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Extension of Dasgupta’s Technique for Higher Degree
Approximation
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Abstract

In the present paper, rational wedge functions for degree two approximation have been computed over
a pentagonal discretization of the domain, by using an analytic approach which is an extension of
Dasgupta’s approach for linear approximation. This technique allows to avoid the computation of the
exterior intersection points of the elements, which was a key component of the technique initiated by
Wachspress. The necessary condition for the existence of the denominator function was established by
Wachspress whereas our assertion, induced by the technique of Dasgupta, assures the sufficiency of
the existence. Considering the adjoint (denominator) functions for linear approximation obtained by
Dasgupta, invariance of the adjoint for degree two approximation is established. In other words, the
method proposed by Dasgupta for the construction of Wachspress coordinates for linear approximation
is extended to obtain the coordinates for quadratic approximation. The assertions have been supported
by considering some illustrative examples.
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1. Introduction

Augustus Ferdinand Möbius [1] is attributed for initializing the concept of Barycentric coordinates.
Initially, it was restricted to a triangle in two dimensional space. Generalization of these
coordinates was first introduced by Wachspress [2] where the concept was extended from triangles
to convex polygons, polycons [3] and further to 3-D elements [4–6]. Meanwhile, there have
been efforts to present simpler and general form of barycentric coordinates [7–12] which may be
computed and applied easily.

It has become a trend as well as a need to machine the calculation of geometric shapes and bodies
using computers. Expansion of computer capacity has increased computational sophistication
leading to methods with more precision and less time consumption and having newer fields of
applications such as generalized barycentric coordinates on irregular polygons [13], interpolants
within convex polygons [14], integration within polygonal finite elements [15], interpolations for
temperature distributions [16], in the field of computer graphics, computational mechanics [17], etc.
To obtain the desired shape using computers, the usual process is to interpolate the provided data
using a certain class of functions. The Finite Element Method (FEM) algorithm in interpolation
adds more perfection, as it allows to design by fragmenting the given function or data which is to
be approximated with respect to the elements of the domain and then considering each fragment
independently.
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140 Dasgupta’s Technique

Wachspress’ coordinates (cf. [5]) in addition, provides inter-element continuity, thus emerges
as boon to shape formation. In this method (see [6]), the domain is discretized using convex
polygons called elements, corresponding to each element, a basis of rational wedge functions is
defined for linear approximation.

In the Wachspress’ method, the computation of rational wedge functions relied on the geometry
of the element under consideration, especially the denominator of the wedge functions (adjoint)
was the curve passing through the exterior intersection points (EIPs) of the polygonal element.
Thus, for each element of the domain, EIPs are to be calculated to obtain the adjoint, increasing
the number of steps of the computation.

Dasgupta [14] simplified the task by proposing an analytic method for the calculation of the
adjoint to the wedge functions. The rational wedge functions introduced by Wachspress [6] for
the discretization with convex polygons of order m in a degree k approximation are of the form

PmCk�3.x; y/

Pm�3.x; y/
(1)

where P n.x; y/ denotes a bivariate polynomial of degree n. It has been identified in [14] that the
adjoint is nothing but the sum of numerators of the wedge functions, having coefficients of terms
of higher degree (higher than m � 3, cf. Equation 1) equated to zero.

Dasgupta [14], considered the rational wedge functions for degree one approximation over a
pentagonal discretization of the domain. In this paper, a formulation to compute wedge functions
for degree two approximation has been proposed. It has been concluded that the adjoint function
so computed is invariant, i.e., adjoints of quadratic wedge functions are the same as those of
linear wedge functions. Also, they have been compared with the Wachspress’ wedge functions
and observed to be the same.

It may be noted that wedge functions for degree two approximation provide better approximant
than the wedge functions for degree one approximation as the number of nodal points is increased
and so is the precision.

In this paper, the work of Dasgupta [14] has been extended as follows:

� Dasgupta has imposed a constraint on the element that no side of the element should pass
through the origin, whereas this paper covers the general case.

