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Some interactions between Hopf Galois extensions and
noncommutative rings
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Abstract

In this paper, our objects of interest are Hopf Galois extensions (e.g., Hopf algebras, Galois field
extensions, strongly graded algebras, crossed products, principal bundles, etc.) and families of
noncommutative rings (e.g., skew polynomial rings, PBW extensions and skew PBW extensions, etc.).
We collect and systematize questions, problems, properties and recent advances in both theories by
explicitly developing examples and doing calculations that are usually omitted in the literature. In
particular, for Hopf Galois extensions we consider approaches from the point of view of quantum torsors
(also known as quantum heaps) and Hopf Galois systems, while for some families of noncommutative
rings we present advances in the characterization of ring-theoretic and homological properties. Every
developed topic is exemplified with abundant references to classic and current works, so this paper
serves as a survey for those interested in either of the two theories. Throughout, interactions between
both are presented.

Keywords: Hopf algebra; Hopf Galois extension; noncommutative ring; Ore extension; skew PBW
extension.

1. Introduction

In the last half-century, Hopf algebras turned out to be a great tool for studying a large number
of problems in several contexts: from providing solutions for the Yang-Baxter equation and
describing the so-called quantum groups –appearing in theoretical physics and algebraic theory–,
to generalizing Galois theory. It is precisely this last instance what concerns us in this paper.

Classically, Galois theory studies and classifies automorphism groups of fields. In 1965 the
theory was generalized to groups acting on commutative rings [1], and in 1969 extended to
commutative algebras by replacing the action of a group on the algebra for a coaction of a Hopf
algebra on a commutative algebra [2]. The first general definition of Hopf Galois extensions is due
to Kreimer and Takeuchi [3], although the authors restricted their study to the finite-dimensional
case. In Part 2, we will address the modern definition of such extensions, not without first recalling
some basic notions regarding the theory of Hopf algebras. Our aim is to provide a large number
of examples and properties, developing proofs and calculations that are usually omitted in the
literature. We finish the section by giving two recent alternative approaches for Hopf Galois
theory: quantum torsors (or quantum heaps), defined independently by Grunspan [4] and Škoda
[5], and Hopf Galois systems, introduced by Bichon [6]. We address the equivalence between
these three notions.

Edited by
Juan Carlos Salcedo-Reyes
salcedo.juan@javeriana.edu.co

1. Departamento de Matemáticas,
Facultad de Ciencias, Universidad
Nacional de Colombia - Sede Bogotá,
Bogotá, D. C., Colombia.

*mareyesv@unal.edu.co

Received: 05-24-2021
Accepted: 05-03-2022
Published online: 10-08-2022

Citation: Calderón F, Reyes A. Some
interactions between Hopf Galois
extensions and noncommutative rings,
Universitas Scientiarum, 27(2): 58–161,
2022.
doi: 10.11144/Javeriana.SC271.sibh

Funding: The authors were supported by
the research fund of Faculty of Science,
Code HERMES 52464, Universidad
Nacional de Colombia - Sede Bogotá,
Colombia. The first author was also
supported by the Fulbright Visiting
Student Researcher Program.

Electronic supplementary material:
n.a.

Universitas Scientiarum, Journal of the Faculty of Sciences, Pontificia Universidad Javeriana, is licensed under the Creative Commons Attribution 4.0 International Public License

mailto:salcedo.juan@javeriana.edu.co
mailto:mareyesv@unal.edu.co


Calderón & Reyes 59

Almost in parallel to the first appearance of Hopf algebras, Ore introduced in 1933 a new class
of noncommutative rings, nowadays known as skew polynomial rings (or Ore extensions) [7].
Although the aim of Ore was to find noncommutative algebras which could be embedded on
division rings (e.g., [8, Chapter 8]), these structures belong, per se, to a branch of study in algebra
used to describe many rings and algebras, mostly coming from mathematical physics and with
broad applications in quantum mechanics. Therefore, some classic results such as the Hilbert’s
Basis Theorem or the Hilbert’s Syzygy Theorem have been generalized to these objects (see
Theorem 3.8 or, e.g., [9, Sections 2.9 and 3.1]), while many other properties are still being studied.
Hence, at the start of Part 3 we review basic definitions and results on skew polynomial rings,
along with some remarkable examples.

However, this is not the only family of noncommutative rings (or algebras) that has been defined
since then. Inspired by the Poincaré-Birkhoff-Witt (PBW) theorem for enveloping algebras of
Lie algebras, Bell and Goodearl defined in 1988 the PBW extensions [10]. These consist of
polynomial-type rings having a PBW basis and specific commutation rules. Furthermore, Ga-
llego and Lezama in 2011 generalized the notion to skew PBW extensions so new examples of
rings with polynomial behavior could be studied [11, 12]. Hence, our aim is to also address
these types of rings and some examples of the theory. We also study a quite different collection
of algebras, known as almost symmetric algebras (or Sridharan enveloping algebras). These
generalize enveloping algebras via twisting by 2-cocycles, without losing some nice properties
[13].

With these two overviews in mind, one could ask for possible relations between some of the
mentioned families and Hopf algebras (e.g. [14, 15]), and in particular, with Hopf Galois theory.
Therefore, as an original contribution, we study coactions of arbitrary Hopf algebras over skew
polynomial rings. Also, following [16], we attach a Hopf Galois system to almost symmetric
algebras, and elucidate the structure of quantum torsor present in Kashiwara algebras.

Therefore, the purpose of this paper is three-fold: as a survey of classic and current works on Hopf
Galois theory, as a quick overview of several approaches to noncommutative algebras appearing in
applications, and as a compilation (with some original developments) of the interactions between
both theories. This work is the result of the first author’s master’s thesis, which had a Meritorious
Mention at Universidad Nacional de Colombia and was written under the advice of the second
author.

Notations and conventions

Throughout this manuscript all rings and their morphisms are unitary. K will denote an arbitrary
commutative ring and k a field (if necessary, algebraically closed and of characteristic 0). Unless
stated otherwise, tensor products are assumed to be over K and every K-module is non-zero.

Let f; g; h be functions. We denote the composition of f with g by fg and the composition of h
with itself n-times as hn. The arrow idX W X ! X will always denote the identity map of X .

Arrow diagrams will be constantly used, representing composition of functions as concatenation of
arrows. A diagram is said to be commutative if, no matter what path one follows, the composition
of arrows (functions) returns always the same result.

The symbols N, Z, Q, R, C denote the usual numerical systems, assuming that 0 2 N.
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60 Some interactions between Hopf Galois extensions and noncommutative rings

2. Hopf Galois theory: preliminaries, definitions and examples

Although we assume some familiarity with the theory of Hopf algebras, for the purpose of a
self-contained document, this section will start addressing basic terminology of (co)algebras (Sec-
tion 2.1 and 2.2), some examples (Section 2.3), and (co)modules, Hopf modules and (co)actions
(Sections 2.4 to 2.5). Then we introduce in Section 2.6 the concept of Hopf Galois extension,
which is transversal to this work. A large amount of examples and properties are presented
in Sections 2.7 and 2.8. Finally, and following recent developments, we dedicate Sections 2.9
and 2.10 to two alternative –and, under some conditions, equivalent– approaches of Hopf Galois
extensions, namely quantum torsors and Hopf Galois systems.

Except for the last two sections, all definitions and results presented in this part are classical and
can be consulted, for example, in [2, 3, 17–24].

2.1. Algebras and coalgebras

Recall that a K-algebra is a K-module A together with two K-linear maps, m W A˝ A ! A and
u W K ! A, such that the following diagrams are commutative:

A˝ A˝ A A˝ A

A˝ A A

m˝idA

idA ˝m m

m

A˝ A

K ˝ A A˝K

A

m

u˝idA

Š

idA ˝u

Š

The first diagram is known as the associativity property while the second as the main unit property.
We write ab D m.a˝ b/ and 1A WD u.1K/. Similarly, a K-coalgebra is a K-module C together
with two K-linear maps, � W C ! C ˝ C and " W C ! K, such that the following diagrams are
commutative:

C C ˝ C

C ˝ C C ˝ C ˝ C

�

� idC ˝�

�˝idC

C

K ˝ C C ˝K

C ˝ C

�

Š Š

"˝idC idC ˝"

The map � is called the comultiplication and " the counit. The left diagram is known as the
coassociativity property while the second as the main counit property. We use the widely
accepted Heyneman–Sweedler notation for the comultiplication, that is, for any c 2 C we write
�.c/ D c.1/ ˝ c.2/ 2 C ˝ C .

Arrows between these structures are defined as those preserving the operations. Therefore we
considerK-Alg, the category ofK-algebras, andK-Cog, the category ofK-coalgebras. Regarding
substructures in K-Cog, recall that for a coalgebra C , a submoduleD is called a subcoalgebra if
�.D/ � D ˝D, and a submodule I is called a left (resp. right) coideal if �.I/ � C ˝ I (resp.
�.I/ � I ˝ C ). Also, a submodule J of C is called a coideal if �.J / � J ˝ C C C ˝ J and
".J / D 0.
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Calderón & Reyes 61

Given two K-modulesM;N , the twist map �M;N W M ˝N ! N ˝M is defined by m˝ n 7!

n˝m, for all m 2 M and n 2 N . Sometimes this arrow is also denoted by �.12/ when emphasis
in the interchanged coordinates is needed. In the situationM D N , we simply write �M . An
algebra A is commutative if m�A D m, while a coalgebra C is cocommutative if �C� D �, that
is, if c.1/ ˝ c.2/ D c.2/ ˝ c.1/, for all c 2 C .

If M is a K-module, for n � 2, we denote M˝n WD M ˝ � � � ˝ M (n times). By definition,
M˝0 WD K andM˝1 WD M . This notation is useful when dealing with coalgebras and their maps.
For any coalgebra C , we define the sequence of maps f�n W C ! C˝.nC1/gn�1 recurrently as
follows: �1 WD �, and �n WD .�˝ idn�1

C /�n�1, for any n � 2.

The coassociativity of � states that, for any c 2 C ,

.c.1/.1/ ˝ c.1/.2//˝ c.2/ D c.1/ ˝ .c.2/.1/ ˝ c.2/.2//;

and therefore we are able to just write �2.c/ D c.1/ ˝ c.2/ ˝ c.3/. Moreover, we will have
�n.c/ D c.1/˝� � �˝c.nC1/; for any n � 1: The main property of the counit "may be formulated
as ".c.1//c.2/ D c D c.1/".c.2//. Also, the behavior of a coalgebra morphism g W C ! D can
be stated as g.c/.1/ ˝ g.c/.2/ D g.c.1//˝ g.c.2//.

2.2. Bialgebras and Hopf algebras

Recall that a K-bialgebra H is a K-module simultaneously endowed with an algebra and a
coalgebra structure, both over K, satisfying that m and u are morphisms of coalgebras (or
equivalently, that� and " are algebramaps). For simplicity, and since it holds for most applications,
throughout we will assume the hypothesis that every K-bialgebra H is flat over K, meaning
that the tensor product functor � ˝H is exact (i.e., preserves the exactness of sequences). The
category of K-bialgebras is denoted by K-Bialg.

In the K-module HomK.C;A/ of all K-linear maps between a coalgebra C and an algebra A we
define the convolution product as .f �g/.c/ WD .mA.f ˝g/�C /.c/, for all f; g 2 HomK.C;A/,
and c 2 C . In Heyneman–Sweedler notation, .f �g/.c/ D f .c.1//g.c.2//. Hence the convolution
product endows HomK.C;A/ with an algebra structure where the identity element is uA"C . We
say that f 2 HomK.C;A/ is convolution invertible if there exists an element g 2 HomK.C;A/
such that f � g D g � f D uA"C .

Definition 2.1 (Hopf algebra). A K-bialgebra H is a K-Hopf algebra if idH is convolution
invertible by an element S 2 HomK.H;H/. In this case, S is called an antipode forH .

Since HomK.H;H/ is an algebra and S is defined as an inverse, the antipode is unique. Moreover,
using Heyneman–Sweedler notation, S satisfies S.h.1//h.2/ D ".h/1 D h.1/S.h.2//, for all
h 2 H . This is known as the main property of the antipode. It can be shown that S is an
anti-morphism of algebras and coalgebras (e.g. [17, Proposition 4.2.6]).

As with previous structures, arrows can be considered between Hopf algebras and therefore one
can define the corresponding category, denoted byK-HopfAlg. It can be shown that any bialgebra
morphism between two Hopf algebras is always a Hopf algebra morphism (e.g. [17, Proposition
4.2.5]), which in terms of categories means that K-HopfAlg is a full subcategory of K-Bialg.
Regarding substructures inK-HopfAlg, for a Hopf algebraH , a submodule L is said to be a Hopf
subalgebra if it is a subalgebra ofH , a subcoalgebra ofH and S.L/ � L. Also, a submodule I
ofH is said to be a Hopf ideal if it is an ideal ofH (as algebra), a coideal ofH (as coalgebra)
and S.I / � I .
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62 Some interactions between Hopf Galois extensions and noncommutative rings

Finally, recall that in a coalgebra C , an element c 2 C is said to be group-like if �.c/ D c ˝ c.
The set of all group-like elements of C is denoted by G.C/. Similarly, x 2 C is said to be a
.g; h/-primitive element (or simply a skew primitive element when g and h are not specified),
if �.x/ D x ˝ g C h˝ x with g; h 2 G.C/. The set of all .g; h/-primitive elements of C is
denoted by Pg;h.C /. Notice that ifH is a Hopf algebra, G.H/ becomes a group with induced
multiplication and inverses given by the antipode S .

2.3. Examples of Hopf algebras

Now we address some essential examples of Hopf algebras (for a larger amount see e.g. [17, 19,
20, 24]).

Example 2.2. Any commutative ring K has structure of K-Hopf algebra by defining, for all
k 2 K,

�.k/ WD k ˝ 1; ".k/ WD k; S.k/ WD k:

In particular, this holds if K D k is a field.

The next example establishes a methodical way of constructing new Hopf algebras.

Example 2.3. Let A;B be two K-algebras. Then the K-module A˝ B has also the structure of
a K-algebra with multiplication mA˝B and unit uA˝B given by the compositions

mA˝B W .A˝ B/˝ .A˝ B/ .A˝ A/˝ .B ˝ B/ A˝ B;
idA ˝�A;B ˝idB mA˝mB

uA˝B W K K ˝K A˝ B:
Š uA˝uB

Notice that the multiplication can be stated as .a˝ b/.a0 ˝ b0/ WD aa0 ˝ bb0, for all a; a0 2 A,
b; b0 2 B . The unit element is 1A ˝ 1B . Further results on this algebra can be found in [19,
Section II. 4]. When A D B , the multiplication simplifies to mA˝A WD mA ˝mA.

Similarly, if C;D are two K-coalgebras, then C ˝ D has also the structure of a K-coalgebra
with comultiplication �C˝D and counit "C˝D given by the compositions

�C˝D W C ˝D .C ˝ C/˝ .D ˝D/ .C ˝D/˝ .C ˝ C/;
�C ˝�D idC ˝�C;D˝idD

"C˝D W C ˝D K ˝K K:
"C ˝"D Š

In Heyneman–Sweedler notation,

�C˝D.c ˝ d/ D .c ˝ d/.1/ ˝ .c ˝ d/.2/ D .c.1/ ˝ d.1//˝ .c.2/ ˝ d.2//;

"C˝D.c ˝ d/ D "C .c/"D.d/:

When C D D, the comultiplication simplifies to �C˝C WD �C ˝�C .

Furthermore, ifH;L are twoK-Hopf algebras, then their tensor product is also aK-Hopf algebra
with antipode SH˝L WD SH ˝ SL.

Example 2.4. LetH be a Hopf algebra and I a Hopf ideal ofH . Since I is a two-sided ideal of
H , the quotient moduleH=I already has algebra structure, by putting hg WD hg, for all h; g 2 H ,
where h WD hC I . The identity element is 1. Moreover,H=I has Hopf algebra structure given by

�.h/ WD h.1/ ˝ h.2/; ".h/ WD ".h/ and S.h/ WD S.h/; for all h 2 H:
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One can easily check that the canonical projectionH ! H=I is a surjective morphism of Hopf
algebras.

In the following examples, the base ring is a field.

Example 2.5. Recall that for any k-vector space V we denote by V � WD Homk.V;k/ its (linear)
dual, consisting of all k-linear maps from V to k, together with the point-wise addition and scalar
multiplication by constants so that V � is also a k-vector space. In particular, we have k� Š k via
the identification f 7! f .1k/.

LetH be a finite dimensional k-Hopf algebra (i.e.,H is finite dimensional as k-vector space).
Then its linear dualH� is also a k-Hopf algebra with operations

mı
W H� ˝H� .H ˝H/� H�;

Š ��

uı
W k k� H�;

Š "�

�ı
W H� .H ˝H/� H� ˝H�;

m� Š

"ı
W H� k� k;

u� Š

Sı
W H� H�:

S�

In this example the condition ofH being finite dimensional cannot be easily dropped, for ifH is
not finite dimensional,H� ˝H� could be a proper subspace of .H ˝H/� and thus the image
of mı W H� ! .H ˝H/� might not lie inH� ˝H�. Therefore, for the general case a certain
subsetH ı ofH� is considered, often called the finite dual ofH (see e.g. [20, Section 1.2]). On
the other hand, duals for Hopf algebras defined over commutative rings constitute an open line of
investigation, and some progress has been made when the base ring is a polynomial algebra (see
e.g. [25]).

Example 2.6 (Group algebra). Let G be a (multiplicative) group. The group algebra, denoted by
kG, is the k-vector space with G as a basis, and hence its elements are of the form

P
g2G kgg,

where only finite kg are non-zero scalars. kG is an algebra with multiplication given by 
nX
iD1

kigi

!0@ mX
jD1

ljhj

1A D

nX
iD1

mX
jD1

.ki lj /.gihj /; for all ki ; lj 2 k; gi ; hj 2 G;

and unit 1kG WD 1G . Furthermore, kG becomes a Hopf algebra by linearly extending the
following rules:

�.g/ WD g ˝ g; ".g/ WD 1k and S.g/ WD g�1; for all g 2 G:

Example 2.7 (Dual of group algebra). Let G be a finite group andH D .kG/� the dual Hopf
algebra of the group algebra. Even though Example 2.5 describes the operations ofH , we want a
more detailed description. So notice that the universal property of kG allows us to identifyH
with kG , the algebra of functions from G to k. Hence we have for f; g 2 kG and x; y 2 G:

.f � g/.x/ WD Œmı.f ˝ g/�.x/ D Œ��.f ˝ g/�.x/

D Œ.f ˝ g/��.x/ D .f ˝ g/.x ˝ x/ D f .x/g.x/;

Œ�.f /�.x ˝ y/ WD Œ�ı.f /�.x ˝ y/ D Œm�.f /�.x ˝ y/ D f .xy/;

ŒS.f /�.x/ WD ŒSı.f /�.x/ D ŒS�.f /�.x/ D Œf S�.x/ D f .S.x//:
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64 Some interactions between Hopf Galois extensions and noncommutative rings

Despite these formulas, a full description of �.f / is not given. Therefore we define for every
x 2 G the map px W G ! k given by

px.y/ WD ıx;y WD

(
1 if x D y,
0 if x ¤ y.

