimilar. Data obtained from wild
animals revealed that 75 % of the FSs had similarities between 85 % and
94 % among their subsamples. Only 25 % of the FSs coming from wild
otters showed a 100 % DGGE profile similarity among their subsamples
(Fig. 3). This detected heterogeneity among subsamples may indicate spatial
variability of the bacterial community in the fecal sample and is in agreement
with information reported for healthy humans where the microbiota was
not equally distributed within feces [41].

However, this spatial heterogeneity may also be an artifact of the sample
collection. Considering that each FS from La Vieja River was exposed to
the environment for a unique amount of time (between minutes and one
hour and half) before being collected and stored at 4 ºC, bacterial community

Figure 3. A) DGGE banding profiles of the fecal samples from wild otters
in the La Vieja River basin (VR) and B) their respective clustering ordination
data. (FS) = Fecal sample, (1, 2, 3) = Indicate the three bands in the DGGE
image associated with each fecal sample. Each band shows the genetic profile
of each subsample.

http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum
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composition is likely to differ among these FSs. This could also explain why
this variability was not observed in the subsamples of the captive animals
where all fecal samples were collected after one hour and under the same
environmental conditions after being evacuated within the animal enclosures.

Bacterial composition heterogeneity among fecal samples

The cluster analysis also shows ample variation, between 26 % and 64 %,
in the bacterial community similarity values among the FSs from wild
animals (Fig. 3B). Assuming that the FSs come from different wild otters,
the differences may be driven by factors such as age, body mass index, and
health status of the animals from which the samples came. Furthermore,
environmental differences such as geographic location and diet play also a
role, as has been previously established for humans and other animal species
[42-49]. These samples could also come from three different animals, that
may belong to different social groups. The possibility that the observed
heterogeneity among samples may be the result of shifts in the bacterial
community of the fecal sample after being evacuated by the animal cannot
be ruled out (see preceding section)

Bacterial communities among FSs from captive otters exhibited more
similarities that those from wild animals. The range of bacterial community
similarities spanned 43 % and 87 % (Fig. 2B), which could be an effect of
these three animals living within the same enclosure as one social group, and
the fact that all samples were collected exactly one hour after being evacuated
by the animal.

Data from captive animals also revealed bacterial composition variation
higher than the expected among samples from the same animal, as evidenced
by FSs 1, 2, 3, 4, and 5 from the otter identified as O_1 in the Cali Zoo,
with bacterial community similarities ranging from 41 % to 86 %. The same
trend was observed for samples collected from the animals identified as O_2
and O_3 (Fig. 2B). It is unlikely that differences between fecal samples
coming from the same animal are the result of spatial heterogeneity in the
fecal sample because, as previously shown, bacterial species composition
is relatively homogenous in most of the analyzed FSs from captive otters.
These differences among FSs from the same animal are the likely result of a
normal temporal variation in the bacterial composition of the large intestine.

Although it has been established that the microbiome of a mammal remains
relatively stable over time [50, 51], there are normal levels of temporal
variability in the microbial composition [52]. It has been reported that the
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gut microbiome studied through fecal samples showed variation between
medium (2-4) and long-term sampling periods (>1 month) [53]. However,
a more recent study on spatiotemporal dynamics using replicate sampling,
showed daily temporal changes in the collected FSs [54]. These fast changes
may reflect a microbial succession characterized by a sequential dominance of
microorganisms in which the consumption of readily fermentable substrates
during passage through the large intestine drives microbial metabolism to
shift from a saccharolytic fermentation metabolism to a proteolytic one [55].
This process could also explain the variability observed among samples from
wild otters in cases where some feces came from the same animal.