� The existence and uniqueness problem of the adjoint function has been studied in this paper
which yields certain geometric conditions on the element for the existence of a unique
adjoint function.

An algorithm based on aMathematica program has been included in this paper, which identifies the
geometric constraints of a particular element and also computes the approximation to the provided
data. It is quite significant to note that the denominator involved in the wedge construction
due to Wachspress was the curve passing through the exterior intersection points (EIP) of the
convex polygon of the mesh, whereas Dasgupta’s approach computes the denominator (adjoint)
analytically without using the geometry of the element and later assures that the adjoint essentially
passes through the EIP, thus establishing sufficiency of the condition for the existence of the
denominator function, making it a well-defined one.
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2. Prerequisites

In this section, some preliminaries which are needed for construction and analysis are recalled.

Consider a closed and convex polygon Pm D .1; 2; : : : ; m/, m � 4, with m vertices as nodes in
R2. Let i � 1 and i be the consecutive nodes of Pm and i 2 Zm, where Zm is the set of integers
modulo m.

Definition 2.1. Discretization [18] of the domain � � R2 using convex polygons is the process
of subdividing � into non overlapping polygons Pm in such a way that:

� The union of all polygons in the discretization is equal to the domain �.

� The intersection of interiors of any two elements is an empty set.

� The boundaries of any two elements intersect only at a common edge or at a common node.

� The domain is simply connected.

Definition 2.2 ([6], see also [5]). Sides of the polygon containing the node i , are called adjacent
to i and remaining sides are called opposite to the node i .

Definition 2.3 ([6], see also [5]). Let si be the straight line passing through the nodes i � 1 and i
where Cartesian coordinates of i � 1 and i are .xi�1; yi�1/ and .xi ; yi / respectively. Then, the
linear form of the line si is denoted by

li Š li .x; y/ D .i � 1; i/ Š .x � xi /.yi�1 � yi / � .y � yi /.xi�1 � xi /: (2)

Definition 2.4 ([6], see also [5]). The wedge function corresponding to the i th node of Pm is a
regular function Ni W Pm ! R of the form

Ni .x; y/ D Ki
PmCk�3.x; y/

Pm�3.x; y/
; .i 2 Zm/ (3)

where P n.x; y/ is a bivariate polynomial of degree n.

We now enumerate the properties of wedge functions described in [6].

Properties of wedge functions for degree one approximation [6] In order to obtain a linear
approximation corresponding to an element, the class of wedge functions described in [6] satisfies
the following properties:

1. There is a node at each vertex of the polygon. For each node there is an associated wedge
within each polygon containing the node.

2. Wedge Ni .x; y/ associated with node i is normalized to unity at i (i 2 Zm).

3. Wedge Ni .x; y/ is linear on sides adjacent to i (i 2 Zm).

4. Wedge Ni .x; y/ vanishes on sides opposite to node i .
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142 Dasgupta’s Technique

5. The wedges associated with Pm form a basis for degree one approximation over it. For the
polygon Pm, there must be at least m nodes. For these to suffice, we must have (cf. G.15
of [19]):

mX
iD1

Ni .x; y/ D 1; (4)

mX
iD1

xiNi .x; y/ D x; (5)

mX
iD1

yiNi .x; y/ D y: (6)

6. Each wedge function and all its derivatives are continuous within the polygon for which the
wedge is a basis function.

Definition 2.5 ([6]). If the domain under consideration is discretized using pentagons then each
pentagon of the domain is termed as a pentagonal element (or simply an element).

Definition 2.6 ([6]). The node on a side of the polygon, such that it does not coincide with the
vertices is said to be a side node.

3. Construction of wedge functions

Referring to Equation 3, the wedge functions for degree one and two approximation over a
pentagonal element are computed in this section.