SinceG is finite, fpx W x 2 Gg is a basis for kG (in correspondence with the dual basis of .kG/�).
For those elements, we have

�.px/ D

X
uvDx

pu ˝ pv D

X
y2G

py ˝ py�1x;

which describes the comultiplication for basis elements.

Example 2.8 (Tensor algebra). Let V be a k-vector space. An algebra T .V / is said to be a tensor
algebra of V if there exists a linear map � W V ! T .V / such that the following universal property
is satisfied: for any algebra A and any linear map f W V ! A there exists an unique algebra
morphism f W T .V / ! A such that the following diagram is commutative:

V T .V /

A

f

�

f

The tensor algebraT .V / is unique up to isomorphism and can be described asT .V / D
L
i�0 V

˝i ,
meaning that any element of T .V / has the form ´ D .´i /i�0, where ´i 2 V ˝i and almost all ´i
vanish. The multiplication is given by the rule

.v1 ˝ � � � ˝ vi /.viC1 ˝ � � � ˝ ˝viCj / D v1 ˝ � � � ˝ viCj ; for all i; j � 0:

The identity element is 1 2 V ˝0 D k. T .V / becomes a Hopf algebra by extending (via the
universal property) the rules

�.v/ WD v ˝ 1C 1˝ v; ".v/ WD 0 and S.v/ WD �v; for all v 2 V:

A complete proof of this fact can be found in [17, Section 4.3.2].

Example 2.9 (Symmetric algebra). Let V be a k-vector space. A commutative algebra S.V /
is said to be a symmetric algebra of V if there exists a linear map l W V ! S.V / such that the
following universal property is satisfied: for any commutative algebra A and any linear map
h W V ! A there exists an unique algebra morphism h W S.V / ! A such that the following
diagram is commutative:

V S.V /

A

h

l

h

A straightforward use of the universal property shows that S.V / is unique up to isomorphism.
The existence of symmetric algebras is shown by explicitly construction of S.V / as the quotient
T .V /=I , where I D hu˝ v � v˝ u W u; v 2 V i [17, Section 4.3.3]. An alternative construction
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can be found in [9, Section 15.1.18]. Since for all u; v 2 V ,

�T.V /.u˝ v � v ˝ u/

D �.u/�.v/ ��.v/�.u/

D .u˝ 1C 1˝ u/.v ˝ 1C 1˝ v/ � .v ˝ 1C 1˝ v/.u˝ 1 � 1˝ u/

D .u˝ v � v ˝ u/˝ 1C 1˝ .u˝ v � v ˝ u/;

which is an element of I ˝ T .V /C T .V /˝ I , and

"T.V /.u˝ v � v ˝ u/ D ".u/".v/ � ".v/".u/ D 0;

ST.V /.u˝ v � v ˝ u/ D S.u/S.v/ � S.v/S.u/ D .�y/˝ .�x/ � .�x/˝ .�y/ 2 I;

we have shown that I is a Hopf ideal of T .V /. Hence, by Example 2.4, S.V / D T .V /=I is a
(commutative) Hopf algebra with induced operations.

Example 2.10 (Universal enveloping algebra of a Lie algebra). A k-vector space g is a Lie algebra
if there exists a bilinear map Œ�;�� W g � g ! g, called the Lie bracket, such that the following
conditions hold:

(L1) (Antisymmetry) Œx; y� D �Œy; x�, for all x; y 2 g,

(L2) (Jacobi identity) ŒŒx; y�; ´�C ŒŒ´; x�; y�C ŒŒy; ´�; x� D 0, for all x; y; ´ 2 g.

The Lie algebra g is called Abelian if Œx; y� D 0 for every x; y 2 g. In general the Lie bracket is
not associative. Moreover, (L1) implies Œx; x� D 0, for all x 2 g. For example, R3 equipped with
the usual vector product is a R-Lie algebra.

Any (associative) algebraA can be endowed with a k-Lie algebra structure with Œa; b� WD ab�ba,
for all a; b 2 A. In this example we shall consider the converse construction, i.e., an associative
algebra rising from a given Lie algebra. The importance of this construction is well known, going
from representation theory (e.g. [26]), construction of Verma modules (e.g. [27, Section 9.5]) or
characterization of left-invariant differential operators (e.g. [28, Chapter II]), to cocommutative
cases of quantum groups (e.g. [19]).

If g1 and g2 are two Lie algebras, a linear map f W g1 ! g2 is an morphism of Lie algebras
if f .Œx; y�/ D Œf .x/; f .y/�, for all x; y 2 g1. In particular, if g2 D A is an associative
algebra endowed with the Lie bracket mentioned above, we say that the map f W g1 ! A is a
representation (of g1).

Let g be a Lie algebra. An associative algebra U.g/ is an universal enveloping algebra of g, if
there exists a representation f W g ! U.g/ such that the following universal property is satisfied:
for any associative algebra A and any representation h W g ! A there exists an unique algebra
morphism h W U.g/ ! A such that the following diagram is commutative:

g U.g/

A

h

f

h

It follows that h is also a Lie algebra map and that U.g/ is unique up to isomorphism. The
existence of such enveloping algebra is given by explicitly constructing U.g/ as the quotient
algebra khXi=I , where X D fxigi is a basis of g, khXi is the free k-algebra over X and
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66 Some interactions between Hopf Galois extensions and noncommutative rings

I D hxixj � xjxi � Œxi ; xj � W xj ; xi 2 Xi [19, Section V.2]. An alternative construction [17,
Section 4.3.4] is done by taking U.g/ as the quotient T .g/=J , where T .g/ is the tensor algebra of
g and

J D hŒx; y� � x ˝ y C y ˝ x W x; y 2 gi: (1)

In either case, the Poincaré–Birkhoff–Witt Theorem establishes that if there exists a total order
� in X , then the set containing 1 and all elements of the form xi1 � � � xin , with xi1 � � � � � xin ,
constitutes a k-basis of U.g/ (e.g. [29, Theorem V.3]). The rules

�.x/ D x ˝ 1C 1˝ x; ".x/ D 0; ".x/ D �x; for all x 2 g; (2)

can be extended to U.g/ by applying the universal property or, alternatively, verifying that J as
in (1) is a Hopf ideal. Either way, (2) makes U.g/ a cocommutative Hopf algebra.

Example 2.11 (Universal enveloping algebra of sl2.k/). Denote by gl2.k/ thek-algebra consisting
of all n�nmatrices with entries in k seen as a Lie algebra. One can easily check that the elements

x D

�
0 1

0 0

�
; y D

�
0 0

1 0

�
; h D

�
1 0

0 �1

�
; i D

�
1 0

0 �1

�
;

form a basis for gl2.k/. Moreover, Œx; y� D h, Œh; x� D 2x, Œh; y� D �2y, and Œi; x� D Œi; y� D

Œi; h� D 0. We denote by sl2.k/ the subspace of all matrices with null trace. A basis is fx; y; hg.
For the particular case k D C a detailed study of this Lie algebra can be found in [19, Chapter
V]. By the previous example, U.sl2.k// can be seen as the Hopf algebra generated by x; y; h
subject to the relation Œx; y� D h, Œh; x� D 2x and Œh; y� D �2y. In Part 3, we will endow this
algebra with another structure, evidencing that a single object can be enriched with several distinct
structures.

For the next example, recall that ! 2 k is said to be a n-th root of unity (n 2 ZC) if !n D 1.
Furthermore, ! is primitive if it is not a k-th root of unity for some k < n.

Example 2.12 (Taft Hopf algebra). Given a n-th root of unity ! in k, the n2-dimensional Taft
Hopf algebra is given as an algebra by Tn2.!/ D khg; xi=hgn � 1; xn; xg � !gxi. Tn2.!/

acquires structure of non-(co)commutative Hopf algebra via

�.g/ D g ˝ g; ".g/ D 1; S.g/ D g�1;

�.x/ D x ˝ 1C g ˝ x; ".x/ D 0; S.x/ D �g�1x:

Since the construction depends on the choice of !, there are ˆ.n/ non-isomorphic Taft Hopf
algebras for each dimension n2, where ˆ denotes Euler’s totient function. These Hopf algebras
were constructed as examples of finite dimensional Hopf algebras having antipodes of arbitrarily
high order, since in Tn2.!/, S has order 2n [30]. The case n D 2 is also known as the Sweedler
Hopf algebra.

Example 2.13 (Quantum enveloping algebra of sl2.k/). Let q 2 k be an invertible element such
that q ¤ ˙1. We define Uq WD Uq.sl2.k// as the algebra generated by e; f; k; k�1 subject to the
relations

kk�1
D k�1k D 1; kek�1

D q2e; kf k�1
D q�2f;

Œe; f � D ef � fe D
k � k�1

q � q�1
:
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It can be shown that feif jkl W i; j 2 N; l 2 Zg is a basis [19, Proposition VII.1.1]. For
simplicity, set k D C and q 2 C not being a root of unity. Hence Uq is a C-Hopf algebra with
the operations induced by

�.e/ WD 1˝ e C e ˝ k; �.f / WD k�1
˝ f C f ˝ 1; �.k/ WD k ˝ k;

�.k�1/ WD k�1
˝ k�1; ".e/ D ".f / D 0; ".k/ D ".k�1/ D 1;

S.e/ WD �ek�1; S.f / WD �kf; S.k/ WD k�1; S.k�1/ WD k:

Moreover, if q2 is a n-th primitive root of unity, the elements kn � 1, en and f n are skew-
primitive. Hence the ideal generated by them is a Hopf ideal [31, Proposition 1.7] and thus
U 0
q WD Uq=hk

n � 1; en; f ni is a Hopf algebra, known as the Frobenius-Lusztig kernel.

Example 2.14 (Circle Hopf algebra). LetHk be the algebra defined asHk WD khc; si=I , with
I D hc2 C s2 � 1; csi. ThenHk is a Hopf algebra via

�.c/ D c ˝ c � s ˝ s; ".c/ D 1; S.c/ D c;

�.s/ D c ˝ s C s ˝ c; ".s/ D 0; S.s/ D �s:

As we shall see in Example 2.7.3, this algebra naturally appears in some examples of separable
field extensions not being Galois, but still satisfying the defining condition of a Hopf Galois
extension.

2.4. Modules and comodules

The aim of this section is to introduce (co)actions of Hopf algebras over arbitrary K-algebras;
these are of utmost importance for Hopf Galois extensions. Therefore, we review the notions of
(co)module over an algebra and (co)module algebra. Throughout this section A will denote an
arbitrary K-algebra, while C a K-coalgebra.

Recall that a left A-module is a K-moduleM together with a K-linear map 
 W A˝M ! M ,
called the scalar product map ofM , such that 
.m˝ idM / D 
.idA˝
/ and 
.u˝ idM /.k ˝

x/ D kx, for all k 2 K and x 2 M . We write a � x WD 
.a ˝ x/, so the above means that
.ab/ �x D a � .b �x/ and 1 �x D x, for all x 2 M and a; b 2 A. Right modules over A are defined
similarly, the difference being that the scalar product map has the form 
 W M ˝ A ! M .

Similarly, a right C -comodule is a K-module N together with a K-linear map � W N ! N ˝ C ,
called the structure map of N , such that .idN ˝�/� D .�˝ idC /� and .idN ˝"/�.n/ D n˝ 1,
for all n 2 N . Left comodules over C are defined in the same way, having structure map of the
form � W N ! C ˝N .

We extend Heyneman–Sweedler notation to comodules. Let N be a right C -comodule with
structure map � W N ! N ˝ C . For any n 2 N , the element �.n/ of N ˝ C shall be written
as �.n/ D n.0/ ˝ n.1/, fixing the convention that n.j / 2 C for j ¤ 0. With this, the defining
properties of a right comodule may be written as

.n.0//.0/ ˝ .n.0//.1/ ˝ n.1/ D n.0/ ˝ .n.1//.1/ ˝ .n.1//.2/ D n.0/ ˝ n.1/ ˝ n.2/;

".n.1//n.0/ D n: (3)

Likewise, if N is a left C -comodule with structure map � W N ! C ˝ N , preserving the
convention for non-zero indexes, we write �.n/ D n.�1/ ˝ n.0/.
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Given two right C -comodules N and L, with structure maps �N and �L, respectively, a K-linear
map g W N ! Y is a comodule morphism if g.n/.0/ ˝ g.n/.1/ D g.n.0//˝ n.1/, for all n 2 N .
We denote the category of left (resp. right) A-modules by AMod (resp. ModA). Similarly, the
category of right (resp. left) comodules over a coalgebra C is denoted by ModC (resp. CMod).

The definition of a bimodule over an algebra can also be dualized. Indeed, given two coalgebras
C;D, aK-module N is said to be a .D;C /-bicomodule if N is a leftD-comodule with structure
map � W N ! D ˝ N , N is a right C -comodule with structure map � W N ! N ˝ C , and
.�˝ idC /� D .idD ˝�/�. The later condition may be written in Heyneman–Sweedler notation
as

.n.0//.�1/ ˝ .n.0//.0/ ˝ n.1/ D n.�1/ ˝ .n.0//.0/ ˝ .n.0//.1/; for all n 2 N:

A morphism of bicomodules is a linear map between two .D;C /-bicomodules which is both a
morphism of leftD-comodules and a morphism of right C -modules. Hence, we can define the
correspondent category, which is denoted by DModC . Similarly, given two algebras A;B , the
category of .B;A/-bimodules is denoted by BModA.

LetH be a Hopf algebra. For a leftH -moduleM , the set of invariants of H on M is

MH
WD fm 2 M W h �m D ".h/m; 8h 2 H g:

Similarly, for a rightH -comoduleN with structure map � W N ! N ˝H , the set of coinvariants
of H on N is given by

N coH
WD fn 2 N W �.n/ D n˝ 1g:

When the base ring is a field a natural question is whether there exists a relation between the
comodules ofH and the modules of the dual Hopf algebraH�. The following result shows that,
at least in the finite-dimensional case, there is such a correspondence preserving (co)invariants.

Proposition 2.15 (e.g. [20, Lemma 1.7.2]). LetH be a finite-dimensional k-Hopf algebra and
H� its dual Hopf algebra. Then, for any k-vector spaceN , the following assertions are equivalent:

(i) N is a rightH -comodule.

(ii) N is a leftH�-module.

Moreover, under these conditions, NH�

D N coH .

Proof. Let fe1; : : : ; eng be a basis forH and fe�
1 ; : : : ; e

�
ng the corresponding dual basis forH�

(i.e., e�
i .ej / D ıij , the Kronecker delta). If N is a right H -comodule, then N becomes a

H�-module via
f � n WD f .n.1//n.0/; for all f 2 H�; n 2 N: (4)

Reciprocally, if N is a leftH�-module, then N becomes a rightH -comodule with structure map
� W N ! N ˝H via

�.a/ WD

nX
iD1

e�
i � a˝ ei : (5)
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We omit the details in these two implications since these are a straightforward verification of the
defining conditions. Finally, using the notation of Example 2.5, we have

NH�

D fn 2 N W f � a D uı.f /n; 8f 2 H�
g

D fn 2 N W f .n.1//n.0/ D .f u/.1k/n;8f 2 H�
g

D
˚
n 2 N W n.0/f .n.1// D f .1H /n;8f 2 H�

	
D
˚
n 2 N W .idN ˝f /.�.n// D .idN ˝f /.n˝ 1/;8f 2 H�

	
D fn 2 N W �.n/ D n˝ 1g D N coH ;

which shows the desired equality.

Now, we review some essential examples of modules and comodules.

Example 2.16. Any K-algebra A is a left module over itself by taking 
 D mA (in other words,
a � b D ab, for all a; b 2 A). Similarly, any K-coalgebra C is a right comodule over itself by
taking � D �C .

Example 2.17. LetH be a K-Hopf algebra and let V;W be two leftH -modules. Then V ˝W

has also structure of leftH -module via

h � .v ˝ w/ WD .h.1/ � v/˝ .h.2/ � w/; for all h 2 H; v 2 V;w 2 W:

If 
V and 
W are the respective structure maps of V and W , the above means that the structure
map 
V˝W is defined as the composition


V˝W WD .
V ˝ 
W /.idH ˝�H;V ˝ idW /.�˝ idV ˝ idW /:

Example 2.18. LetH be aK-Hopf algebra and let V;W two rightH -comodules with respective
structure maps �V and �W . Then V ˝W is also a right H -comodule by taking �V˝W as the
composition

�V˝W D .idV ˝ idW ˝m/.idV ˝�H;W ˝ idH /.�V ˝ �W /;

i.e., �V˝W .v ˝ w/ D v.0/ ˝ w.0/ ˝ v.1/w.1/, for all v 2 V and w 2 W .

The previous examples implicitly describe the structure of monoidal category that both HMod
and ModH possess (see e.g. [20, Section 10.4] for the definition).

We end this section by discussing Hopf modules. LetH be a K-Hopf algebra. Then, similarly to
H being both an algebra and a coalgebra with certain compatibility, a Hopf module overH will
be both anH -module and anH -comodule in which the structure map is a module map. Namely, a
K-moduleM is a right-rightH -Hopf module ifM is a rightH -module,M is a rightH -comodule
with structuremap � W M ! M˝H , and �.m�h/ D .m�h/.0/˝.m�h/.1/ D m.0/�h.1/˝m.1/h.2/,
for all m 2 M and h 2 H .

In the first defining condition,H may be replaced by a Hopf subalgebraL ofH . In this case we say
thatM is a right-right .H;L/-Hopf module. The category of all right-right .H;L/-Hopf modules
is denoted by ModHL , in which morphisms are K-linear maps also being both morphisms of right
L-modules and morphisms of rightH -comodules. Clearly, by changing laterality and modifying
the compatibility condition, we also obtain the categories HModL, LModH and HL Mod.
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Example 2.19. Any K-Hopf algebraH is aH -Hopf module via � D �.

Example 2.20 (Trivial Hopf module). LetM be any rightH -module. ThenM˝H is a right-right
H -Hopf module using � D idM ˝�. A special case of this is whenM is the trivial H -module,
that is, m � h D ".h/m, for all m 2 M and h 2 H . In this situation,M ˝H is called the trivial
Hopf module.