Bacterial community structure in samples from wild vs captive otters

When all collected samples were analyzed together, two gut bacteria groups
were distinguished with the UPGMA approach (Fig. 4). These two groups
shared 20 % of their bacterial composition and corresponded to gut bacteria
from wild and captive otters. The ANOSIM analysis confirmed the grouping

Figure 4. Clustering ordination data of the 16S rDNA DGGE banding
profiles from fecal subsamples collected from captive otters in the Cali Zoo
(CZ) and wild animals in the La Vieja River basin (VR). (O) = Otter, (FS) =
Fecal sample, (1, 2, 3) = Indicate the subsamples of each fecal sample.

http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum
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of the samples coming from animals under the same living conditions
(R= 0.6752, p < 0.001), suggesting important differences between bacterial
communities in the fecal matter of captive and wild animals.

Fig. 4 also shows the formation of subgroups within both the captive and
the wild groups. The significance of these subgroups was evaluated by a
different ANOSIM test for each wild and captive group using “animal” and
“fecal sample” as grouping factors for captive otters and “fecal sample” as
the grouping factor in samples from wild animals. The results confirmed
differences only among subgroups in the wild (R= 0.1835, p < 0.05). This
finding confirms the observations pointing at higher bacterial composition
similarity among fecal samples from captive otters compared to that of
samples from wild otters. Taking into account a possible sampling effect,
subgroups formed by samples from wild animals may indeed correspond
to different animals, who may or may not belong to the same social group,
and who are living in a more diverse environment than the one captive
otters experience. The homogeneity among the samples of captive animals
probably reflects the captivity condition. In the zoo, animals live in small
areas interacting with a less dynamic environment, contrary to what wild
animals experience.

Effect of captivity on gut bacterial diversity

Gut bacterial diversity in captive otters was reduced compared to that in
wild animals. Richness data (S) complied with the assumptions of normality
(W = 0.94, p > 0.05) and homogeneity of variances (F = 3.8, p > 0.5);
therefore, these data were analyzed via one-way ANOVA. The genetic
polymorphism detected by PCR-DGGE in the gut bacterial community of
wild animals showed a higher richness index (15± 3.5) (F= 33.6, p< 0.0001)
than the one estimated for those in captivity (8 ± 1.7) (Fig. 5). A second
ANOVA analysis was performed to compare the fecal samples of the three
captive animals with different set combinations of fecal samples representing
three wild animals (data not shown). This analysis also showed significant
differences between wild and captured animals (F = 62.48, P <0.0001).
This result coincides with reports of a lower diversity in the gut microbial
community of animals in captivity [56-58], especially if the animals have a
diet with limited food diversity [54, 59]. The diet of the neotropical otter
living in the La Vieja River basin is based mainly on fish (76.7 %), mostly
of the Loricariidae family, followed by insects (12.67 %) and reptiles (0.7 %)
[60]. In contrast, in the zoo, the diet is based mainly on a single species,
Oreochromis niloticus from the Mojarra family, which is supplied alive or
frozen. Occasionally, animals are also offered coconut.

http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum
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Figure 5. Diversity of bacterial gut communities as evaluated by richness
(S). The diversity value presented in the graph is the average calculated from
the eight fecal samples collected from wild otters in the La Vieja River basin
and the twelve fecal samples collected from captive otters in the Cali Zoo. (*)
Indicates a significant difference in richness between the communities of the
wild and captive animals (p < 0.0001).

Despite the fact that in the present study the greater diversity observed in
wild otters coincides with that reported in the literature for other species,
these results from the animals at La Vieja River and the Cali Zoo should be
viewed with caution because the fecal samples were not collected immediately
after being evacuated by the animal. The effect thereof on the diversity and
structure of the bacterial community cannot be determined. Although the
fecal samples spent a relatively short time in the open before being sampled,
this may cause a shift in the composition of the microbial populations
and also the decomposition of the DNA through enzymatic degradation,
oxidation, and hydrolysis. [61, 62]. It is also necessary to keep in mind that
the DGGE technique provides only a rough estimate of the richness and
structure of microbial populations.