3.1. Degree one approximation

3.1.1. Construction

Applying the technique of Dasgupta (cf. [14]) and referring the generalized form of wedge
functions (cf. Equation 3), we now determine the adjoint to the linear approximation over P5.

The wedge functions N 1i ’s corresponding to the nodes of P5 (cf. Figure 1) have been defined as
follows:

N 11 D K1
l3l4l5

D.x; y/
; N 12 D K2

l1l4l5

D.x; y/
; N 13 D K3

l1l2l5

D.x; y/
;

N 14 D K4
l3l2l1

D.x; y/
; N 15 D K5

l3l4l2

D.x; y/
:

(7)

Where Ki ’s are appropriate normalizing constants.

In view of [14] and value of fN 1i g
5
iD1 the denominator D.x; y/ can be obtained by following

steps 1, 2, and 3:

Step 1 Normalize K1 to 1 (cf. Equation 7).

Step 2 Sum the numerators of all the N 1i ’s.
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Figure 1. Pentagon

Step 3 In the above sum, equate the coefficients of terms of higher degree (higher than two) to
zero and obtain a system of linear equations

AK D M; (8)

where A is a 4 � 4 coefficient matrix, K D
�
K2 K3 K4 K5

�T andM is a 4 � 1 matrix of
some real numbers. On solving this system of linear equations the denominator has been obtained
(cf. [14]).

3.1.2. Existence

Our aim in this section is to obtain a solution of the system of linear equations (Equation 8). A
unique solution to the system will exist if the determinant of A is non-zero. Consider � to be the
pentagonal discretization of the domain R2 (cf. Figure 2).

The following theorem establishes the conditions under which a unique solution to the system
(Equation 8) exists.

Figure 2. Pentagonal discretization
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144 Dasgupta’s Technique

Theorem 3.1. Let � � R2 be the pentagonal discretization of the domain and P 15 is an arbitrary
element of�. Then the adjoint of the wedge functions for degree one approximation corresponding
to the element P 15 exists and is unique if the following conditions hold:

(A) No two sides of P 15 are parallel.

(B) No three vertices of P 15 are co-linear.

Proof. Consider the pentagon P 15 D .a; b; c; d; e/ having Cartesian coordinates of the vertices
as .a1; a2/, .b1; b2/, .c1; c2/, .d1; d2/, and .e1; e2/ respectively. Without any loss of generality,
the pentagon P 15 can be transformed into the pentagon P5 D .1; 2; 3; 4; 5/, having Cartesian
coordinates .0; 0/, .x2; 0/, .x3; y3/, .x4; y4/, and .x5; y5/ (cf. Figure 3).

Using the notation of linear forms described in Section 2, we now consider the following:

l1 D .5; 1/ Š x5y � xy5;

l2 D .1; 2/ Š y;

l3 D .2; 3/ Š �.�x2 C x3/y C xy3 � x2y3

l4 D .3; 4/ Š �.x3 C x4/y C x4y3 � x.y3 � y4/ � x3y4;

l5 D .4; 5/ Š �.�x4 C x5/y C x5y4 � x.y4 � y5/ � x4y5:

(9)

In view of wedge properties, the numerator of the wedge function corresponding to the i th node
Numi , for (say) i D 1; : : : ; 5, will be:

Num1 D K1l3l4l5; Num2 D K2l4l1l5; Num3 D K3l1l2l5;

Num4 D K4l1l2l3; Num5 D K5l2l3l4:
(10)

Using relation Equation 3, and applying the technique prescribed in [14] we equate the coefficients
of terms xiyj (i C j D 3, i; j D 0; 1; 2; 3) to zero. Thus, normalizing the constant K1 to
1, a system having four equations in four unknowns viz fKig

5
iD2, of the form AK D M (cf.

Equation 8) is obtained. It may be verified easily that a unique solution to this system will exist
only if the following conditions hold:

� x3 ¤ x2,

Figure 3. Transformation of the element
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Powar et al. 145

� y3 ¤ y4,

� x4 ¤
�x2y4 C x3y4 C x2y5 � x3y5

y3
,

� x3 ¤ x4.