Recall that the fundamental theorem of Hopf modules classify all Hopf modules as trivial, i.e.,
ifM is a right-right H -Hopf module, thenM Š M coH ˝H as right-right H -Hopf module,
whereM coH ˝H has the trivial structure of Hopf module (e.g. [20, Theorem 1.9.4]).

2.5. (Co)module algebras

In this section we present (co)actions of Hopf algebras over algebras. Although most results and
definitions presented are valid over bialgebras, throughout this partH will denote an arbitrary
K-Hopf algebra (remember that we assumeH flat over K).

Definition 2.21 (Module algebra, comodule algebra). Let A be a K-algebra.

(i) A is a left H -module algebra if the following conditions hold:

(MA1) A is a leftH -module,

(MA2) For all h 2 H and a; b 2 A,

h � .ab/ D .h.1/ � a/.h.2/ � b/ and h � 1A D ".h/1A: (6)

(ii) A is a right H -comodule algebra if the following conditions hold:

(CA1) A is a rightH -comodule with structure map � W A ! A˝H ,

(CA2) For all a; b 2 A,

�.ab/ D a.0/b.0/ ˝ a.1/b.1/ and �.1A/ D 1A ˝ 1H : (7)

Condition (MA2) is equivalent to mA and uA beingH -module maps. Dually, condition (CA2) is
equivalent to mA and uA beingH -comodule maps, which is also equivalent to � being an algebra
map (see e.g. [17, Propositions 6.1.4 and 6.2.2]). Also, as with previous concepts, we may define
rightH -module algebras, leftH -comodule algebras and .L;H/-bi(co)module algebras similarly.

Remark 2.22. The set of coinvariants in a comodule algebra is always a subalgebra, called the
subalgebra of coinvariants. Indeed, if A is a rightH -comodule algebra, k 2 K and a; b 2 AcoH ,
then

�.aC b/ D �.a/C �.b/ D a˝ 1C b ˝ 1 D .aC b/˝ 1;

�.ka/ D k�.a/ D k.a˝ 1/ D ka˝ 1;

�.ab/ D ab ˝ 1:

In the first two rows we used the linearity of �, while for the last one we used (7).

The next result extends Proposition 2.15.
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Proposition 2.23 (e.g. [17, Proposition 6.2.4]). LetH be a finite-dimensional k-Hopf algebra
andH� its dual Hopf algebra. Then, for a k-algebra A, the following assertions are equivalent:

(i) A is a rightH -comodule algebra.

(ii) A is a leftH�-module algebra.

Moreover, under these conditions AH�

D AcoH .

Proof. Let fe1; : : : ; eng be a basis forH and fe�
1 ; : : : ; e

�
ng the corresponding dual basis forH�. If

A is a rightH -comodule algebra, then we already know that A is aH�-module via (4). Moreover,
if a; b 2 A and f 2 H�, we have

f � .ab/ D f ..ab/.1//.ab.0// D f .a.1/b.1//a.0/b.0/ D .f mH /.a.1/ ˝ b.1//a.0/b.0/

D �ı.f /.a.1/ ˝ b.1//a.0/b.0/ D f.1/.a.1//f.2/.b.1//a.0/b.0/

D f.1/.a.1//a.0/f.2/.b.1//b.0/ D .f.1/ � a/.f.2/ � b/I

f � 1A D f .1A/1A D .f uH /.1H /1A D uı.f /1A:

Therefore, A is a leftH�-module algebra.

Conversely, let A be a leftH�-module algebra. We already know that A is aH -comodule via (5).
Moreover, if a; b 2 A and f 2 H�, we have

.idA˝f /.�.ab//

D

nX
iD1

e�
i � .ab/˝ f .ei / D

nX
iD1

.e�
i � .ab//f .ei /˝ 1 D

nX
iD1

.e�
i f .ei // � .ab/˝ 1

D f � .ab/˝ 1 D .f.1/ � a/.f.2/ � b/˝ 1 D

nX
i;jD1

..e�
i f.1/.ei // � a/..e�

j f.2/.ej // � b/˝ 1

D

nX
i;jD1

.e�
i � a/.e�

j � b/˝ f.1/.ei /f.2/.ej / D

nX
i;jD1

.e�
i � a/.e�

j � b/˝ f .eiej /

D .idA˝f /

0@ nX
i;jD1

.e�
i � a/.e�

j � b/˝ eiej

1A D .idA˝f /.�.a/�.b//;

and hence �.ab/ D �.a/�.b/. On the other hand,

�.1/ D

nX
iD1

e�
i � 1A ˝ ei D

nX
iD1

e�
i .1H /1A ˝ ei

D

nX
iD1

1A ˝ e�
i .1H /ei D 1A ˝

nX
iD1

e�
i .1H /ei D 1A ˝ 1H :

Thus, A is a rightH -comodule algebra.

The equality AH�

D AcoH follows as in the proof of Proposition 2.15.

Now, we generalize the notion of Hopf module by replacing the module structure overH (or a
Hopf subalgebra L) by a comodule algebra.
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Definition 2.24. Let A be a rightH -comodule algebra. A K-moduleM is said to be a left-right
.A;H/-Hopf module if the following conditions hold:

(HM1) M is a left A-module,

(HM2) M is a rightH -comodule with structure map �M W M ! M ˝H ,

(HM3) For every a 2 A and m 2 M , �M .a �m/ D a.0/ �m.0/ ˝ a.1/m.1/.

The category of left-right .A;H/-Hopf modules,AModH , has as morphisms the K-linear maps
which are also A-linear andH -colinear. Similarly, objects in the category ModHA can be define
by replacing (HM3) with �M .m � a/ D m.0/ � a.0/ ˝m.1/a.1/.

We end this section by giving some examples characterizing actions and coactions of distinguished
Hopf algebras. We assume that the base ring is a field k.

Example 2.25 ((Co)actions of a Hopf algebra over itself). It is clear thatH is a rightH -comodule
algebra using � D �. By Proposition 2.23, whenH if finite dimensional, this dualizes to a left
action (denoted by*) ofH� onH given by

f * h D f .h.2//h.1/; for all h 2 H and f 2 H�:

The (co)invariants are given byHH�

D H coH D k1.

Example 2.26 (Actions of the group algebra). Let G be a group. We say that G acts (from the
left) as automorphisms on a k-algebra A if there is a group morphism  W G ! AutK�Alg.A/. In
this case, we write  .g/.a/ D g.a/ (or ga), for all g 2 G and a 2 A. Moreover, if  is injective,
we say that G acts faithfully.

If G acts as automorphisms on a A and kG is the group algebra of G (see Example 2.6), then A
is a left kG-module algebra via g � a D g.a/, for all g 2 G and a 2 A. Indeed, for every g 2 G

and a; b 2 A, we have

g � .ab/ D g.ab/ D g.a/g.b/ D .g � a/.g � b/;

g � 1A D g.1A/ D 1A D 1A1A D ".g/1A:

In this case, AkG is the set of fixed points under the action of G,

AkG
D AG WD fa 2 A W g.a/ D a; 8g 2 Gg:

Conversely, if A is a kG-module algebra, then G acts as automorphisms on A via the map
 W G ! AutK�Alg.A/, given by  .g/.a/ D g � a.

Thus, we have shown that A is a kG-module algebra if and only if G acts as automorphisms on A.

Example 2.27 (Coactions of the group algebra). Let G be a group and let A be a k-algebra. We
say that A is a G-graded algebra if there exists a collection fAggg2G of k-subspaces of A such
that A D

L
g2G Ag and AgAh � Agh, for all g; h 2 G.

If A is a kG-comodule algebra with structure map � W A ! A ˝ kG, then we replace the
Heyneman–Sweedler notation by writing instead �.a/ D

P
ag ˝ g, for all a 2 A. By definition,

Œ.idA˝�/��.a/ D Œ.�˝ idkG/��.a/, for all a 2 A. Expanding the left-hand side we get

Œ.idA˝�/��.a/ D .idA˝�/
�X

ag ˝ g
�

D

X
ag ˝ g ˝ g;
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while the right-hand side gives

Œ.�˝ idkG/��.a/ D .�˝ idkG/
�X

ag ˝ g
�

D

X
.ag/h ˝ h˝ g:

Comparing both expressions we have that

.ag/h D

(
ag if g D h,
0 if g ¤ h.

Thus �.ag/ D ag ˝ g and we can set Ag D fag W a 2 Ag, for all g 2 G. Since � is k-
linear we have �.a C b/ D �.a/ C �.b/ and �.ka/ D k�.a/, for all a; b 2 A and k 2 k.
Thus, .a C b/g D ag C bg and .ka/g D kag , and therefore Ag is a k-subspace of A, for all
g 2 G. On the other hand, since G is a basis of kG, the sum

P
g2G Ag is direct. Indeed, if

0 D ag1
C � � � C agt

for some agk
2 Agk

, 1 � k � t , by applying � we get

0˝ 0 D �.0/ D �.ag1
C � � � C agt

/ D �.ag1
/C � � � C �.agt

/ D ag1
˝ g1 C � � � C agt

˝ gt ;

and thus agk
D 0, for 1 � k � t . Additionally, since A is a kG-comodule algebra,

�.agbh/ D agbh ˝ gh; for all ag 2 Ag ; bh 2 Ah:

Therefore agbh 2 Agh and AgAh � Agh. Finally, by definition Œ.idA˝"/��.a/ D a˝ 1, for all
a 2 A. But the left hand side is

Œ.idA˝"/��.a/ D .idA˝"/
�X

ag ˝ g
�

D

X
ag ˝ 1;

and thus for each a 2 A, we have
P
ag D a. Therefore A D

L
g2G Ag and A is a G-graded

algebra. Notice that
AcoH

D fa 2 A W �.a/ D a˝ 1g D A1;

the identity component of the G-graduation. In particular, 1A 2 A1.

Conversely, ifA is aG-graded algebra define the structure map � W A ! A˝kG as �.a/ D a˝g,
for all a 2 Ag and g 2 G.

Thus, we have shown that A is a kG-comodule algebra if and only if A is a G-graded algebra.

Example 2.28 (Actions of the dual group algebra). Let G be a finite group and recall from
Example 2.7 that .kG/� D kG . By Proposition 2.23, the actions of kG correspond to coactions
of kG, which by Example 2.27 are precisely G-gradings.

Example 2.29 (Actions of the universal enveloping algebra of a Lie algebra). LetA be a k-algebra.
A k-linear map ı W A ! A is a derivation if ı.ab/ D aı.b/ C ı.a/b, for all a; b 2 A. Then
the space of k-derivations over A, Derk.A/, becomes a Lie algebra by taking as Lie bracket the
commutator, i.e., Œı; �� D ı� � �ı, for all ı; � 2 Derk.A/. Indeed, for a; b 2 A:

.ı� � �ı/.ab/ D ı.�.ab// � �.ı.ab// D ı.a�.b//C ı.�.a/b/ � �.aı.b// � �.ı.a/b/

D aı.�.b//C ı.a/�.b/C �.a/ı.b/C ı.�.a//b

� a�.ı.b// � �.a/ı.b/ � ı.a/�.b/ � �.ı.a//b

D a.ı� � �ı/.b/C .ı� � �ı/.a/b:
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Let g be a Lie algebra. We say that g acts by derivations on A if there exists a Lie algebra
morphism  W g ! Derk.A/.

If g acts by derivations onA andU.g/ is the universal enveloping algebra ofG (see Example 2.10),
then A is a left U.g/-module algebra via x � a D  .x/.a/, for all x 2 g and a 2 A (extended by
the PBW theorem). In this case,

AU.g/ WD Ag
D fa 2 A W x � a D 0; for all x 2 gg:

Conversely, if A is a U.g/-module algebra, using (6) we get x � .ab/ D x � .a/b C a.x � b/ and
x �1 D 0. This implies that the map  W g ! Derk.A/ given by  .x/.a/ WD x �a is a Lie algebra
morphism and thus g acts by derivations on A.

Hence, we have shown that A is a U.g/-module algebra if and only if g acts by derivations on A.

2.6. Hopf Galois extensions

Finally, we are able to introduce one of the transversal concepts appearing in this document. Hopf
Galois extensions generalize the notion of Galois extensions over rings, replacing the action of
a group on the algebra by the coaction of a Hopf algebra. The first general definition is due to
Kreimer and Takeuchi [3], although the commutative case was previously studied by Chase and
Sweedler [2]. As in the previous section, throughout the discussionH will denote an arbitrary
K-Hopf algebra.

Definition 2.30 (H -Galois extension). Let A be a rightH -comodule algebra with structure map
� W A ! A ˝ H . We say that the extension AcoH � A (also denoted A=AcoH ) is a right
H -Galois extension if the map ˇ W A˝AcoH A ! A˝H , given by

ˇ.a˝ b/ D .a˝ 1/�.b/ D ab.0/ ˝ b.1/; for all a; b 2 A; (8)

is bijective. In this case ˇ is called the Galois map.

Notice that we could have defined the Galois map as ˇ0 W A˝AcoH A ! A˝H given by

ˇ0.a˝ b/ D �.a/.b ˝ 1/ D a.0/b ˝ a.1/; for all a; b 2 A: (9)

A natural question is whether ˇ0 can replace ˇ. The following result gives a case in which the
answer is affirmative.

Proposition 2.31 (e.g. [21, p. 372]). Let A be a rightH -comodule algebra with structure map
� W A ! A˝H . If the antipode S is bijective, then the following assertions are equivalent:

(i) The map ˇ, given by (8), is bijective (resp. injective, surjective).

(ii) The map ˇ0, given by (9), is bijective (resp. injective, surjective).

Proof. Let ˆ W A˝H ! A˝H the endomorphism given by

ˆ.a˝ h/ WD �.a/.1˝ S.h// D a.0/ ˝ a.1/S.h/; for all a 2 A; h 2 H:
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We have, for all a; b 2 A,

.ˆˇ/.a˝ b/ D ˆ
�
ab.0/ ˝ b.1/

�
D ˆ.ab.0/ ˝ b.1// D �.ab.0//.1˝ S.b.1///

D .a.0/b.0/ ˝ a.1/b.1//.1˝ S.b.2/// D a.0/b.0/ ˝ a.1/b.1/S.b.2//

D a.0/b.0/ ˝ a.1/".b.1// D a.0/b.0/".b.1//˝ a.1/

D a.0/b ˝ a.1/ D ˇ0.a˝ b/:

Hence ˆˇ D ˇ0. But notice that ˆ has as inverse ˆ�1 W A˝H ! A˝H given by

ˆ�1.a˝ h/ WD .1˝ S�1.h//�.a/ D a.0/ ˝ S�1.h/a.1/; for all a 2 A; h 2 H:

Therefore, the assertions are equivalent.

Similarly, left H -Galois extensions can be defined with Galois map ˇl W A˝AcoH A ! H ˝ A.
If several Hopf Galois extensions of different laterality are involved, we add to their Galois maps
an index indicating whether these are left or right sided; for example, for a right Hopf Galois
extension we may write ˇr .

When a right H -Galois extension is of the form K � A (i.e., AcoH D K), we call A a right
H -Galois object. In this situation, the Galois map is given by the composition

ˇ W A˝ A A˝ A˝H A˝H:
idA ˝�A mA˝idH

Moreover, we have the following useful result.

Proposition 2.32 ([2, Theorem 1.15]). Let A be a rightH -Galois object. Then A is a faithfully
flat K-module.

As with bi(co)modules, the notion of Galois objects may be two-sided with certain compatibility.

Definition 2.33 (BiGalois object). Let H;L be two K-Hopf algebras. A K-algebra A is a
.L;H/-biGalois object if the following assertions hold:

(BG1) A is a faithfully flat .L;H/-bicomodule algebra,

(BG2) A is a left L-Galois extension of K,

(BG3) A is a rightH -Galois extension of K.

2.7. Examples of Hopf Galois extensions

In this section we review a large amount of examples of Hopf Galois extensions. Unless otherwise
stated, they are adapted from [17, 20, 21, 23].

2.7.1. Hopf algebras

Every K-Hopf algebra H can be seen as a K-Galois object. Indeed, since H has a natural
structure ofH -comodule algebra via the comultiplication (i.e., the structure map is � WD �), for
any h 2 H coH ,

�.h/ D �.h/ D h.1/ ˝ h.2/ D h˝ 1:

Applying "˝ idH we have

."˝ idH /.h.1/ ˝ h.2// D ."˝ idH /.h˝ 1/;
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whence ".h.1//1˝ h.2/ D ".h/1˝ 1, which via the isomorphism K ˝H Š H , gives

h D ".h.1//h.2/ D ".h/1;

that is, h 2 K. Conversely, if h 2 K then �.h/ D �.h1/ D h�.1/ D h.1˝ 1/ D h˝ 1 and
therefore h 2 H coH . HenceH coH D K.

The map ˇ W H ˝H ! H ˝H is defined by

ˇ.a˝ b/ D .a˝ 1/�.b/ D .a˝ 1/�.b/ D ab.1/ ˝ b.2/; for all a; b 2 H:

Then, the inverse ˇ�1 W H ˝H ! H ˝H of the Galois map is given by

ˇ�1.a˝ b/ D aS.b.1//˝ b.2/; for all a; b 2 H:

Indeed, if a; b 2 H , then

ˇ.ˇ�1.a˝ b// D ˇ
�
aS.b.1//˝ b.2/

�
D ˇ.aS.b.1//˝ b.2// D aS.b.1//b.2/ ˝ b.3/

D a".b.1//˝ b.2/ D a˝ ".b.1//b.2/ D a˝ bI

ˇ�1.ˇ.a˝ b// D ˇ�1
�
ab.1/ ˝ b.2/

�
D ˇ�1.ab.1/ ˝ b.2// D ab.1/S.b.2//˝ b.3/

D a".b.1//˝ b.2/ D a˝ ".b.1//b.2/ D a˝ b:

Therefore, ˇ is bijective and we have shown the next result.

Proposition 2.34. LetH be a K-Hopf algebra. Then K � H is aH -Galois extension.

Remark 2.35. Since Hopf Galois extensions are definable over bialgebras, it can be shown for
every bialgebraH that, in fact,H is a Hopf algebra if and only ifK � H is aH -Galois extension
[23, Example 2.1.2]. More generally, ifH is a K-flat bialgebra admitting aH -Galois extension
AcoH � A that is faithfully flat as a K-module,H must be a Hopf algebra [32].

2.7.2. Classical field extensions

Let G be a finite group acting as automorphisms on a field E � k in the sense of Example 2.26.
Clearly E is a left kG-module algebra. Hence, by Proposition 2.23, it is a right kG-comodule
algebra (recall that .kG/� D kG ; see Examples 2.7 and 2.28). As the name suggest, the next
result shows that classical Galois extensions of fields can be seen as Hopf Galois extensions.