Given the effect of captivity reflected on our study’s results, it is worth
continuing research on the gut microbiota of the neotropical otter to better
understand the implications captivity diet may have on individual fitness and
to foresee the success of these animals within wild reintroduction programs.
Subsequent studies must take in consideration the analysis of fresh samples
(i.e. collected immediately after being evacuated) by using metagenomic
sequencing that allow gut bacteria taxa identification.

http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum
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Future studies with metagenomics, identification, and monitoring of 
wild animals and more sampled animals from different social groups of 
captive animals, should provide detailed information about gut bacteria 
community composition, their temporal variation and their differences 
among individuals. New research must also consider the evaluation of the 
possible role of the gut microbial diversity and community structure to set 
clear if these have an important function in the otter’s physiology.

Conclusion

The similarity values obtained when comparing both samples and subsamples 
and the richness analysis showed that the species composition of bacterial 
communities in captive animals tended to be more homogeneous and less 
diverse than those in wild animals. Furthermore, bacterial community 
structure differed between fecal samples from animals living in the wind and 
in captivity.
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Comparación de bacterias intestinales entre nutrias 
neotropicales silvestres y en cautiverio

Resumen: La nutria neotropical (Lontra longicaudis) es 
considerada una especie emblemática para la conservación de 
los ecosistemas en los que reside y actualmente se encuentra en 
estado vulnerable. Como una estrategia de conservación para esta 
especie se han propuesto programas de rehabilitación, crianza y 
reintroducción de individuos cautivos. Sin embargo, es probable 
que el ambiente y la dieta en cautiverio resulten en comunidades 
microbianas intestinales que difieren de las de animales silvestres. 
Las comunidades microbianas tienen un papel importante en 
el desempeño fisiológico de un animal. Para determinar las 
diferencias entre las comunidades microbianas intestinales de 
nutrias silvestres y en cautiverio, se determinó la estructura y 
diversidad de estas comunidades microbianas intestinales usando 
rDNA 16S como marcadores moleculares. El DNA total fue 
aislado de muestras fecales de animales salvajes de la cuenca del 
río La Vieja y de animales en cautiverio del zoológico de Cali. 
Tal como se esperaba, las comunidades bacterianas intestinales 
de los animales cautivos convergieron en una estructura similar 
y su diversidad bacteriana fue significativamente menor que la 
encontrada en animales salvajes.

Palabras clave: comunidades bacterianas intestinales; Lontra 
longicaudis; perfil molecular PCR-DGGE; nutrias silvestres y en 
cautiverio.
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Comparação de bactérias intestinais de lontras 
neotropicais silvestres e em cativeiro

Resumo: As lontras neotropicais (Lontra longicaudis) é considerada 
uma espécie emblemática para a conservação dos ecossistemas 
nos quais reside e atualmente encontra-se em estado vulnerável. 
Como uma estratégia de conservação para esta espécie se proponen 
programas de reabilitação, criação e reintrodução de indivíduos 
cautivos. Entretanto, é provável que o ambiente e a dieta em 
cativeiro resultem em comunidades microbianas intestinais que se 
diferenciam das comunidades de animais silvestres. As comunidades 
microbianas têm um papel importante no desempenho fisiológico 
de um animal. Para determinar as diferenças entre as comunidades 
microbianas intestinais de lontras silvestres e em cativeiro, se 
determinou a estrutura e diversidade de essas comunidades 
microbianas intestinais usando rDNA 165 como marcadores 
moleculares. O DNA total foi isolado de amostras fecais de animais 
selvagens da bacia do rio La Vieja e de animais em cativeiro do 
zoológico de Cali. Como esperado, as comunidades bacterianas 
intestinais dos animais em cativeiro convergiram em uma estrutura 
similar e sua diversidade bacteriana foi significativamente menor 
que a encontrada em animais selvagens.

Palavras-chave: Comunidades bacterianas intestinais; Lontra 
longicaudis; perfil molecular PCR-DGGE; lontras silvestres e em 
cativeiro.
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