The above conditions in turn imply assertions (A) and (B).

3.2. Degree two approximation

In order to define the wedge functions for degree two approximation the following construction
will be required:

3.2.1. Construction

Define side nodes i C 5 (i D 1; 2; : : : ; 5) on the line joining nodes .i; i C 1/, i 2 Z5. The linear
form of the straight line joining nodes i and i C 1 (by convention node11D node6) is denoted by
liC1, i D 6; 7; 8; 9, and 10 (cf. Figure 4(b) ) which satisfies the equation liC1 D 0 on this line.

Inheriting the process of computation of wedge functions for linear approximation (see [19]), the
following wedge properties for degree two approximation over Pm have been considered.

Properties of wedge functions for degree two approximation. In order to obtain a quadratic
approximation corresponding to an element Pm, the class of wedge functions satisfy the following
properties:

1. There is a node at each vertex of the polygon and the side nodes on the sides of the polygon.
For each node (vertex node and side node) there is an associated wedge within each polygon
containing the node.

2. Wedge Ni .x; y/ associated with node i is normalized to unity at node i .

3. Wedge Ni .x; y/ is quadratic on sides adjacent to i .

4. Wedge Ni .x; y/ vanishes on sides opposite to node i and at all nodes j for which j ¤ i .

(a) (b)

Figure 4. (a) Side Nodes. (b) Linear forms of straight lines through side nodes
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146 Dasgupta’s Technique

5. The wedges associated with Pm form a basis for approximation of degree two over it. There
must be at leastm nodes andm side nodes in the polygon Pm. For these to suffice, we must
have:

2mX
iD1

Ni .x; y/ D 1;
2mX
iD1

xiNi .x; y/ D x;

2mX
iD1

yiNi .x; y/ D y;

2mX
iD1

x2iNi .x; y/ D x2;

2mX
iD1

y2iNi .x; y/ D y2;

2mX
iD1

xiyiNi .x; y/ D xy;

(11)

where .xi ; yi / is a Cartesian coordinate of the vertex i of Pm.

6. Each wedge function and all its derivatives are continuous within the polygon for which the
wedge is a basis function.

In view of the aforesaid properties the wedge function corresponding to the i th node (i 2 Z) of
P5 will be,

N 2i .x; y/ D

†
KiLi l5Ci

Q.x; y/
; for i � 5;

KiLi�5li�5

Q.x; y/
; for 5 < i � 10;

(12)

where

Li D

5Y
j D1;j ¤i;j ¤iC1

lj (by convention l6 D l1/: (13)

3.2.2. Computation of adjoint

Following the technique of Dasgupta [14], the unknowns fKig
10
iD2 are to be computed, to determine

the adjoint functionQ.x; y/ for degree two approximation.

In view of Equation 12 and Equation 3, it is evident that to achieve degree two approximation,
Q.x; y/ must be a bivariate polynomial of degree two.

Hence in view of the above assertion, the technique of Dasgupta (cf. [14]) has been applied in the
following steps:

Step 1 By property 5,
10X

iD1

N 2i .x; y/ D 1; (14)

where N 2i .x; y/ is defined in Equation 12.

Step 2 With reference to Equation 14, the sum of numerators of the rational forms N 2i .x; y/ is
held on the left and is equated withQ.x; y/.
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Step 3 In relation Equation 3, it is quite clear that the coefficients of terms of degree higher
than 2 must be equated to zero and, without loss of generality, the constant K1.¤ 0/ may be
normalized to 1.

Thus, nine linear equations (with nine unknowns fKig
10
iD2) are left, which can be expressed in

matrix form as
AK D M; (15)

where A is a 9 � 9 square matrix, K D
�
K2 K3 K4 K5 K6 K7 K8 K9 K10

�T and
M is a 9 � 1 matrix of some real numbers.