Theorem 2.36 (e.g. [20, Section 8.1.2]). Let G be a finite group acting as automorphisms on a
field E � k, and F WD EG . Then the following assertions are equivalent:

(i) The field extension F � E is Galois with Galois group G.

(ii) G acts faithfully on E.

(iii) ŒE W F � D jGj.

(iv) F � E is a right kG-Galois extension.

Proof. The implications (i) , (ii) , (iii) are consequences of Artin’s Lemma (e.g. [33, Theorem
4.7]). Hence, we will just show their equivalence with (iv). Suppose that the field extension
F � E is Galois. Set n WD jGj and G D fx1; : : : ; xng. Let fu1; : : : ; ung be a basis of E=F and

Universitas Scientiarum:58–161 http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum

http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum


Calderón & Reyes 77

let fp1; : : : ; png � kG be the dual basis to fxig � kG. As it was said before, E coacts on kG ,
where the structure map � W E ! E ˝ kG is given by

�.a/ D

nX
iD1

.xi � a/˝ pi ; for all a 2 E:

Therefore, the Galois map ˇ W E ˝F E ! E ˝ kG is given by

ˇ.a˝ b/ D .a˝ 1/�.b/ D

nX
iD1

a.xi � b/˝ pi :

We must show that ˇ is bijective. For that, suppose w D
P
j aj ˝ uj 2 ker.ˇ/. Then

ˇ .w/ D

X
j

aj .xi � uj /˝ pi D 0˝ 0:

Since the pi are linearly independent, we conclude thatX
j

aj .xi � uj / D 0; for all 1 � i � n: (10)

Using the faithfulness of the action of G, Dedekind independence theorem implies that the n � n

matrix C D Œxi � uj � associated to the system (10) is invertible (e.g. [33, p. 291]). Hence, all aj
are 0 and w D 0. Thus ˇ is injective. Since both E ˝F E and E ˝ kG are F -vector spaces of
dimension n2, it follows that ˇ is a bijection.

Conversely, suppose that the Galois map ˇ is an isomorphism. Notice that

dimF .E ˝F E/ D ŒE W F �2 and dimF .E ˝ kG/ D ŒE W F �jGj:

Via the isomorphism, we get ŒE W F � D jGj and therefore F � E is a Galois extension of
fields.

2.7.3. Separable field extensions

For the circle Hopf algebra Hk (cf. Example 2.14), it is possible for a finite separable field
extension F � F to beHk-Galois, although it is not Galois in the classical sense. This example
is due to Greither and Pareigis [34].

Let k D F D Q and E D F.!/, where ! is the real 4-th root of 2. F � E is not Galois for any
group G, since the automorphism group of E=F fixes Q.

p
2/ pointwise. However, ifHQ is the

circle Hopf algebra, it can be shown that F � E is H�
Q-Galois. In this case HQ acts on E as

follows:

� 1 ! !2 !3

c 1 0 �!2 0

s 0 �! 0 !3

When we change k for Q.i/, Hk Š kZ4, the group algebra of Z4. This means that QZ4 and
HQ are Q.i/-forms of each other. For a suitable Hopf algebraH described in [35, Section 3],
which is a Q.

p
�2/-form of QŒZ2 � Z2�, Q � E is also aH�-Galois. Hence an extension can

be Hopf Galois over two different Hopf algebras.
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2.7.4. Strongly graded algebras

This example is due to Ulbrich and Osterburg [36–38]. LetA D
L
g2G Ag be aG-graded algebra

(see Example 2.27). A is strongly graded if AgAh D Agh, for all g; h 2 G.

Lemma 2.37 (e.g. [39, Proposition 1.1.1]). Let A be a G-graded algebra. Then the following
assertions are equivalent:

(i) A is strongly graded,

(ii) AgAg�1 D A1 for all g 2 G.

Proof. (i))(ii) is trivial. (ii))(i): We have

Agh D AghA1 D Agh.Ah�1Ah/ � .AghA
�1
h /Ah � Aghh�1Ah D AgAh � Agh;

for all g; h 2 G.

Recall that A is a kG-comodule algebra with structure map � W A ! A˝ kG given by �.a/ D

a ˝ g, for all a 2 Ag , and that AcokG D A1. Then ˇ W A ˝A1
A ! A ˝ kG is given by

ˇ.a˝ b/ D .a˝ 1/�.b/ D
P
g2G abg ˝ g, for all a; b 2 A with b D

P
g2G bg .

Theorem 2.38 (e.g. [20, Theorem 8.1.7]). Let G be a group and A be a G-graded algebra. Then
the following assertions are equivalent:

(i) A1 � A is a kG-extension.

(ii) A is strongly graded.

Proof. (i))(ii): First assume that ˇ is bijective and, in particular, surjective. Whence for every
g 2 G there exist finitely many ai ; bi 2 A such that

ˇ

 X
i

ai ˝ bi

!
D

X
i

X
h2G

ai .bi /h ˝ h D

X
i;h

ai .bi /h ˝ h D 1˝ g:

SinceG is a basis for kG, it follows that
P
i ai .bi /g D 1 and

P
i ai .bi /h D 0 for all h ¤ g. The

inclusion AgAg�1 � A1 always holds in G-graded algebras, so now suppose a 2 A1. Fixing g,
we have a D a1 D a

P
i ai .bi /g D

P
i aai .bi /g . Since the .bi /g are homogeneous of degree

g, a is homogeneous of degree 1, and since the sum of homogeneous components is direct, we
get ai 2 Ag�1 . Hence AgAg�1 D A1 and by Lemma 2.37 it follows that A is strongly graded.

(ii))(i): Conversely, suppose now that A is strongly graded. If g 2 G, then by Lemma 2.37,
1 2 A1 D Ag�1Ag and we may write 1 D

P
i aibi for some ai 2 Ag�1 and bi 2 Ag . Therefore

let ˛ W A˝ kG ! A˝A1
A be defined as ˛.a˝ g/ D

P
i aai ˝ bi . Since all gi 2 Ag , we get

.ˇ˛/.a˝ g/ D ˇ

 X
i

aai ˝ bi

!
D

X
i

aaibi ˝ g D a .aibi /˝ g D a1˝ g D a˝ g:

On the other hand,

.˛ˇ/.a˝ b/ D ˛

0@X
g2G

abg ˝ g

1A D

X
g2G

˛.abg ˝ g/ D

X
g2G

X
i

abgai ˝ bi ;
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but bgai 2 AgAg�1 D A1 and hence

.˛ˇ/.a˝ b/ D

X
g2G

X
i

abgai ˝ bi D

X
g2G

X
i

a˝ bgaibi

D

X
g2G

a˝ bg

 X
i

aibi

!
D

X
g2G

a˝ bg1 D a˝ b:

Therefore, ˛ D ˇ�1 and ˇ is bijective.

2.7.5. Crossed products over groups

We now give a major example that can be deduced from the previous one. Let G be a (multi-
plicative) group acting as automorphisms on a k-algebra R. Recall that we denoted g.r/ D g � r .
The action is said to be twisted if there exists a map � W G � G ! R such that the following
conditions hold:

(i) (Cocycle condition) For all g; h; k 2 G, Œg � �.h; k/��.h; hk/ D �.g; h/�.gh; k/, and
�.g; 1/ D �.1; g/ D 1

(ii) (Twisted module condition) For all g; h 2 G and r 2 R,

Œg � .h � r/��.g; h/ D �.g; h/.gh � r/:

In this case, we say that � is a 2-cocycle.

We define a new different structure over R˝ kG. In this context, an arbitrary element r ˝ g 2

R˝ kG will be denoted by r � g.

Definition 2.39 (Crossed product). Let G be a group acting as automorphisms on a k-algebra
R. If the action is twisted, we define the crossed product of R and G, denoted by R �G, as the
k-space R˝ kG together with the multiplication

.r � g/.s � h/ D r.g � s/�.g; h/ � gh; for all r; s 2 R and g; h 2 G;

and unit element 1R � 1G .

Proposition 2.40 (e.g. [21, Example 2.7]). Let G be a group acting as automorphisms on a
k-algebra R. Suppose that the action is twisted. Then R �G is a G-graded algebra. Moreover,
R � A is a kG-Galois extension.

Proof. For all g; h; k 2 G and r; s; t 2 R we have

.r � g/Œ.s � h/.t � k/� D .r � g/.s.h � t /�.h; k/ � hk/

D r Œg � .s.h � t /�.h; k//� �.g; hk/ � g.hk/

D r Œ.g � s/.g � .h � t //.g � �.h; k//� �.g; hk/ � g.hk/

D r.g � s/.g � .h � t // Œ.g � �.h; k//�.g; hk/� � .gh/k

D r.g � s/.g � .h � t // Œ�.g; h/�.gh; k/� � .gh/k

D r.g � s/ Œ.g � .h � t //�.g; h/� �.gh; k/ � .gh/k

D r.g � s/ Œ�.g; h/.gh � t /� �.gh; k/ � .gh/k

D Œr.g � s/�.g; h/ � gh� .t � k/ D Œ.r � g/.s � h/� .t � k/:
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On the other hand,

.r � g/.1 � 1/ D r.g � 1/�.g; 1/ � g1 D r1 � g1 D r � g;

.1 � 1/.r � g/ D 1.1 � r/�.1; g/ � 1g D 1r1 � 1g D r � g:

Hence, R �G is a k-algebra. The homogeneous components are given by

.R �G/1 D R˝ 1 Š R and .R �G/g D R˝ g; for all g 2 G:

Finally, since .R�G/g.R�G/h D R˝gh D .R�G/gh, for all g; h 2 G, the algebra is strongly
graded and therefore, by Theorem 2.38, R � A is kG-Galois.

The relation between crossed products over groups and group extensions is explored in [21,
Example 2.8] by showing that for any group G with normal subgroup N and quotient L D G=N ,
kG D kN � kL. Also, in [21, Examples 2.9 and 2.10] counterexamples of strongly graded
algebras that are not crossed products are given.

2.7.6. Hopf crossed products and smash products

This example attempts to generalize the previous one to the context of Hopf algebras. LetH be a
K-Hopf algebra and R an H -module algebra. The action is said to be twisted if there exists a
map � W H �H ! R such that the following conditions hold:

(i) (Hopf 2-cocycle condition) For all g; h; k 2 H ,

Œg.1/ � �.h.1/; k.1//��.g.2/; h.2/k.2// D �.g.1/; h.1//�.g.2/h.2/; k/; (11)
�.g; 1/ D �.1; g/ D ".g/1:

(ii) (Hopf twisted module condition) For all g; h 2 H and r 2 R,

Œg � .h � r/� D �.g.1/; h.1//.g.2/h.2/ � r/�.g.3/; h.3//
�1: (12)

In this case, we say that � is a 2-cocycle.

Definition 2.41 (Hopf crossed product). LetH be aK-Hopf algebra andR anH -module algebra.
If the action is twisted, we define the crossed product of R and H , denoted by R#�H , as the
K-module R˝H together with the multiplication

.r#g/.s#h/ D r.g.1/ � s/�.g.2/; h.1//#g.3/h.2/; for all r; s 2 R and g; h 2 H; (13)

and unit element 1R#1H .

For any group G, ifH D kG, then this definition coincides with that of a crossed product over
G (see Definition 2.39).

Theorem 2.42 (e.g. [21, Example 3.6]). Let R be anH -module algebra. Suppose that the action
is twisted. If A WD R#�H , then:

(i) A is an algebra.

(ii) A is a rightH -comodule algebra via � W A ! A˝H given by

�.r#h/ D .r#h.1//˝ h.2/; for all r#h 2 A:
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(iii) AcoH Š R.

Proof. (i) For all r; s; t 2 R and g; h; f 2 H , we have

.r#g/ Œ.s#h/.t#f /� D .r#g/
�
s.h.1/ � t /�.h.2/; f.1//#h.3/f.2/

�
D r.g.1/ � .s.h.1/ � t /�.h.2/; f.1////�.g.2/; .h.3/f.2//.2//#g.3/.h.3/f.2//.2/
D r.g.1/ � .s.h.1/ � t /�.h.2/; f.1////�.g.2/; h.4/f.3//#g.3/h.4/f.3/
(6)
D r.g.1/ � s/.g.2/ � .h.1/ � t //.g.3/ � �.h.2/; f.1///�.g.4/; h.4/f.3//#g.5/h.4/f.3/
(11)
D r.g.1/ � s/.g.2/ � .h.1/ � t //�.g.3/; h.2//�.g.4/h.3/; f.1//#g.5/h.4/f.2/
(12)
D r.g.1/ � s/�.g.2/; h.1//.g.3/h.2/ � t /�.g.4/h.3/; f.1//#g.5/h.4/f.2/

D r.g.1/ � s/�.g.2/; h.1//..g.3/h.2//.1/ � t /�..g.3/h.2//.2/; f.2//#.g.3/h.2//.3/f.2/
D
�
r.g.1/ � s/�.g.2/; h.1//#g.3/h.2/

�
.t#f / D Œ.r#g/.s#h/� .t#f /

and

.r#g/.1#1/ D r.g.1/ � 1/�.g.2/; .1//#g.3/
(12)
D .g1 � 1/".g.2//#g.3/

(6)
D ".g.1//".g.2//#g.3/ D r#".g.1/g.2//g.3/ D r#g;

.1#1/.r#g/ D 1.1 � r/�.1; g.1//#1g.2/
(12)
D r".g.1//#g.2/ D r#".g.1//g.2/ D r#g:

Therefore, R#�H is an algebra.

(ii) Since for all r 2 R and h 2 H we have

Œ.idR#�H ˝�/��.r#h/ D .idR#�H ˝�/
�
.r#h.1//˝ h.2/

�
D .a#h.1//˝ h.2/ ˝ h.3/

D .�˝ idH /
�
.r#h.1//˝ h.2/

�
D Œ.�˝ idH /��.r#h/;

Œ.idR#�H ˝"/��.r#h/ D .idR#�H ˝"/
�
.r#h.1//˝ h.2/

�
D .r#h.1//˝ ".h.2//1

D r#h.1/".h.2//˝ 1 D r#h˝ 1;

it follows that R#�H is anH -module. Moreover, for all r; s 2 R and g; h 2 H ,

�..r#g/.s#h// D �
�
r.g.1/ � s/�.g.2/; h.1//#g.3/h.2/

�
D .r.g.1/ � s/�.g.2/; h.1//#.g.3/h.2//.1//˝ .g.3/h.2//.2/

D .r.g.1/ � s/�.g.2/; h.1//#g.3/h.2/ ˝ g.4/h.3/

D .r#g.1//.s#h.1//˝ g.2/h.2/;

�.1˝ 1/ D .1#1/˝ 1;

meaning that R#�H is anH -comodule algebra.

(iii) We have
.R#�H/coH D f´ 2 R#�H W �.´/ D ´˝ 1g :

Clearly, R Š R#�1 � .R#�H/coH . Reciprocally, if r#h 2 .R#�H/coH , applying the map
idR ˝"˝ idH to the equality �.r#h/ D .r#h/˝ 1 we get at the left-hand side

.idR ˝"˝ idH /.�.r#h// D .idR ˝"˝ idH /
�
.r#h.1//˝ h.2/

�
D .r#".h.1//1/˝ h.2/ D .r#1/˝ h;
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while at the right-hand side

.idR ˝"˝ idH /..r#h/˝ 1/ D .r#".h/1/˝ 1 D .r#1/˝ ".h/1:

Comparing, we get h D ".h/1 2 K, and hence, r#h D r".h/#1 2 R#�1 Š R. Thus AcoH Š R,
as desired.

Hopf crossed products are relevant for characterizing Hopf Galois extensions having the normal
basis property (see Theorem 2.64).

A particular case of Hopf crossed products is when the cocycle � is trivial, that is, when �.g; h/ D

".g/".h/ for all g; h 2 H . In this case, we write R#H and the multiplication defined in (13) is
simply .r#g/.s#h/ D r.g.1/ � s/#g.2/h, for all r; s 2 R and g; h 2 H . R#H is called the smash
product of R andH .

Under these conditions, Theorem 2.42 can be restated as follows.

Theorem 2.43. Let R be anH -module algebra. Then A WD R#H is aH -comodule algebra with
structure map � W A ! A˝H given by

�.r#h/ D .r#h.1//˝ h.2/; for all r 2 R and h 2 H:

Moreover, AcoH Š R.

Corollary 2.44 (e.g. [17, Example 6.4.3]). Let R be anH -module algebra. Then R � R#H is
anH -Galois extension.

Proof. We have ˇ W .R#H/˝R .R#H/ ! .R#H/˝H defined as ˇ.´˝ w/ D .´˝ 1/�.w/,
for all ´;w 2 R#H . But since the first tensor product is taken over R#1 Š R, for all r; s 2 A

and h; g 2 H we have .r#h/.s#1/˝ .1#g/ D .r#h/˝ .s#g/. Thus, it is enough to study ˇ on
elements of the form .r#h/˝ .1#g/. That is,

ˇ..r#h/˝ .1#g// D ..r#h/˝ 1/�.1#g/ D ..r#h/˝ 1/
�
.1#g.1//˝ g.2/

�
D ..r#h/.1#g.1///˝ g.2/ D .r.h.1/ � 1/#h.2/g.1//˝ g.2/

D .r".h.1//#h.2/g.1//˝ g.2/ D .r#hg.1//˝ g.2/:

As in the proof of Proposition 2.34, ˇ�1 W .R#H/˝H ! .R#H/˝R .R#H/ is given by

ˇ�1..r#h/˝ g/ D .r#hS.g.1///˝ .1#g.2//; for all r 2 R and h; g 2 H:

Indeed, if r 2 R and h; g 2 H , we have

ˇ�1.ˇ..r#h/˝ .1#g/// D ˇ�1
�
.r#hg.1//˝ g.2/

�
D .r#hg.1/S..g.2//.1///˝ .1#.g.2//.2//
D .r#hg.1/S.g.2///˝ .1#g.3// D .r#h".g.1///˝ .1#g.2//
D .r#h/˝ .1#g/;

ˇ.ˇ�1..r#h/˝ g// D ˇ
�
.r#hS.g.1///˝ .1#g.2//

�
D .r#hS.g.1//.g.2//.1//˝ .g.2//.2/

D .r#hS.g.1//g.2//˝ g.3/ D .r#h".g.1///˝ g.2/

D .r#h/˝ g:

Therefore, R � R#H is aH -Galois extension.
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Smash products are relevant for Hopf Galois extensions since, whenH is finite dimensional, a
generator of ModH describes allH�-Galois extensions (see Theorem 2.67).