The aim is to compute the adjointQ.x; y/, for which using Equation 15 the values of Ki ’s are
needed to be computed.

On solving these equations, if the solution exists, the values of Ki ’s are obtained and thus the
exact value ofQ.x; y/.

4. Invariance of Adjoint

In this section, the adjoints obtained by applying the technique of Dasgupta (cf. [14]) in Section 3,
are compared with the denominator function introduced by Wachspress (see [6]).

The concept of computing adjoints by using the ‘exterior intersection point’ (EIP) was initiated
by Wachspress [5], where an EIP is the point of intersection of the extended opposite sides of the
pentagon which do not intersect within it (cf. Figure 5). In Figure 5, E1, E2, E3, E4, and E5 are
the EIPs.

Figure 5. Pentagon representing exterior intersection points
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148 Dasgupta’s Technique

According to Wachspress [5] the denominator function for the wedge construction of degree one
over a pentagon, is a unique curve of degree two, passing through the five EIPs.

It was observed that the adjoint computed by the method of Dasgupta for Linear approximation and
by Wachspress’ EIP method are identical. In fact, even on increasing the degree of approximation
the adjoint remains unchanged.

Theorem 4.1. For a pentagonal discretization � of the domain, the adjoint function computed
by Wachspress’ method is the same as that obtained by Dasgupta for degree one approximation.
Moreover, the adjoint remains unchanged for degree two approximation, computed by inheriting
the technique of Dasgupta.

Proof. According to Wachspress, the adjoint for linear approximation over a pentagon is a unique
curve represented by a degree two polynomial which passes through the EIPs.

LetD�.x; y/ be the denominator function of the wedge obtained by Wachspress method,D.x; y/
be the adjoint function obtained by Dasgupta’s technique for degree one approximation, and
Q.x; y/ the adjoint function obtained for degree two approximation by the technique of Dasgupta.

It can be seen easily that the EIP Ei , is the intersection of the lines li D 0 and liC2 D 0,
i D 1; : : : ; 5 (here l6 D l1 and l7 D l2). Consider,

D.x; y/ D

5X
iD1

Num1i .x; y/ D

5X
iD1

Ki liC2liC3liC4 (cf. Section 3) (16)

and,

Q.x; y/ D

10X
iD1

Num2i .x; y/ D

5X
iD1

KiLi lnCi C

10X
iD6

KiLi�5li�5 (cf. Section 4) (17)

and either li or liC2 is present in each component of the sum in the right side of Equation 16 and
Equation 17.

Hence,
D.x; y/jEi

D Q.x; y/jEi
D 0 .i D 1; : : : ; 5/: (18)

It implies that
D.x; y/ Š Q.x; y/ Š D�.x; y/: (19)

5. Numerical Examples

In order to support the assertions, made in this paper an illustrative example is discussed here.
The example is organized as follows:

1. Linear approximation over the given pentagon is computed for the function sin.xy/.

2. Considering the same function sin.xy/, degree two approximation has been computed on
the pentagon as described in item 1.

Example 5.1. Consider the pentagon P5 D .1; 2; 3; 4; 5/ with Cartesian coordinates of the
vertices as (cf. Figure 6) 1 D .0; 0/, 2 D .1; 0/, 3 D

� 7
5 ;
3
5
�
, 4 D

�3
5 ;
7
5
�
and 5 D .0; 1/.
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Figure 6. Pentagon with EIPs and curve

Degree one approximation In reference to Equation 8, it is noticed that jAj ¤ 0, hence the
adjointD.x; y/ exists uniquely, and

D.x; y/ D
1
125

�
24x2 � 32xy C 24y2 � 12x � 12y � 72

�
: (20)

For a non linear function, say f .x; y/ D sin.xy/, the approximant is

�.x; y/ D
5xy.�6C x C y/ sin.21=25/

6x2 � 8xy C 6y2 � 3x � 3y � 18
: (21)

The function f .x; y/ over the element P5 and its approximation is displayed in Figure 7.