2.7.7. Groups acting on sets

The Galois map ˇ can be seen as the dual of a natural map arising whenever a group acts on a
set, as this example shows. Recall that if G is a (multiplicative) group and X is a non-empty
set, a function � W X �G ! X is called a (right) group action of G on X , which we denote by
.x; g/ 7! x � g, if

x � 1 D x and x � .gh/ D .x � g/ � h; for all x 2 X and g; h 2 G:

The action is said to be free if for a given g 2 G such that x � g D x, for some x 2 X , it follows
that g D 1; in other words, no element inG, besides 1, has fixed points. It is not hard to check that
an action is free if and only if, given g; h 2 G, the existence of an x 2 X such that x � g D x � h

implies g D h.

Also, recall that for any x 2 X , its orbit is defined by x � G WD fx � g W g 2 Gg. The set of all
orbits of X under the action of G is denoted by X=G and is called the quotient of the action.

Consider the map ˛ W X �G ! X �X given by .x; g/ 7! .x; x � g/. Notice that ˛ is injective if
only if the action is free. Moreover, the image of this map can bee seen as a pull-back. Indeed,

Im.˛/ D f.x; y/ 2 X �X W y D x � g for some g 2 Gg

D f.x; y/ 2 X �X W x �G D y �Gg

D X �X=G X;

called the fiber product of X with itself over X=G via the canonical map x 7! x �G.

We want to dualize this scenario; for simplicity assume that X and G are finite. We denote
by A WD kX the algebra of functions from X to k endowed with the pointwise addition and
multiplication. The unit of this algebra is the map 1A W X ! k given by x 7! 1k. We say that
a 2 A is constant on G-orbits if a.x � g/ D a.x/, for all x 2 X and g 2 G. The set of functions
constant on G-orbits is denoted by kX=G . Finally, recall that H WD .kG/� D kG is the Hopf
algebra of functions from G to k (see Example 2.7). Hence, we have the following.

Lemma 2.45 (e.g. [20, Example 8.1.9]). Let X be a finite non-empty set, G a finite group and
� W X �G ! X a right group action. If A D kX and H D kG , then:

(i) The right G-action on X induces a left G-action on A, given by .g � a/.x/ WD a.x � g/,

(ii) A is a rightH -comodule algebra with induced structure map �� W A ! A˝H . Moreover,
AcoH D kX=G .

Proof. (i) For every a 2 A, g; h 2 G and x 2 X we have

.1 � a/.x/ D a.x � 1/ D a.x/;

..gh/ � a/.x/ D a.x � .gh// D a..x � g/ � h/ D .h � a/.x � g/ D .g � .h � a//.x/:

(ii) Since for any non-empty sets U and V , kU�V Š kU ˝ kV , we have A ˝ H Š kX˝G .
Thus, we can define .��.a//.x; g/ D a�.x; g/ D a.x � g/. The verification of A being a right
H -comodule algebra is straightforward. It is evident that AcoH D kX=G .
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The map ˛ defined above dualizes to ˛� W A˝B A ! A˝H . By transposition, it is given by

˛�.a˝ b/ D .a˝ 1/��.b/; for all a; b 2 A; (14)

that is, ˛� D ˇ, the Galois map. By remarks in previous paragraphs, the freeness of the action is
equivalent to kX=G � kX being a kG-Galois extension. In other words, we have the following.

Theorem 2.46. LetX be a finite non-empty set,G a finite group and� W X�G ! X a right group
action. The Galois map ˇ D ˛� given by (14) is bijective if and only if ˛ W X �G ! X �X=G X

is bijective, and this holds if and only if the G-action is free.

2.7.8. Algebraic group schemes

Recall that a k-algebra A is called affine if it is finitely generated as k-algebra, i.e., there exist
finitely many elements a1; : : : ; an 2 A such that every element of A can be expressed as a
polynomial in a1; : : : ; an with coefficients in k. This definition we use is the one given in [20,
Definition 4.2.3]. However, nowadays in most contexts affine algebras are also required to be
commutative and reduced (i.e., without nilpotent elements).

We say thatX is an affine scheme ifX D Spec.A/ for a commutative affine k-algebraA. Similarly,
G is said to be an affine algebraic group scheme if G D Spec.H/ for some commutative affine
k-Hopf algebraH . As in Lemma 2.45, any action � W X �G ! X is determined by a coaction
� D �� W A ! A˝H .

Lemma 2.47 (e.g. [21, Example 2.12]). Let X D Spec.A/ be an affine scheme, G D Spec.H/
an affine algebraic group scheme and � W A ! A˝H a coaction. The map ˛ W X �G ! X �X

given by ˛.x; g/ D .x; x � g/, for all x 2 X and g 2 G, is a closed embedding if and only if
˛� W A˝ A ! A˝H given by ˛�.a; b/ D .a˝ 1/�.b/ is surjective. Under these conditions,
we say that the coaction � is free.

However, in contrast with the previous example, the Galois map cannot be ˛�, since its domain is
not A˝AcoH A. Instead, we shall proceed differently by applying the Spec functor to the exact
sequence

AcoH A A˝AcoH A;
�

�˝1

and getting an exact sequence of affine schemes

X �G X Spec.AcoH /;
�

�

where � is the projection on the first coordinate. Spec.AcoH / is called the affine quotient of X
by G.

In general, Y WD Spec.AcoH / does not necessarily coincide with X=G, the set of G-orbits on X .
However, if the coaction is free, it will happen that Y D X=G. Thus the map X �G ! X �Y X

is an isomorphism and X ! Y is faithfully flat. In an algebraic language, we have the following
result.

Theorem 2.48 (e.g. [21, Example 2.12]). Let X D Spec.A/ be an affine scheme, G D Spec.H/
an affine algebraic group scheme and � W A ! A˝H a free coaction. Then
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(i) ˇ W A˝AcoH A ! A˝H is bijective and so B � A isH -Galois,

(ii) A is a faithfully flat AcoH -module.

2.7.9. Principal bundles

In this example we discuss why, in noncommutative algebraic geometry, faithfully flat Hopf
Galois extensions are considered a generalization of classical affine principal bundles. Our main
reference for this example is the work of Brzeziński and Fairfax [40]. Let us first shortly recall
some basic terminology related to topological bundles.

Definition 2.49. A bundle is a triple .E; �;M/ where E and M are topological spaces an
� W E ! M is a continuous surjective map.

HereM is called the base space, E the total space and � the projection of the bundle. For each
m 2 M , the fiber overm is the topological spaceEm WD ��1.m/. A local section of a bundle is a
continuous map s W U ! E with �s D idM jU , where U is an open subset ofM . If each fiber of
a bundle is endowed with a vector space structure such that the addition and scalar multiplication
are continuous, we call it a vector bundle.

When the fibers of a bundle are all homeomorphic to a common space F , it is known as a fiber
bundle. An intuitive example of fiber bundle is the Möbius strip, since it has a circle that runs
lengthwise through the center of the strip as a baseM and a line segment running vertically for
the fiber F . The line segments are, in fact, copies of the real line, so F D R.

Remark 2.50. Commonly, in the definition of fiber bundle a condition of local triviality is
required for � , which means that, for each x 2 E, there is a open neighborhood Ux � M and a
homeomorphism �x W ��1.Ux/ ! Ux � F such that the following diagram commutes:

��1.Ux/ Ux � F

Ux

�x

�
p1

Here p1 denotes the first projection.

In the most general sense, a bundle over an objectM in a category C is a morphism � W E ! M

in C . For m W 1 ! M , a generalized element ofM , the fiber Em is defined as the pullback of E
along m. Moreover, given an object F in C , p W E ! M is called a fiber bundle with standard
fiber F , if given any m W 1 ! M , Em is isomorphic to F . Locally trivial fiber bundles can be
defined over sites (see e.g. [41, p. 20]).

Let X be a topological space and G a topological group. Suppose there is a right action � W X �

G ! X and write �.x; g/ D x �g. We had seen in previous examples that, even without structure,
G acts freely on X if and only if the map ˛ W X � G ! X � X , given by .x; g/ 7! .x; x � g/,
is injective if and only if ˛ W X �G ! X �X=G X is bijective. Since .X; �;X=G/ is a bundle,
where � is the natural projection, our goal is to characterize the freeness of the action in this
topological context.

Recall that a continuous map f W Y ! W is proper if the map f � idZ W Y � Z ! W � Z

is closed, for any topological space Z. The action � is said to be proper if it is continuous and
˛ W X �G ! X �X is proper.
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Definition 2.51. A G-principal bundle is a quadruple .X; �;M;G/ such that

(i) .X; �;M/ is a bundle and G is a topological group acting continuously on X from the
right via � W X �G ! X ,

(ii) � is principal (i.e., free and proper),

(iii) �.x/ D �.y/ if and only if there exists g 2 G such that y D x � g,

(iv) The induced map X=G ! M is a homeomorphism.

The first two properties tell us that principal bundles are bundles admitting a principal action of a
groupG on the total spaceX , i.e., principal bundles correspond to principal actions. But as desired,
those are just continuous free actions (i.e., continuous actions such that ˛ W X �G ! X �X is
injective). The third property ensures that the fibers of the bundle correspond to the orbits coming
from the action and the final one implies that the quotient space can topologically be viewed as
the base space of the bundle.

The following two examples are due to [42, p. 13] and [40, p. 4].

Example 2.52. Clearly, a principal right action of G on X automatically makes the bundle
.X; �;X=G/ a G-principal bundle. However, not every principal bundle has to be of this form. If
we replace X=G by a homeomorphic space, not only we are formally defining a different bundle,
but also it might happen that such a new bundle is not equivalent to .X; �;X=G/ [43, p. 157].

Example 2.53. Any vector bundle can be understood as a bundle associated to a principal bundle
in the following way: consider a G-principal bundle .X; �;M;G/ and let V be a representation
space of G, that is, a (topological) vector space with a (continuous) left G-action G � V ! V ,
denoted .g; v/ 7! g � v. Then G acts from the right on X � V by .x; v/ � g WD .xg; g�1 � v/, for
all x 2 X , v 2 V and g 2 G. Hence, we define E D .X � V /=G and a surjective (continuous)
map �E W E ! M given by .x; v/G 7! �.x/, for all x 2 X; v 2 V . Thus, we have the fiber
bundle .E; �E ;M; V /.

Remark 2.54. In a category C , given a group object G, a G-principal bundle (also called a
G-torsor) is a bundle � W E ! X equipped with a G-action � W E �G ! G on E over X such
that the canonical morphism ˛ W E �G ! E �X E is an isomorphism, which in turn means that
the action is free and transitive over X and hence each fiber of the bundle looks like G once we
choose a base point. In other words, this says that, after picking any point of X as the identity, X
“acquires a group structure” isomorphic to G. Hence, colloquially, a torsor is understood as a
group that has forgotten its identity.

In specific contexts (as that of the category of topological spaces, in Definition 2.51), several
perspectives for torsors come up. For example:

• In the category of sets, a G-torsor over a set X becomes a group action X � G ! G

(denoted by .x; g/ ! x � g) such that for any x1; x2 2 X , there exists a unique g 2 G such
that x1 �g D x2. Usually g is denoted by x2=x1 and is called the ratio of x1 and x2. Due to
the above, while in an multiplicative (resp. additive) group G one can multiply and divide
(resp. add and subtract) elements, in a G-torsor one can multiply (resp. add) an element of
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G to an element of X and get a result in X , or one can divide (resp. subtract) two elements
of X and get a result in G. Basic examples of torsors are the anti-derivatives of a function
or the euclidean plane without the origin (see the discussion at the start of Section 2.9).

• In algebraic geometry, given a smooth algebraic group G, a G-torsor over a scheme X is a
scheme with an action of G that is locally trivial in the given Grothendieck topology [44].

• Recent works in measurement theory attempt to understand the algebraic structure underly-
ing the quantity calculus using topological bundles (see e.g. [45, 46]).

Focusing on topological bundles, we want to dualize the setup previously described in order to
obtain a noncommutative version. For simplicity, assume that X is a complex affine variety with
an action of an affine algebraic group G and set Y D X=G with the usual Euclidean topology.
Let A WD O.X/, B WD O.Y / and H WD O.G/ be the corresponding coordinate rings. Since
O.G�G/ Š O.G/˝O.G/,H is a Hopf algebra with operations given by�.f /.g; h/ D f .gh/,
".f / D f .e/, and .Sf /.g/ D f .g�1/.

Using the fact that G acts on X from the right, A is a rightH -algebra comodule with structure
map � W A ! A ˝ H given by �.a/.x; g/ WD a.x � g/ [40, p. 5]. Also, B can be viewed as
a subalgebra of A via �� W B ! A given by b 7! b ı � , where � is the canonical surjection
� W X ! X=G. Indeed, the map �� is injective since b ¤ b0 in B D O.X=Y / means that there
exists at least one orbit x �G such that b.x �G/ ¤ b0.x �G/. But, since �.x/ D x �G, it follows
��.b/ ¤ ��.b0/. Furthermore, a 2 ��.B/ if and only if a.x � g/ D a.x/, for all x 2 X and
g 2 G, meaning that �.a/.x; g/ D .a˝ 1/.x; g/, where 1 W G ! C is the unit constant function
1.g/ D 1. Hence a 2 AcoH . The other inclusion is obvious, so AcoH D ��.B/ Š B .

Finally, notice that we can identify O.X �Y X/ with O.X/˝O.Y / O.X/ D A˝B A via the map
�.a˝a0/.x; y/ D a.x/a0.y/, where �.x/ D �.y/. This last condition implies the well-definition
of � . With this, we have the following result.

Theorem 2.55 ([40, Proposition 4]). Let X be a complex affine variety with a right action of an
affine algebraic group G and put Y D X=G. Let A WD O.X/, B WD O.Y / andH WD O.G/ be
the corresponding coordinate rings. Then the following assertions are equivalent:

(i) The action of G on X is free,

(ii) The map ˛� W O.X �Y X/ ! O.X � G/ given by f 7! f ı ˛ is bijective, where
˛ W X �G ! X �Y X is defined as .x; g/ 7! .x; xg/.

(iii) The map ˇ W A˝B A ! A˝H given by ˇ.a˝ a0/ D a�.a0/ is bijective and thus B � A

is a rightH -Galois extension.

Basically this theorem states that in bundles the freeness condition is equivalent to the Galois map
being bijective. Hence, the Hopf Galois extension condition is a necessary condition to ensure
that a bundle is principal.

However, not all information about the topological spaces involved is encoded in their coordinate
rings, so to make a transparent reflection on the richness of principal bundles, we require an
additional notion.

Universitas Scientiarum:58–161 http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum

http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum


88 Some interactions between Hopf Galois extensions and noncommutative rings

Definition 2.56. Let H be a K-Hopf algebra with bijective antipode and let A be a right H -
comodule algebra with structure map � W A ! A˝H . We say that A is a principalH -comodule
algebra, if it satisfies the following conditions:

(PCA1) AcoH � A is a rightH -Galois extension.

(PCA2) (Equivariant projectivity condition) The map B ˝A ! A, given by b˝ a ! ba, splits
as a left AcoH -module and rightH -comodule morphisms.

The concept of equivariant projectivity here replaces that of faithful flatness used in general
Hopf Galois theory. Under the hypothesis of bijective antipode, in a Hopf Galois extension these
two concepts are equivalent, while in general only the implication “equivariant projectivity” )

“faithful flatness” holds [47].

The next result is due to [48] and [49].

Theorem 2.57. Let H be a C-Hopf algebra with bijective antipode and let A be a right H -
comodule algebra with structure map � W A ! A˝H . A is a principal H -comodule algebra
if and only if it admits a strong connection form, that is, if there exists a map ! W H ! A˝ A

such that !.1/ D 1 ˝ 1, mH! D uH "H , .! ˝ idH /� D .idA˝�/!, and .S ˝ !/� D

.�A;H ˝ idA/.�˝ idA/!.

This theorem provides an effective method for the verification of the principality of a comodule
algebra. For example, every cleft comodule algebra (see Definition 2.62 below) is a principal
comodule algebra [40, Example 3].

2.7.10. Other examples

Several other examples of Hopf Galois extensions (HGE) are treated in the literature. The list
here is in chronological order and is non-exhaustive.

• HGE for Azumaya algebras [18, Theorem 6.20]. For a fixed Hopf algebra H , let E be
an Azumaya algebra and let C � E be a subalgebra such that the right C -module E is a
progenerator. Doi and Takeuchi showed that there is a one-to-one correspondence between
the right H -Galois extensions BcoH � B (such that there exists an algebra morphism
B ! E and BcoH Š C ) and the measuring actions of the form EC ˝H ! EC , where
EC WD fx 2 E W cx D xc; for all c 2 C g.

• Differential Galois theory [20, Section 8.1.3]. Let E � k be a field of characteristic
p > 0 and let g � Derk.E/ be a restricted Lie algebra of k-derivations of E, which is
finite-dimensional over k. If the restricted enveloping algebra is denoted u.g/ and it acts
on E via g acting as derivations, then for H D u.g/�, EcoH D Eg D fa 2 E W x � a D

0; for all x 2 gg. Eg � E is u.g/�-Galois if and only if E ˝ g ! Derk.E/ is injective.

• HGE for Taft Hopf algebras [50]. Masoka classified cleft extensions for certain Hopf
algebras generated by skew primitive elements. A particular case is the Taft Hopf algebra
of Example 2.12.

• Quantum principal bundles with a compact structure group [51]. Durđević gave another
generalization of classical principal bundles, via the so-called quantum principal bundles,
which are defined in terms of �-algebras. In his work it is shown that every quantum
principal bundle with a compact structure group is a HGE.
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• HGE for the Drinfel’d double of the Taft algebra [52]. In general, the Drinfel’d double of a
finite dimensional k-Hopf algebraH is the tensor product algebraD.H/ D H ˝H�. This
construction is a quasi-triangular Hopf algebra. Roughly speaking, the Drinfel’d double of
the Taft algebra can be seen as Uq.sl2.k//0 with two copies of the group-like generators.
Schauenburg classifies all the Galois objects over Uq.sl2.k//0 andD.Tn2.!//.

• HGE for pointed Hopf algebras [53]. Günther developed a systematic method to calculate
cleft extensions for pointed Hopf algebras. In particular, cleft extensions for the quan-
tum enveloping algebra Uq.sl2.k// (see Example 2.13) and the Frobenius-Lusztig kernel
Uq.sl2.k//

0 were classified.

• Reduced enveloping algebras [54, Section 6]. Let k be a field of characteristic p > 0,
and let g be a finite dimensional p-Lie algebra over k. For � 2 g�, denote by u�.g/
the corresponding reduced enveloping algebra of g. In other words u�.g/ is the factor
algebra of the universal enveloping algebra U.g/ by its ideal generated by central elements
xp � xŒp� � �.x/p1, with x 2 g. Skryabin shows that u�.g/ is a u0.g/�-Galois extension
if and only if u�.g/ is central simple.

• HGE for Calabi-Yau Hopf algebras [55]. Yu showed that Hopf Galois objects of a twisted
Calabi-Yau Hopf algebra with bijective antipode are also twisted Calabi-Yau, and described
explicitly their Nakayama automorphism. As an application, Yu shows that cleft objects
(see Definition 2.62) of twisted Calabi-Yau Hopf algebras and Hopf Galois objects of the
quantum automorphism groups of non-degenerate bilinear forms are twisted Calabi-Yau.

• HGE for monoidal Hom-Hopf algebras [56]. The concept of Hom-Hopf algebra is similar
to that of monoid object in a monoidal category, and have appearances in some physical
contexts. Chen and Zhang generalized the Schneider’s affineness theorem ([20, Theorem
8.5.6]) for monoidal Hom-Hopf algebras in terms of total integrals and Hom-Hopf Galois
extensions.

• Zhang twists [57, to appear]. The notion of a Zhang twist of a graded algebra A was
introduced as a deformation of the original graded product by a graded authomorphism �

of A. It is denoted by A� . Among other results, the mentioned paper shows that the Zhang
twistH� of a graded Hopf algebraH is left (resp. right)H -cleft (see Definition 2.62) by
realizingH� Š �H (resp. H� Š H��1) for a suitable 2-cocycle � (see Example 2.96).

2.8. Properties of Hopf Galois extensions

Since their first appearance Hopf Galois extensions have been intensively studied, and used as a
tool in the investigation and classification of Hopf algebras themselves. In this section, we review
some of those studies by following [17, 20, 21, 58].

The first result we present is the structure of Hopf module morphisms for the Galois map. The
proof is a routine check of (HM3) for each case.

Proposition 2.58 ([58, Remark 1.1]). Let AcoH � A be a rightH -Galois extension. Then

(i) A˝AcoH A is a left-right .A;H/-Hopf module with left A-module structure given by

a.x ˝ y/ D ax ˝ y; for all a; x; y 2 A;
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and rightH -comodule structure given by

x ˝ y 7! x.0/ ˝ y ˝ x.1/; for all x; y 2 A: (15)

(ii) A˝H is a left-right .A;H/-Hopf module with left A-module structure given by

a.x ˝ h/ D ax ˝ h; for all a; x 2 A and h 2 H;

and rightH -comodule structure given by

x ˝ h 7! x.0/ ˝ h.2/ ˝ x.1/S.h.1//; for all x 2 A and h 2 H: (16)

(iii) A˝AcoH A is a right-right .A;H/-Hopf module with right A-module structure given by

.x ˝ y/a D x ˝ ya; for all a; x; y 2 A;

and rightH -comodule structure given by

x ˝ y 7! x ˝ y.0/ ˝ y.1/; for all x; y 2 A: (17)

(iv) A˝H is a right-right .A;H/-Hopf module with right A-module structure given by

.x ˝ h/a D xa.0/ ˝ ha.1/; for all a; x 2 A and h 2 H;

and rightH -comodule structure given by

x ˝ h 7! x ˝ h.1/ ˝ h.2/; for all x 2 A and h 2 H: (18)

Hence, the Galois map ˇ W A˝AcoH A ! A˝H is a morphism in bothAModH and ModHA .

A classical theorem in Galois theory says that, if F � E is a finite Galois extension of fields with
Galois group G, then there exists a 2 E such that fx � a W x 2 Gg is basis for E over F . Such
feature is known as the normal basis property. An important question in Hopf Galois theory is
whether such property is satisfied.

Definition 2.59 (Normal basis property). Let A be a rightH -comodule algebra and consider the
algebra extension AcoH � A (not necessarily being Galois). We say that the extension has the
right normal basis property, if A Š AcoH ˝H as left AcoH -modules and rightH -comodules.

We review some basic facts about finite-dimensional Hopf algebras in order to show that, in this
case, the normal basis property is equivalent to the classical notion.

Definition 2.60 (Integrals). LetH be a K-Hopf algebra.

(i) A left integral inH is an element � 2 H such that h� D ".h/�, for all h 2 H .

(ii) A right integral inH is an element �0 2 H such that �0h D ".h/�0, for all h 2 H .

We denote the space of left (resp. right) integral by
R l
H (resp.

R r
H ).
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IfH is such that
R l
H D

R r
H , it is called unimodular. (Counter)examples of such situation can be

found in [20, Examples 2.1.2].

Using the Fundamental Theorem of Hopf modules, Larson and Sweedler proved that for a finite-
dimensional k-Hopf algebra, both

R l
H and

R r
H are one-dimensional. Moreover, if � 2

R l
H and

� ¤ 0,H is a cyclic leftH�-module with generator � for the action* described in Example 2.25.
That is, we can identifyH withH� * �. As a consequence, Maschke’s theorem for Hopf algebras
states that H is semisimple if and only if ".

R l
H / ¤ 0 if and only if ".2rH / ¤ 0. In this case,R l

H D
R r
H and we may choose � such that ".�/ D 1 (see e.g. [20, Theorems 2.1.3 and 2.2.1]).

We use these results to prove the following.

Proposition 2.61 (e.g. [21, Lemma 3.5]). LetH be a finite-dimensional k-Hopf algebra such
that dimk.H/ D n and let A be a right H -comodule algebra. Consider H� acting on A with
AH

�

D AcoH . Then the following assertions are equivalent:

(i) There exists u 2 A and ffig � H� such that ff1 � u; : : : ; fn � ug is a basis for the free left
AcoH -module A (i.e., A has a normal basis over AcoH in the classical sense).

(ii) The algebra extension AcoH � A has the right normal basis property.

Proof. (i))(ii): Assume that A has a normal basis over AcoH in the classical sense. Using the
identification H D H� * � of the previous paragraph, we may consider the left H�-module
map � W AcoH ˝H ! A given by

�.b ˝ .f * �// WD b.f � u/; for all b 2 AcoH and f 2 H�:

AcoH ˝H is a left H� module via f � .b ˝ h/ D b ˝ .f * h/, since this is the dual of the
right comodule structure given by id˝�. Thus, � is a right H -comodule map. Since this is a
left AcoH -module isomorphism, AcoH has the normal basis property.

(ii))(i): Now, assume that there exists an isomorphism � W AcoH ˝ H ! A of left AcoH -
modules and rightH -comodules. Given a k-basis ff1; : : : ; fng forH�, the set

f1˝ .f1 * �/; : : : ; 1˝ .fn * �/g

is an AcoH -basis for AcoH ˝H . Hence, it follows that ff1 � u; : : : ; fn � ug is an AcoH -basis for
A, where u D �.1˝ �/. Thus AcoH � A has a normal basis in the usual sense.

In general, not all Hopf Galois extensions have the normal basis property [20, Example 8.2.3].
However, we mention the work of Doi and Takeuchi that characterizes extensions having the
normal basis property.

Definition 2.62 (Cleft extension). Let A be a rightH -comodule algebra. The algebra extension
AcoH � A is said to be H -cleft if there exists a right H -comodule map 
 W H ! B which is
convolution invertible.

Remark 2.63. If AcoH � A is a H -cleft extension, then the map 
 can always be chosen
normalized, in the sense that 
.1/ D 1. Indeed, if it is not normalized we can replace 
 by

 0 D 
�1.1/
 . This is possible since 1 is a group-like element and hence 
.1/ is invertible with
inverse .
.1//�1 D 
�1.1/.
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Theorem 2.64 (e.g. [17, Theorem 6.4.12]). Let A be a right H -comodule algebra. Then the
following assertions are equivalent:

(i) There exists an invertible 2-cocycle and an action ofH on AcoH such that A Š AcoH#�H .

(ii) The extension AcoH � A isH -cleft.

(iii) AcoH � A is aH -Galois extension and has the normal basis property.

Roughly speaking, this result establishes that every Hopf crossed product is “cleft” using the
convolution invertible map 
 W H ! A given by 
.h/ D 1#h.

Now, we discuss some conditions equivalent to AH � H beingH�-Galois.

Lemma 2.65 (e.g. [20, Lemma 8.3.2]). Let H be an arbitrary Hopf algebra and A a left
H -module algebra. Then the following assertions hold:

(i) A is a left A#H -module, via .a#h/ � b WD a.h � b/, for all a; b 2 A and h 2 H .

(ii) A is a right AH -module, via right multiplication.

(iii) A is a .A#H;AH /-bimodule.

(iv) AH Š End.A#HA/
op as algebras.

Proof. (i) and (ii) are straightforward.

(iii) Let a 2 AH , b#h 2 A#H and c 2 A. Hence, using the associativity of A we have

.b#h/ � .ca/ D b.h � .ca//
(6)
D b

�
.h.1/ � c/.h.2/ � a/

�
D b

�
.h.1/ � c/".h.2//a

�
D bŒ.h � c/a� D Œb.h � c/�a D Œ.b#h/ � c�a:

(iv) Let  W AH ! End.A#HA/ be given by a 7! ar , where ar is the right multiplication by a in
AH . Then ar is indeed a A#H -map since, for all a 2 AH , b#h 2 A#H and c 2 A, we have

ar..b#h/ � c/ D Œ.b#h/ � c�a D .b#h/ � .ca/ D .b#h/ � ar.c/:

On the other hand, if a; b 2 AH and x 2 A#HA, then

 .aC b/.x/ D .aC b/r.x/ D x.aC b/ D xaC xb D ar.x/C br.x/ D  .a/.x/C  .b/.x/;

 .ab/.x/ D .ab/r.x/ D x.ab/ D .xa/b D .ar.x//b D br.ar.x// D brar.x/;

 .1A/.x/ D .1A/r.x/ D x1A D x D idA.x/:

Hence,  is an algebra anti-morphism. Clearly ar D 0 if and only if a1 D a D 0, so  is
injective. Moreover, it is surjective since for any � 2 End.A#HA/ and a 2 A, we have

�.a/ D �.a1A/ D �.a.1H � 1A// D �..a#1H / � 1A/

D .a#1H / � �.1A/ D a.1H � �.1A// D a�.1A/;

and hence � D �.1A/r D  .�.1A//. Then �.1A/ is indeed an element of AH since, for any
h 2 H ,

h � �.1A/ D .1A#h/ � �.1A/ D �..1A#h/ � 1/ D �.h � 1A/
(6)
D ".h/�.1A/:
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When the antipode is bijective, the laterality in this result can be interchanged.

Lemma 2.66 ([59, Lemma 0.3]). Let H be a Hopf algebra such that the antipode S is bijective,
and let A be a left H -module algebra. Then the following assertions hold:

(i) A is a right A#H -module, via

b � .a#h/ D S�1.h/ � .ba/; for all a; b 2 A and h 2 H;

(ii) AH Š End.AA#H / as algebras.

Proof. (i) The proof is similar to that of Lemma 2.65.

(ii) Let  W AH ! End.AA#H / be given by a 7! al , where al is the left multiplication by a in
AH . Then al is indeed an A#H -map since, for all a 2 AH , b 2 A and c#h 2 A#H , we have

al.b � .c#h// D al.S
�1.h/ � .bc// D a.S�1.h/ � .bc//

D S�1.h/ � .abc/ D .ab/ � .c#h/ D al.b/ � .c#h/:

Here we used that the multiplication of A is aH -module map. On the other hand, if a; b 2 AH

and x 2 AA#H , then

 .aC b/.x/ D .aC b/lr.x/ D .aC b/x D ax C bx D al.x/C bl.x/ D  .a/.x/C  .b/.x/;

 .ab/.x/ D .ab/l.x/ D .ab/x D a.bx/ D a.bl.x// D al.bl.x// D albl.x/;

 .1A/.x/ D .1A/l.x/ D 1Ax D x D idA.x/:

Hence,  is an algebra morphism. Clearly al D 0 if and only if 1a D a D 0, so  is injective.
Moreover, it is surjective since for any � 2 End.AA#H / and a 2 A, we have

�.a/ D �.1H � a/ D �.S�1.1H / � .1Aa// D �.1A � .a#1H // D �.1A/ � .a#1H /
D S�1.1H / � .�.1A/a/ D �.1A/a

and hence � D �.1A/l D  .�.1A//. Then �.1A/ is indeed an element of AH since, for any
h 2 H ,

h � �.1A/ D �.1A/ � .1A#S.h// D �.1A � .1A#S.h/// D �.h � 1A/
(6)
D ".h/�.1/:

Using Lemma 2.65 and the notion of left trace function (i.e., maps of the form O� W A ! AH

such that O�.a/ D �a, for some left integral � ¤ 0 inH ), works of Doi, Kreimer, Takeuchi and
Ulbrich lead to the following characterization ofH�-Galois extensions [3, 37, 60].

Theorem 2.67 (e.g. [20, Theorem 8.3.3]). Let H be a finite-dimensional k-Hopf algebra and
A a leftH -module algebra (and thus, a rightH�-comodule). Then the following assertions are
equivalent:

(i) AH � A is a rightH�-Galois extension.

(ii) The map � W A#H ! End.AAH / is an algebra morphism and A is finitely generated
projective as a right AH -module.
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(iii) A is a generator for the category of left A#H -modules.

(iv) If 0 ¤ � 2
R l
H , then the map Œ�;�� W A ˝AH A ! A#H , given by Œa; b� D a�b, is

surjective.

(v) For any left A#H -moduleM , consider A˝AH MH as a left A#H -module by letting A#H
act on A via � . Then the map ˆ W A˝AH MH ! M , given by a˝m 7! a �m, is a left
A#H -module isomorphism.

In [21, Example 4.6] it is shown that, even for group actions, Theorem 2.67 does not necessarily
holds.

Now, we discuss Morita contexts. Two rings R;S are connected by a Morita context if there exist
an .R; S/-bimodule RVS , a .S;R/-bimodule SWR and bimodule morphisms

Œ�;�� W W ˝R V ! S and .�;�/ W V ˝S W ! R

such that, for all v; v0 2 V and w;w0 2 W , the relations

v0
� Œw; v� D .v0; w/ � v 2 V and Œw; v� � w0

D w � .v; w0/ 2 W

hold. This is equivalent to saying that the array

T D

�
R V

W S

�
becomes an associative ring, where the formal operations are those of 2� 2matrices, using Œ�;��
and .�;�/ to compute the multiplication.

When the two maps Œ�;�� and .�;�/ are surjective, we say that the rings R and S are Morita
equivalent. This is equivalent to saying that the four functors

� ˝R V W ModR ! ModS ; � ˝S W W ModS ! ModR
W ˝R � W RMod ! SMod V ˝S � W SMod ! RMod

are equivalences of categories [9, Section 3.5.5].

We shall see that, for any finite-dimensional Hopf algebraH and any leftH -module algebra A,
such a set-up exists for the rings R D AH and S D A#H , using V D W D A. By Lemma 2.65,
we already guaranteed that A is an .A#H;AH /-bimodule. However, the structure described in
Lemma 2.66 is not enough for the other laterality to work. Hence, we proceed as follows: recall
that ifH is finite-dimensional, then S is bijective and both

R r
H and

R l
H are one-dimensional. Also,

notice that if 0 ¤ � 2
R l
H , then �h 2

R l
H , for any h 2 H . Thus, there exists ˛ 2 H� such that

�h D ˛.h/�, for all h 2 H .

With the notation of Example 2.25, we define h˛ WD ˛ * h. Since ˛ is multiplicative, it is
a group-like element of H� and thus the map h 7! h˛ is an automorphism of H . By [61],
�˛ D S.˛/. We define our new right action of A#H on A by

a � .b#h/ D S�1h˛ � .ab/; for all a; b 2 A and h 2 H: (19)

Notice that this is the action of Lemma 2.66 but “twisted” by ˛.
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Theorem 2.68 ([59, Theorem 2.10]). LetH be a finite-dimensional Hopf algebra and A a left
H -module algebra (and hence, a rightH�-comodule algebra). Consider A inA#HModAH as in
Lemma 2.65, and inAH ModA#H with the right action ofA#H given by (19). Then V D AHAA#H
and W D A#HAAH , together with the maps

Œ�;�� W A˝AH A ! A#H given by Œa; b� WD a�b;

.�;�/ W A˝A#H A ! AH given by .a; b/ WD � � .ab/;

give a Morita context for AH and A#H .

Using the left trace function, O�.A/ D � �A D .A;A/. If we also consider the idealA�A D ŒA;A�,
the next result is immediate.

Corollary 2.69 ([21, Corollary 2.9]). LetH be a finite-dimensional Hopf algebra and A a left
H -module algebra. If 0 ¤ � 2

R l
H is such that the left trace function O� W A ! AH is surjective

and A�A D A#H , then A#H is Morita equivalent to AH .

Since simplicity of A#H implies that A�A D A#H and semisimplicity of H implies that the
trace function is surjective [59, Corollary 1.3], the next result follows from Theorem 2.67.

Corollary 2.70. LetH be a semisimple finite-dimensional Hopf algebra and A a leftH -module
algebra such that A#H is a simple algebra. Then AH � A is H�-Galois and AH is Morita
equivalent to A#H .

Finally, we mention a relevant result also involving equivalences of categories of modules.

Theorem 2.71 ([62, Theorem I]). LetH be an arbitrary Hopf algebra with bijective antipode and
A a rightH -comodule algebra. Then the following assertions are equivalent:

(i) AcoH � A is rightH -Galois and A is a faithfully flat left (or right) AcoH -module.

(ii) The Galois map ˇ W A˝AcoH A ! A˝H is surjective and A is an injectiveH -comodule.

(iii) The functor ˆ W ModAcoH ! ModHA given byM 7! M ˝AcoH A is an equivalence.

(iv) The functor ˆ0 W AcoH Mod ! AModH given byM 7! A˝AcoH M is an equivalence.

Although in this section we tried to cover several properties of Hopf Galois extensions (HGE), the
list is large and it would be impossible to address them all. Nevertheless, we shall mention some
remarkable recent advances in Hopf Galois theory. The presented list appears in chronological
order and is non-exhaustive.

• Representation theory of HGE [58]. Schneider adressed some questions of representation
theory for HGE, such as induction and restriction of simple or indecomposable modules. In
particular, generalizations of classical results on representations of groups and Lie algebras
were given.