(a)

(b)

Figure 7. Comparison of the original curve and its linear approximation. (a) Function sin.xy/. (b) Degree one
approximation of sin.xy/
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150 Dasgupta’s Technique

Figure 8. Pentagon with intermediate points, EIPs and curve

Degree two approximation In order to define wedge functions for degree two approximations,
the intermediate points with the following Cartesian coordinates on sides of the pentagon P5 are
introduced: 6 D

� 1
2 ; 0

�
, 7 D

� 12
10 ;

3
10

�
, 8 D .1; 1/, 9 D

� 3
10 ;

12
10

�
and 10 D

�
0; 12

�
(cf. Figure 8).

In view of Equation 15, the adjoint exists uniquely, and is given by

Q.x; y/ D
1
125

.6x2 � 8xy C 6y2 � 3x � 3y � 9/: (22)

For the same function f .x; y/ D sin.xy/ the approximant, say  .xy/, is obtained as

 .x; y/ D
5xy

6x2 � 8xy C 6y2 � 3x � 3y � 18

�
�4.�6C x C y/.�2C x C y/ sin

�
9
25

�
� .�27C 4x2 C x.18 � 17y/C 2y.9C 2y// sin

�
21
25

�
C .3C 2x � 3y/.�3C 3x � 2y/ sin.1/

�
: (23)

The function f .x; y/ over the element P5 and its approximation is displayed in Figure 9. From
Equation 20 and Equation 22 it can be seen that the adjoint is invariant.

5.1. Comparative Study

In order to compare the linear and the quadratic approximations over the considered element we
have computed the error, which is defined as follows:

kek D

Z
!

jf .x; y/ � A.x; y/j dxdy; where A is the approximate value of f . (24)

� Error for linear approximationD 0:0366299.
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(a)

(b)

Figure 9. Comparison of the original curve its degree two approximation. (a) Function sin.xy/. (b) Degree two
approximation of sin.xy/

� Error for quadratic approximationD 0:012876.

It is clear from the above computation that the quadratic approximation is closer to the function in
comparison to the linear approximation.

Remark 5.2. Comparing Figure 7 and Figure 9, it may be observed that the degree two
approximation is quite close to the given function f .x; y/ D sin.xy/.

6. Algorithm to compute the degree two approximation

An algorithm based on a program written in Mathematica is placed in this part of the paper, which
illustrates the method for computing the approximant.

Algorithm

Step 1: Start
Step 2: Declare variables n, xŒ5�, yŒ5�, uŒ5�, vŒ5�, node[5], nod[5], kŒ10�.
Step 3: Repeat steps until .i � 5/; i D 1.

Let [ls.x; y/Œi �] = call function nodesToLines(node.xŒi �; yŒi �/; x; y).
[lst.x; y/Œi �] = call function nodesToLines(nod.uŒi �; vŒi �/; x; y).

Step 4: Repeat steps until (i � 10); i D 1.
m WDModŒi C 2; 5�;
IfŒm DD 0, numŒi � D kŒŒi ���lsŒŒi C 2���lsŒŒ1���lsŒŒ2���lstŒŒi ��,
If[ModŒmC 2; 5� DD 0, numŒi � = kŒŒi ���lsŒŒm���lsŒŒmC 1���lsŒŒ5���lstŒŒi ��,
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numŒi � D kŒŒi ���lsŒŒm���lsŒŒmC 1���ls[[ModŒmC 2; 5����lstŒŒi ��
]
]
];

Step 5: Let deno.x; y/ D deno.x; y/C call Expand([num.x; y/; Œi ��/; i D 1; i � 10.
Step 6: Let L D fCoefficient[deno, y4; 1], Coefficient[deno, x � y3; 1],

Coefficient[deno, x; 4], Coefficient[deno, x3 � y; 1�, Coefficient[deno, x2 � y2; 1�,
Coefficient[deno, x � y2; 1], Coefficient[deno, x2 � y; 1�,
Coefficient[deno, y3; 1�, Coefficient[deno, x3; 1�g;.

Step 7: Repeat i D 1, i � 9.
Repeat j D 2, i � 10.

RŒj �Œi � D call Coefficient(kŒj � in LŒŒi ��).
Step 8: If call Det.R/ D 0 then

exit.
else
Call function Solve for LŒŒi ��, i D 1 to 9 equated to 0 with respect to k2, k3,
k4, k5, k6, k7, k8, k9, k10.
Repeat until i � 10; i D 1.

Let ŒN.x; y/; Œi �� D [num.x; y/; Œi ��/deno.x; y/.
Input function f .x; y/, to be approximated.
Repeat until i � 5; i D 1.

aŒi � D f .node.xŒi �; yŒi �/�/.
Repeat until i � 10; i D 6.

aŒi � D f .nod.xŒi �; yŒi �/�/.
The approximant Ap.x; y/ D Ap.x; y/C call Expand.aŒi � �NŒi�.x; y//;

i D 1; i � 10.
Plot Ap.x; y/ and f .x; y/ over the considered element.

Step 9: Compute the error in approximation, i.e., integration of jAp.x; y/ � f .x; y/j

over the considered element.
Step 10: Stop.

User defined functions

Intercept : Intercept..x1; y1/; .x2; y2// D .y2 � y1; x1 � x2;�x1 � y2 C y1 � x2/

nTI : nTI.p/ D Intercepts.p;RotateRight.p//
nTL : nTL.p; .x; y// D �Dot.nTI.p/; .x; y; 1//
ls : ls D nTL.node; .x; y//
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6.1. Description of the algorithm

Step 2 In this step we declare the variables, to assign the coordinates of the polygon as well as
the edge nodes.

Step 3 Computes the linear forms, of all the edges.

Step 4 Multiply the linear forms, and get a polynomial of degree four in the numerator
num[.xy/; Œi �], i D 1; 2; : : : ; 10, corresponding to each node.

Step 5 Define denominator as the sum of all the numerators num[.xy/; Œi �].

Step 6 In the denominator polynomial, equate the coefficients of the terms of degree higher than
two to zero.

Step 7 Solve the system of 9 � 9 equations obtained in Step 6, to get ki ’s.

Step 8 Finally get the denominator polynomial and the wedge functions.

Step 9 Compute the error in approximation, i.e., integrate themodulus of difference in approximate
and approximant over the considered element.

7. Conclusion

The method developed by Dasgupta gives a new approach to solving problems related to rational
FEM. Being a technique different from the well established Wachspress’ method, it gives a new
perspective to the rational finite element methods with a scope of rebuilding the theory with the
emergence of some new concepts, applications, and mainly easy computation of the denominator
function. The theorem stated in this paper identifies the constraints in the geometry of the element
required to be taken care of, to assure the existence of the wedge functions.

In addition to the conditions for the existence of the wedge functions, a method to compute wedge
functions for degree two approximation has been proposed, a theorem has been stated claiming
invariance of the adjoint functions in moving from degree one to degree two approximation; also
the adjoint function is compared with the adjoint of Wachspress wedge functions and found to be
the same. Wedge functions for degree two approximation increase the precision in approximation.
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Extensión de la Técnica de Dasgupta para Aproximación de Grado Superior

Resumen: En el presente artículo, se calculan funciones racionales para aproximación de
grado dos sobre una discretización pentagonal del dominio, utilizando un enfoque analítico
que es una extensión del enfoque de Dasgupta para la aproximación lineal. Esta técnica
permite evitar el cálculo de los puntos de intersección exteriores de los elementos, que
es un componente clave de la técnica iniciada por Wachspress. La condición necesaria
para la existencia de la función del denominador fue establecida por Wachspress mientras
que nuestra afirmación, inducida por la técnica de Dasgupta, asegura la suficiencia de la
existencia. Considerando las funciones adjuntas (denominador) para aproximación lineal
obtenidas por Dasgupta, se establece la invariancia del adjunto para la aproximación de
grado dos. En otras palabras, el método propuesto por Dasgupta para la construcción de
coordenadas de Wachspress para aproximación lineal se amplía para obtener las coordenadas
para aproximación cuadrática. Las afirmaciones se sustentan considerando algunos ejemplos
ilustrativos.