• Maschke’s theorem for HGE [63]. Classically, Maschke’s Theorem states that if G is a
finite group and k a field whose characteristic does not divide the order of G, then the
group algebra kG is semisimple. For a finitely generated projective Hopf algebraH and an
H -Galois extension AcoH � A, Doi proved an analogous of Maschke’s Theorem, stating
that if AcoH is semisimple Artinian, then so is A.
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• Hopf biGalois objects and Galois theory for HGE [22, 64]. Van Oystaeyen and Zhang
proved that if k � A are fields such that k � A is a .L;H/-biGalois extension, then
there is a one-to-one correspondence between the Hopf ideal of L and the H -costable
intermediate fields F � A. This correspondence theorem is a generalization of the classical
Galois connection in the theory of field extensions. On the other hand, Schauenburg proved
that the existence of a .L;H/-biGalois object is equivalent toH and L being monoidally
co-Morita k-equivalent, i.e, their monoidal categories of comodules are equivalent as
monoidal k-linear categories. This leads to another Galois correspondence that is studied
in [65]. More recently, the existence of a Galois connection between subalgebras of an
H -comodule algebra and generalized quotients of the Hopf algebraH has been studied in
unpublished works of Marciniak and Szamotulski [66].

• Hopf Galois coextensions [67, 68]. We studied above the relation between HGE and the
normal basis property; however, there exists a coalgebra version of the normal basis property
involving the notion of crossed coproduct and cleft coextension, introduced by Dăscălescu,
Militaru and Raianu. This is further studied by Caenepeel, Wang and Wang by addressing
the notion of Hopf Galois coextension and twisting techniques. More recently, this theory
was used in [69] to show that Hopf Galois coextensions of coalgebras are the sources of
stable anti Yetter-Drinfeld modules.

• Hochschild cohomology on HGE [70]. Ştefan constructed a spectral sequence forH -Galois
extensionsAcoH � A, and used it to connect the Hochschild cohomologies and homologies
of A and AcoH . This is further studied in [71].

• HGE with central invariants [72]. AH -Galois extension AcoH � A is said to have central
invariants if AcoH � Z.A/. Rumynin studied these HGE, addressing some geometric
properties which are close to those of principal bundles and Frobenius manifolds.

• Prime ideals in HGE [73]. LetH be a finite-dimensional Hopf algebra and AcoH � A a
H -Galois extension such that A is a faithfully flat as a left AcoH -module. Montgomery
and Schneider gave a comparison between the prime ideals of AcoH and of A, studying
in particular the classical Krull relations. Since Hopf crossed products are examples of
faithfully flat Galois extensions, those results were applied to crossed products. These also
show that if H is semisimple and semisolvable, then A is semiprime, provided AcoH is
H -semiprime.

• Cyclic homology of HGE [74]. For a Hopf algebraH , the category CMm.H/ of modular
crossed modules over H was introduced by Jara and Ştefan. If M 2 CMm.H/ and L
is a Hopf subalgebra, these allow the computing of the cyclic homology of H ˝L M

under certain restrictions for L andM . In particular, this was used to calculate the cyclic
homology of group algebras, quantum tori and almost symmetric algebras. This is further
studied in [75].

• Algebraic K-theory of HGE [49, 76]. Principal extensions given in Definition 2.56 were
firstly introduced by Brzeziński and Hajac, and along the applications given in Section 2.7.9,
principal extensions also were used to construct an explicit formula for the Chern-Galois
character (which is a homomorphism of Abelian groups that assigns the homology class
of an even cyclic cycle to the isomorphism class of a finite-dimensional corepresentation).
Later, Ardakov and Wadsley showed that the Cartan map from K-theory to G-theory of
HGE is a rational isomorphism, provided the subalgebra of coinvariants is regular, the
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base Hopf algebra is finite-dimensional and its Cartan map is injective in degree zero. In
particular, this covers the case of a crossed product of a regular ring with a finite group,
and was applied to the study of Iwasawa modules.

• Generalized HGE [47]. By definition, an extension AcoH � A isH -Galois if the Galois
map ˇ is bijective. Criteria under which surjectivity of ˇ (which is usually much easier to
verify) is sufficient were studied by Schauenburg. Such conditions were used to investigate
the structure of A as an AcoH -module and asH -comodule. In particular, equivariant pro-
jectivity of extensions in several important cases was proven. Moreover, these reconstructed
the theory when the Hopf algebraH is interchanged for a quotient coalgebra or an one-sided
module of a Hopf algebra.

• Homotopy theory of HGE [77, 78]. As we have remarked before, HGE can be viewed as
the noncommutative analogues of principal fiber bundles where the role of the structural
group is played by a Hopf algebra. It is therefore natural to adapt the concept of homotopy
to them. Such construction was made by Kassel and Schneider. They classified HGE up to
homotopy equivalence and some of their homotopy invariants were studied. Later, Hess
developed a theory of homotopic HGE in monoidal categories (with compatible model
category structure), which generalizes the case of structured ring spectra.

• HGE in braided tensor categories [79]. Braided Hopf algebras have attracted much at-
tention in both mathematics and mathematical physics for playing an important role in
the classification of finite-dimensional pointed Hopf algebras (see e.g. [80]). The im-
mediate generalization of such setup is the concept of braided tensor categories (BTC).
Hence, unpublished work of Zhang and Zhang attempts to generalize Galois theory to
BTC by showing that if the category C is BTC and has (co)equalizers, A D B#�H is a
crossed product algebra if and only if the extension B � A is Galois, the canonical map
q W A ˝ A ! A ˝B A is split, and A is isomorphic as a left B-module and as a right
H -comodule to B ˝H in C (compare with Theorem 2.64).

• HGE for weak Hopf algebras and Hopf algebroids [81, 82]. Both theories of weak Hopf
algebras and Hopf algebroids are natural generalizations of the classical notion (and, under
some conditions, equivalent). Caenepeel and De Groot have studied the Galois theory for
weak Hopf algebras objects, while Böhm for Hopf algebroids.

• Morita (auto)equivalences of HGE [83, 84]. Let AcoH � A and BcoH � B be two
H -Galois extensions. Caenepeel, Crivei, Marcus and Takeuchi investigated the category
AModHB of relative Hopf bimodules, and therefore theMorita equivalences betweenA andB
induced by them. More recently, the first and third mentioned authors addressedH -Morita
autoequivalences of HGE, introduced the concept ofH -Picard group, and established an
exact sequence linking theH -Picard group of the comodule algebra A and the Picard group
of AcoH .

• Generic HGE [85, 86]. Aljadeff and Kassel studied twisted algebras, which are associative
algebras ˛H obtained from a given Hopf algebraH by twisting its product by a cocycle ˛.
These coincide with the class of cleft objects (as we saw in the examples, classical Galois
extensions and strongly graded algebras belong to this class). The authors attached two
universal algebras U.H/˛ and A.H/˛ to each twisted algebra ˛H , so the second author
later studied A.H/˛, which is a generic version of ˛H . Then, he calculated the generic
cocycle cohomologous to the original cocycle ˛, and considered the commutative algebra
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B.H/˛ generated by the values of the generic cocycle and of its convolution inverse. It
was shown that A.H/˛ is a cleftH -Galois extension of B.H/˛ , called a genericH -Galois
extension. Some theory regarding versal deformation spaces was also developed.

• Cohen-Macaulay invariant subalgebra of dense HGE [87]. LetH be a finite-dimensional
Hopf algebra and A a left H -module (and hence, a right H�-comodule). The algebra
extension AH � A is called a H�-dense Galois extension if the cokernel of the Galois
map ˇ W A˝AH A ! A˝H� is finite-dimensional (no bijectivity required). Obviously
the concept of Hopf dense Galois extension is a weaker version of that of HGE. WhenH is
semisimple and A is leftH -Noetherian, He and Zhang studied (unpublished work) whether
AH inherits the AS-Cohen-Macaulay property from A under some mild conditions, and
whether A, when viewed as a right AH -module, is a Cohen-Macaulay module.

• HGE for Hopf categories [88, 89]. The concept of k-algebra can be translated to category
theory using the notion of k-linear category. Similarly, categorical notions of bialgebras
and Hopf algebras have been introduced (respectively, k-linear semi-Hopf categories
and k-linear Hopf categories). Batista, Caenepeel and Vercruysse proved that several
classical properties of Hopf algebras can be generalized to Hopf categories. Later, the
second mentioned author and Fieremans introduced the notion of a Hopf–Galois category
extension. Also, the concept of descent datum (see Definition 2.73) was categorized.

• Galois cowreaths [90]. Bulacu and Torrecillas studied pre-Galois cowreath, which are a
generalization of HGE to monoidal categories via the language of cowreaths (coalgebras in
a suitable associative monoidal category associated to an algebra in a monoidal category).

• Discriminant of HGE [91]. The discriminant of an algebra over a commutative ring is a
well known construction that has been used to solve several algebraic problems such as the
Zariski cancellation problem (see e.g. [92]). In work of Zhu (to appear), the discriminant
of the smash product was calculated by finding a formula for the discriminant of a HGE.

• Partial HGE [93]. Using the language of partial actions, a notion of partial (co)module
algebra can be given. Hence, the mentioned paper (to appear) introduced Hopf–Galois
partial extensions and studied several properties analogous to those presented in this section.

2.9. Quantum torsors

We mentioned in Remark 2.54 that the notion of (classical) G-torsor is present in many algebraic
formulations of different contexts, such as vector bundle, affine scheme, categorical bundles, etc.;
furthermore, dualizing such setup, we motivated the notion of Hopf Galois extension based on
the bijectivity of the map ˛� (see Section 2.7.9). However, in recent years different approaches to
noncommutative torsors have been achieved. In this section, we review the one given by Grunspan
which, instead of working with ˛� and the freeness of the action, uses a “parallelogram” property
of torsors [4]. As Zoran Škoda has pointed to us, this same notion was discovered independently
by him [5]. We shall give a rough motivation to this “parallelogram” property with one simple
example (see also [4, Section 1.2] and [5, Section 1.1]).

Recall that, when working with vectors on the Euclidean plane, a point is fixed and called the
origin. Thus, any point in the plane is identified with the arrow going from the origin to that point.
This lets us add points in the plane by adding their arrows (in other words, the parallelogram
property), making R2 a group. However, if we forget the origin, we lost the identification of points
with arrows. In this case we cannot longer add them, but we can still subtract two of them and get
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an arrow. Thus, the plane (without origin) is a R2-torsor. The moral of this is that, although we are
not longer able to explicitly apply the parallelogram property with arrows, we can still associate
to three points a; b; c a fourth point d such that a; b; c; d is a parallelogram. In multiplicative
notation for an arbitrary G-torsor, we have identified the assignation .a; b; c/ 7! d WD ab�1c.

The following axioms dualize this setup to the noncommutative case.

Definition 2.72. A quantum K-torsor (or quantum K-heap) is a K-algebra T together with an
algebra morphism � W T ! T ˝ T op ˝ T such that the following relations hold:

.idT ˝ idT op ˝�/� D .�˝ idT op ˝ idT /�; (20)
.m˝ idT /u D u˝ idT : (21)
.idT ˝m/u D idT ˝u; (22)

We extend Heyneman–Sweedler notation by writing�.x/ D x.1/˝x.2/˝x.3/ for x 2 T . Hence,
condition (20) can be written as

�.x.1//˝ x.2/ ˝ x.3/ D x.1/ ˝ x.2/ ˝ �.x.3//; (23)

while (21) and (22) are x.1/ ˝ x.2/x.3/ D x ˝ 1T and x.1/x.2/ ˝ x.3/ D 1T ˝ x, respectively.

The torsor is said to be commutative if T is a commutative algebra. If � D �op, where �op.x/ D

x.3/ ˝ x.2/ ˝ x.1/, the torsor is said to be equipped with a commutative law. A morphism of
quantum torsors is an algebra map � W T ! T 0 such that �T 0.�.x// D .� ˝ � ˝ �/�T .x/, for
all x 2 T . The category of quantum torsors is denoted by QHeaps. The main theorem of [5]
established a categorical isomorphism between certain subcategory of QHeaps and the category
K-HopfAlg.

In order to relate quantum torsors with Hopf Galois extensions, we briefly recall the mechanism
of faithfully flat descent for extensions of noncommutative rings and a related result.

Definition 2.73 (Descent datum). Let R be a subring of the ring S , with the inclusion map
denoted by � W R ! S , and letM be a left S -module with structure map 
 W S ˝M ! M . An
S=R-descent datum on M is a left S -module mapD W M ! S ˝RM such that

.idS ˝RD/D D .idS ˝R�˝R idM /D and 
D D idM : (24)

Consider the pairs .M;D/, consisting of a S-module M and a S=R-descent datum D on M ,
together with arrows f W .M;D/ ! .N;E/, where f W M ! N is a S-module morphism
such that Ef D .idS ˝f /D. This category is denoted by DD.S=R/. When S is faithfully flat
as a right R-module, there exists an equivalence between the category of left R-modules and
DD.S=R/. We present a formulation of this result due to Schauenburg.

Lemma 2.74 ([94, Section 1.3]). Let R be a subring of the ring S with the inclusion map denoted
by � W R ! S . If the category of left R-modules is denoted by RMod, then the assignation
RMod ! DD.S=R/ given by N 7! .S ˝R N;D/, where

D.s ˝ n/ D s ˝ 1˝ n 2 S ˝R ˝S ˝R N;

induces a functor. Moreover, if S is faithfully flat as a right R-module, then this functor is an
equivalence. The inverse equivalence is given in objects as

.M;D/ 7!
DM WD fm 2 M W D.m/ D 1˝mg:
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In particular, for every descent datum .M;D/, the map f W S ˝R
DM ! M given by s˝m 7!

sm is an isomorphism with inverse induced by D, i.e., f �1 W M ! S ˝R
DM is given by

f �1.m/ D D.m/.

The next result shows that every torsor induces a descent datum.

Lemma 2.75 ([95, Lemma 3.3]). Let T be a quantum K-torsor. If � W T ! T ˝ T op ˝ T is the
associated map to T , then

D WD .m˝ idT ˝ idT /.idT ˝�/ W T ˝ T ! T ˝ T ˝ T

is a T=K-descent datum on the left T -module T ˝ T . Moreover, it satisfies

.idT ˝D/�.x/ D x.1/ ˝ 1˝ x.2/ ˝ x.3/ D .idT ˝1T ˝ idT ˝ idT /�.x/:

Proof. In Heyneman–Sweedler notation, for every x ˝ y 2 T ˝ T , we have

D.x ˝ y/ D xy.1/ ˝ y.2/ ˝ y.3/:

Left T -linearity of this map is obvious. Additionally, for every x ˝ y 2 T ˝ T we have

.idT ˝D/D.x ˝ y/ D .idT ˝D/.xy.1/ ˝ y.2/ ˝ y.3// D xy.1/ ˝D.y.2/ ˝ y.3//

D xy.1/ ˝ .m˝ idT ˝ idT /.y.2/ ˝ �.y.3///

D .m˝m˝ idT ˝ idT /.x ˝ y.1/ ˝ y.2/ ˝ �.y.3///

D .m˝m˝ idT ˝ idT /.x ˝ �.y.1//˝ y.2/ ˝ y.3//

D .m˝ idT ˝ idT ˝ idT /.x ˝ y.1/
.1/

˝ y.1/
.2/
y.1/

.3/
˝ y.2/ ˝ y.3//

D .m˝ idT ˝ idT ˝ idT /.x ˝ y.1/ ˝ 1T ˝ y.2/ ˝ y.3//

D xy.1/ ˝ 1T ˝ y.2/ ˝ y.3/

D .idT ˝1T ˝ idT˝T /.xy
.1/

˝ y.2/ ˝ y.3//

D .idT ˝1T ˝ idT˝T /D.x ˝ y/;

which is the left condition of (24). For the right one, we have


T˝TD.x ˝ y/ D 
T˝T .xy
.1/

˝ y.2/ ˝ y.3// D xy.1/y.2/ ˝ y.3/

D .m˝ idT /.x ˝ y.1/y.2/ ˝ y.3// D .m˝ idT /.x ˝ 1T ˝ y/ D x ˝ y:

Hence,D is a T=K-descent datum on the left T -module T ˝ T .

Now we are ready to prove that every faithfully flat quantum K-torsor T is a right H -Galois
object, for a suitable Hopf algebraH provided by the categorical equivalence of Lemma 2.75.

Theorem 2.76 ([95, Theorem 3.4]). Let T be a faithfully flat quantum K-torsor and

H WD
D.T ˝ T / D fx ˝ y 2 T ˝ T W xy.1/ ˝ y.2/ ˝ y.3/ D 1˝ x ˝ yg:

Then the following assertions hold:
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(i) H is a Hopf algebra. The algebra structure is that of a subalgebra of T op ˝ T ; comultipli-
cation and counit are given by

�.x ˝ y/ D x ˝ y.1/ ˝ y.2/ ˝ y.3/ and ".x ˝ y/ D xy:

(ii) T is a rightH -comodule algebra with structure map given by

�.x/ D �.x/ D x.1/ ˝ x.2/ ˝ x.3/:

Moreover, T coH D K.

(iii) T is a rightH -Galois object.

Proof. (i) Since � is a morphism of algebras, given x ˝ y; a˝ b 2 H , we have

DŒ.x ˝ y/.a˝ b/� D D.xa˝ yb/ D xa.yb/.1/ ˝ .yb/.2/ ˝ .yb/.3/

D xay.1/b.1/ ˝ b.2/y.2/ ˝ y.3/b.3/ D ab.1/ ˝ b.2/x ˝ yb.3/

D 1˝ ax ˝ yb D 1˝ xa˝ yb D 1˝ .x ˝ y/.a˝ b/:

Here we used that the second coordinate of the tensor is in T op. The above proves that H is a
subalgebra of T op ˝ T . Now, sinceH is faithfully flat, it is the equalizer of

T ˝ T ˝H T ˝ T ˝ T ˝H
D˝idH

uT ˝idT ˝ idT ˝ idH

and thus the image of� is contained inH˝H , showing that� is well defined. Now, if x˝y 2 H ,
then

Œ.idH ˝�/��.x ˝ y/ D .idH ˝�/.x ˝ y.1/ ˝ y.2/ ˝ y.3//

D x ˝ y.1/ ˝ y.2/ ˝ .y.3//.1/ ˝ .y.3//.2/ ˝ .y.3//.3/;

while

Œ.�˝ idH /��.x ˝ y/ D .�˝ idH /.x ˝ y.1/ ˝ y.2/ ˝ y.3//

D x ˝ .y.1//.1/ ˝ .y.1//.2/ ˝ .y.1//.3/ ˝ y.2/ ˝ y.3/:

By (23) these two expressions are equivalent, proving the coassociativity of �. Moreover, � is
an algebra map since � is so. On the other hand, if x ˝ y 2 H , we have

xy ˝ 1 D xy.1/ ˝ y.2/y.3/ D 1˝ xy;

whence xy 2 K by faithful flatness of T . This proves that " is well defined. Moreover,

Œ."˝ idH /��.x ˝ y/ D ."˝ idH /.x ˝ y.1/ ˝ y.2/ ˝ y.3//

D xy.1/ ˝ y.2/ ˝ y.3/ D 1˝ x ˝ y;

Œ.idH ˝"/��.x ˝ y/ D .idH ˝"/.x ˝ y.1/ ˝ y.2/ ˝ y.3//

D x ˝ y.1/ ˝ y.2/y.3/ D x ˝ y ˝ 1;

which proves the main property of the counit. It is easy to check that " is an algebra morphism.
Therefore H is a K-bialgebra. Once (ii)-(iii) are proven below, we can invoke Remark 2.35 to
guarantee thatH is in fact a Hopf algebra.
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(ii) In order to prove that � W T ! T ˝H is well defined, we have to check that the image of � is
contained in T ˝H , which is, by faithful flatness of T , the equalizer of

T ˝ T ˝ T T ˝ T ˝ T ˝ T
idT ˝D

idT ˝uT ˝idT ˝ idT

But in the proof of Lemma 2.75 was shown that .idT ˝D/ D .idT ˝1T ˝ idT ˝ idT /. On the
other hand, since � is an algebra morphism, so is �, which implies that T is a rightH -comodule.
Moreover, if x 2 T coH then

x ˝ 1 D x.1/x.2/ ˝ x.3/ D 1˝ x 2 T ˝ T;

whence x 2 K by faithful flatness of T ; the other inclusion is straightforward.