Palabras Clave: Adjunto; invarianza; discretización pentagonal; funciones tipo cuña.

Extensão da Técnica de Dasgupta para Aproximação de Grau Superior

Resumo: No presente artigo, funções racionais para aproximação de grau dois são calculadas
sobre uma discretização pentagonal do domínio, usando uma abordagem analítica que é uma
extensão da abordagem de Dasgupta para aproximação linear. Esta técnica permite evitar o
cálculo dos pontos de intersecção exteriores dos elementos, componente chave da técnica
iniciada pelo Wachspress. A condição necessária para a existência da função denominadora
foi estabelecida por Wachspress enquanto nossa assertiva, induzida pela técnica de Dasgupta,
assegura a suficiência da existência. Considerando as funções adjuntas (denominador) para
aproximação linear obtidas por Dasgupta, a invariância da adjunta para aproximação de grau
dois é estabelecida. Em outras palavras, o método proposto por Dasgupta para a construção
de coordenadas Wachspress para aproximação linear é estendido para obter as coordenadas
para aproximação quadrática. As afirmações são apoiadas considerando alguns exemplos
ilustrativos.

Palavras-chave: Adjunto; invariância; discretização pentagonal; funções de cunha.

Universitas Scientiarum Vol. 26(2):139–157 http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum

http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum


Powar et al. 157

P. L. Powar

Professor P. L. Powar (Retd.) received her M.Sc. and Ph.D. in Mathematics form Rani
Durgavati University, Jabalpur, India. Her research areas are Cutting Stock Problem, Spline
Approximation Theory, Finite Element Methods, Fixed Point Theory, Topology and Software
Engineering.

ORCID: 0000-0002-6332-9386

Rishabh Tiwari

Rishabh Tiwari is currently working in the Department of Mathematics, Rani Durgavati
University, Jabalpur, India. He has received M. Sc., M. Phil and Ph. D. in Mathematics from
Rani Durgavati University, Jabalpur, India. His research areas are, Algebraic Topology, Finite
Element Methods and Topology.

ORCID: 0000-0001-7097-9777

Vishnu Narayan Mishra

Dr. Vishnu Narayan Mishra is working as Professor and Head of Department of Mathematics
at Indira Gandhi National Tribal University, Lalpur, Amarkantak, Madhya Pradesh, India.
Prior to this, he also held as academic positions as Assoc. Prof. at IGNTU, Amarkanta,
Assistant Professor in AMHD, SVNIT, Surat. He received the Ph.D. degree in Mathematics
from Indian Institute of Technology, Roorkee in 2007. His research interests are in the areas
of pure and applied mathematics including Approximation Theory, Nonlinear analysis and
Optimization etc.

ORCID: 0000-0002-2159-7710

Universitas Scientiarum Vol. 26(2):139–157 http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum

https://orcid.org/0000-0002-6332-9386
https://orcid.org/0000-0001-7097-9777
https://orcid.org/0000-0002-2159-7710
http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum

	Introduction
	Prerequisites
	Construction of wedge functions
	Degree one approximation
	Construction
	Existence

	Degree two approximation
	Construction
	Computation of adjoint


	Invariance of Adjoint
	Numerical Examples
	Comparative Study

	Algorithm to compute the degree two approximation
	Description of the algorithm

	Conclusion
	Conflict of Interest