(iii) The Galois map ˇ W T ˝ T ! T ˝H is given by

ˇ.x ˝ y/ D .x ˝ 1˝ 1/�.y/ D xy.1/ ˝ y.2/ ˝ y.3/ D D.x ˝ y/:

By Lemma 2.74, ˇ is an isomorphism. It follows thatH is faithfully flat over K.

In the original definition of quantum torsor an algebra map � W T ! T (called the Grunspan
map) satisfying

.idT ˝ idT op ˝� ˝ idT op ˝ idT /.�˝ idT op ˝ idT /� D .idT ˝�op
˝ idT /�; (25)

.� ˝ � ˝ �/� D ��; (26)

was additionally required. However, � is fully determined by the multiplication of T and �, via

.m˝ idT ˝m/.idT ˝�op
˝ idT /�.x/ D 1T ˝ �.x/˝ 1T ;

i.e., �.x/ D x.1/x.2/
.3/
x.2/

.2/
x.2/

.1/
x.3/ (see [4, Note 2.3]). However, the existence of the Grun-

span map is demonstrable (see Corollary 2.80), so it is not a necessary condition in Definition 2.72.
If T is either commutative or equipped with a commutative law, then � D idT . If � is bijective,
the quantum torsor is said to be autonomous.

We prove some preliminaries in order to enunciate the converse of Theorem 2.76. LetH be an
arbitrary K-Hopf algebra and T a rightH -Galois object with bijective Galois map ˇ W T ˝ T !

T ˝H . We define 
 W H ! T ˝ T by


.h/ WD ˇ�1.1˝ h/; for all h 2 H; (27)

and write 
.h/ D hŒ1� ˝ hŒ2� 2 T ˝ T . Notice that hŒ1� ˝ hŒ2� is not necessary a simple tensor.
With this notation, we obtain the following formulas.

Lemma 2.77 ([58, Remark 3.4]). Let H be an arbitrary K-Hopf algebra and T a H -Galois
object. Then 
 W H ! T ˝ T defined by (27) satisfies the following relations:

x.0/x.1/
Œ1�

˝ x.1/
Œ2�

D 1˝ x; for all x 2 T; (28)

hŒ1�hŒ2� D ".h/; for all h 2 H; (29)

hŒ1�hŒ2�.0/ ˝ hŒ2�.1/ D 1˝ h; for all h 2 H; (30)

hŒ1� ˝ hŒ2�.0/ ˝ hŒ2�.1/ D h.1/
Œ1�

˝ h.1/
Œ2�

˝ h.2/; for all h 2 H; (31)

hŒ1�.0/ ˝ hŒ2� ˝ hŒ1�.1/ D h.2/
Œ1�

˝ h.2/
Œ2�

˝ S.h.1//; for all h 2 H; (32)

.gh/Œ1� ˝ .gh/Œ2� D hŒ1�gŒ1� ˝ gŒ2�hŒ2�; for all h; g 2 H; (33)

1Œ1� ˝ 1Œ2� D 1˝ 1: (34)
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Proof. Since T is aH -Galois object, there exists an structure map � W T ! T ˝H endowing
T with a rightH -comodule algebra structure. Hence, ˇ D .mT ˝ idH /.idT ˝�/ is an algebra
morphism. Then, for any x 2 T we have

ˇ.x.0/x.1/
Œ1�

˝ x.1/
Œ2�/ D ˇ.x.0/ ˝ 1/ˇ.
.x.1/// D .x.0/ ˝ 1/ˇ.ˇ�1.1˝ x.1///

D .x.0/ ˝ 1/.1˝ x.1// D x.0/ ˝ x.1/ D 1x.0/ ˝ x.1/

D .1˝ 1/�.x/ D ˇ.1˝ x/;

and hence, applying ˇ�1, we get (28).

Now, since for every x ˝ y 2 T ˝ T ,

Œ.idT ˝"/ˇ�.x ˝ y/ D .idT ˝"/.xy0 ˝ y1/ D xy0 ˝ ".y1/ D xy0".y1/˝ 1H D xy ˝ 1H ;

i.e., .idT ˝"/ˇ D .m˝ 1H /. Applying ˇ�1 we get (29).

Relation (30) immediately follows from

hŒ1�hŒ2�.0/ ˝ hŒ2�.1/ D .hŒ1� ˝ 1/�.hŒ2�/ D ˇ.hŒ1� ˝ hŒ2�/ D ˇ.ˇ�1/.1˝ h/ D 1˝ h:

Now, if �T˝T (resp. �T˝H ) denotes the structure map of T ˝ T (resp. T ˝ H ) as a right
H -comodule via (17) (resp. (18)), the H -collinearity of ˇ (see Proposition 2.58) implies that
�T˝Hˇ D .ˇ ˝ idH /�T˝T . Hence, for all h 2 H we have

.ˇ ˝ idT /.hŒ1� ˝ hŒ2�.0/ ˝ hŒ2�.1// D Œ.ˇ ˝ idH /�T˝T �.h
Œ1�

˝ hŒ2�/

D �T˝Hˇ.
.h// D �T˝H .1˝ h/ D 1˝ h.1/ ˝ h.2/

D ˇ.
.h.1///˝ h.2/

D .ˇ ˝ idT /.h.1/Œ1� ˝ h.1/
Œ2�

˝ h.2//;

which proves (31).

Similarly, (32) follows from the collinearity of ˇ in the sense of (15) and (16). Finally, to prove
(33), apply ˇ and use (31).

Notice that (33)-(34) basically say that 
 W H ! T op ˝ T is an algebra morphism.

Lemma 2.78 ([96, Lemma 3.1]). Let T be a faithfully flat H -Galois object. Then

S.x.1//
Œ1�

˝ x.0/S.x.1//
Œ2�

2 T ˝K � T ˝ T; for all x 2 T; (35)

and

h
Œ1�

.1/
˝ S.h.2//

Œ1�
˝ h

Œ2�

.1/
S.h.2//

Œ2�
2 T ˝ T ˝K � T ˝ T ˝ T; for all h 2 H: (36)

Proof. If � W T ! T ˝H is the structure map of T asH -comodule algebra, for x 2 T we have

S.x.1//
Œ1�

˝ �.x.0/S.x.1//
Œ2�/ D S.x.2//

Œ1�
˝ x.0/S.x.2//

Œ2�
.0/

˝ x.1/S.x.2//
Œ2�
.1/

(31)
D S.x.2//.1/

Œ1�
˝ x.0/S.x.2//.1/

Œ2�
˝ x.1/S.x.2//.2/

D S.x.3//
Œ1�

˝ x.0/S.x.3//
Œ2�

˝ x.1/S.x.2//

D S.x.1//
Œ1�

˝ x.0/S.x.1//
Œ2�

˝ 1;
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in T ˝ T ˝H . Since T coH D K and T is flat over K, this proves the first claim. Similarly, for
h 2 H we have

h.1/
Œ1�

˝ S.h2/
Œ1�

˝ �.h.1/
Œ2�S.h.2//

Œ2�/

(31)
D h

Œ1�

.1/
˝ S.h.3//.1/

Œ1�
˝ h.1/

Œ2�S.h.3//.1/
Œ2�

˝ h.2/S.h.3//.2/

D h.1/
Œ1�

˝ S.h.4//
Œ1�

˝ h.1/
Œ2�S.h.4//

Œ2�
˝ h.2/S.h.3//

D h.1/
Œ1�

˝ S.h.2//
Œ1�

˝ h.1/
Œ2�S.h.2//

Œ2�
˝ 1;

proving the second claim, again by flatness of T .

Roughly speaking, the previous result says that the elements x.0/S.x.1//Œ2� and h.1/Œ2�S.h.2//Œ2�
behave like scalars and hence, in the calculation below, we will be able to move these around
freely in any K-multilinear expression.

Theorem 2.79 ([96, Theorem 3.2]). Let T be a faithfully flat H -Galois object. Then T is a
quantum K-torsor with associated map � W T ! T ˝ T op ˝ T defined by

�.x/ D .idT ˝
/�.x/ D x.0/ ˝ x.1/
Œ1�

˝ x.1/
Œ2�; for all x 2 T:

Moreover, T has a Grunspan map � W T ! T given by

�.x/ D .x.0/S.x.1//
Œ2�/S.x.1//

Œ1�
D S.x.1//

Œ1�.x.0/S.x.1//
Œ2�/:

Proof. For all calculations, we take x; y 2 T and h 2 H . Since � and 
 are algebra morphisms,
so is �. We have

.idT ˝ idT op ˝�/�.x/ D .idT ˝ idT op ˝�/.x.0/ ˝ x.1/
Œ1�

˝ x.1/
Œ2�/

D x.0/ ˝ x.1/
Œ1�

˝ �.x.1/
Œ2�/

D x.0/ ˝ x.1/
Œ1�

˝ x.1/
Œ2�

˝ 
.x.1/
Œ2�
.1/
/

(31)
D x.0/ ˝ x.1/

Œ1�
˝ x.1/

Œ2�
˝ 
.x.2//

D �.x.0//˝ 
.x.1// D .�˝ idT op ˝T /.x/;

which proves (20). Additionally,

.idT ˝m/�.x/ D .idT ˝m/.x.0/ ˝ x.1/
Œ1�

˝ x.1/
Œ2�/

D x.0/ ˝ x.1/
Œ1�x.1/

Œ2� (29)
D x.0/ ˝ ".x.1// D x ˝ 1:

On the other hand,

.m˝ idT /�.x/ D .m˝ idT /.x.0/ ˝ x.1/
Œ1�

˝ x.1/
Œ2�/ D x.0/x.1/

Œ1�
˝ x.1/

Œ2� (28)
D 1˝ x:

These two relations prove (21) and (22). Hence, T is a quantum K-torsor. Now, since

�.xy/ D ..xy/.0/S..xy/.1//
Œ2�/S..xy/.1//

Œ1�
D x.0/y.0/S.x.1/y.1//

Œ2�S.x.1/y.1//
Œ1�

D x.0/y.0/.S.y.1//S.x.1///
Œ2�.S.y.1//S.x.1///

Œ1�

(33)
D x.0/Œy.0/S.y.1//

Œ2��S.x.1//
Œ2�S.x.1//

Œ1�S.y.1//
Œ1�

(35)
D x.0/S.x.1//

Œ2�S.x.1//
Œ1�Œy.0/S.y.1//

Œ2��S.y.1//
Œ1�

D �.x/�.y/;
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� is an algebra morphism. Moreover,

hŒ1� ˝ �.hŒ2�/ D hŒ1� ˝ hŒ2�.0/S.h
Œ2�
.1//

Œ2�S.hŒ2�.1//
Œ1� (37)

(31)
D h.1/

Œ1�
˝ Œh.1/

Œ2�S.h.2//
Œ2��S.h.2//

Œ1�

(36)
D h.1/

Œ1�Œh.1/
Œ2�S.h.2//

Œ2��˝ S.h.2//
Œ1� (38)

(29)
D ".h.1//S.h.2//

Œ2�
˝ S.h.2//

Œ1�

D S.h/Œ2� ˝ S.h/Œ1�; (39)

so we conclude that

.idT ˝ idT op ˝�/�.x/ D .idT ˝ idT op ˝�/.x.0/ ˝ x.1/
Œ1�

˝ x.1/
Œ2�/

D x.0/ ˝ x.1/
Œ1�

˝ �.x.1/
Œ2�/

D x.0/ ˝ S.x.1//
Œ2�

˝ S.x.1//
Œ1�:

Hence,

.idT ˝ idT op ˝� ˝ idT op ˝ idT /.�˝ idT op ˝ idT /�.x/
D .idT ˝ idT op ˝� ˝ idT op ˝ idT /.�˝ idT op ˝ idT /.idT ˝
/.x.0/ ˝ x.1//

D .idT ˝ idT op ˝�/�.x.0//˝ 
.x.1// D x.0/ ˝ S.x.1//
Œ2�

˝ S.x.1//
Œ1�

˝ 
.x.2//:

On the other hand,

.idT ˝�op
˝ idT /�.x/ D x.0/ ˝ �op.x.1/

Œ1�/˝ x.1/
Œ2�

D x.0/ ˝ x.1/
Œ1�
.1/

Œ2�
˝ x.1/

Œ1�
.1/

Œ1�
˝ x.1/

Œ1�
.0/

˝ x.1/
Œ2�

(32)
D x.0/ ˝ S.x.1//

Œ2�
˝ S.x.1//

Œ1�
˝ x.2/

Œ1�
˝ x.2/

Œ2�:

Comparing these two equalities, we get (25). To prove (26), we first see that

��.x/ D �.Œx.0/S.x1/
Œ2��S.x.1//

Œ1�/
(35)
D x.0/S.x.1//

Œ2��.S.x.1//
Œ1�/

D x.0/S.x.1//
Œ2�S.x.1//

Œ1�
.0/

˝ S.x.1//
Œ1�
.1/

(32)
D x.0/S.x.1//.2/

Œ2�S.x.1//.2/
Œ1�

˝ S.S.x.1//.1//

D x.0/S.x.1//
Œ2�S.x.1//

Œ1�
˝ S2.x.2// D �.x.0//˝ S2.x.2// (40)

and therefore

.� ˝ � ˝ �/�.x/ D �.x.0//˝ �.x.1/
Œ1�/˝ �.x.1/

Œ2�/

(39)
D �.x.0//˝ �.S.x.1//

Œ2�/˝ S.x.1//
Œ1�

(39)
D �.x.0//˝ S2.x.1//

Œ1�
˝ S2.x.1//

Œ2�

D �.x.0//˝ 
.S2.x.1///

(40)
D �.x/.0/ ˝ 
.�.x/.1// D ��.x/:

This proves that � is a Grunspan map.
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Under conditions of faithful flatness, we have thus shown that

Quantum torsors , Hopf Galois objects:

Moreover, if T is a quantum torsor, by Theorem 2.76, it is a faithfully flat rightH -Galois object.
But Theorem 2.79 says that every faithfully flat rightH -Galois object is a quantum torsor with
Grunspan map. Hence, we have the following.

Corollary 2.80. Every quantum torsor has a Grunspan map.

2.9.1. Examples of quantum torsors

In this section we present examples of quantum torsors. These were adapted from [4]. Some of
them evidence that this new perspective of Hopf Galois extensions may include examples not
studied as such before.

Example 2.81 (Hopf algebras). LetH be a K-Hopf algebra. H becomes a K-torsor by taking
� D .idH ˝S ˝ idH /�2. Indeed, for every h 2 H ,

Œ.�˝ idH op ˝ idH /��.h/ D .�˝ idH op ˝ idH /.h.1/ ˝ S.h.2//˝ h.3//

D h.1/.1/ ˝ S.h.1/.2//˝ h.1/.3/ ˝ S.h.2//˝ h.3/

D h.1/ ˝ S.h.2//˝ h.3/ ˝ S.h.4//˝ h.5/

D h.1/ ˝ S.h.2//˝ h.3/.1/ ˝ S.h.3/.2//˝ h.3/.3/

D .idH ˝ idH op ˝�/.h.1/ ˝ S.h.2//˝ h.3//

D Œ.idH ˝ idH op ˝�/��.h/;

which proves (20). Similarly,

Œ.idH ˝m/��.h/ D .idH ˝m/.h.1/ ˝ S.h.2//˝ h.3// D h.1/ ˝ S.h.2//h.3/

D h.1/ ˝ ".h.2// D h.1/".h.2//˝ 1 D h˝ 1;

Œ.m˝ idH /��.h/ D .m˝ idH /.h.1/ ˝ S.h.2//˝ h.3// D h.1/S.h.2//˝ h.3/

D ".h.1//˝ h.2/ D 1˝ ".h.1//h.2/ D 1˝ h;

showing (21) and (22). Moreover, since S is an anti-morphism of coalgebras,

�.S.h// D .idH ˝S ˝ idH /�2.S.h//
D .idH ˝S ˝ idH /.S.h.3//˝ S.h.2//˝ S.h.1///

D S.h.3//˝ S2.h.2//˝ S.h.1//:

Hence

�.h/ D h.1/h.2/
.3/
h.2/

.2/
h.2/

.1/
h.3/ D h.1/S.h.2//S

2.h.3//S.h.4//h.5/

D ".h.1//S.S.h.2///".h.3// D S2.".h.1//h.2//".h.3//

D S2.h1/".h.2// D S2.h/:

Thus, � D S2.
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Example 2.82 (Simple algebraic field extensions). Recall that a simple field extension E of a
field k is one obtained by the adjunction of a single element, i.e., E D k.˛/. In this case ˛ is
called primitive. It is known that if ˛ is algebraic over k, then

E D k.˛/ D

�
f .˛/

g.˛/
W f; g 2 kŒx�; g.˛/ ¤ 0

�
Š kŒx�=hq˛.x/i;

where kŒx� is the classical univariate polynomial algebra over k and q˛.x/ is the minimal polyno-
mial of ˛ over k, i.e., the unique monic k-polynomial of smallest degree satisfied by ˛ (see e.g.
[97, Theorem 2.4.1]). Moreover, if d D dg.q˛.x//, then the set f1; ˛; : : : ; ˛d�1g is a k-basis for
E.

Suppose that k � E is a Galois extension of fields. Then, if G D fg1; : : : ; gng is the associated
Galois group and fp1; : : : ; png � kG is the dual basis, by Theorem 2.36, we known that the
Galois map ˇ W E ˝E ! E ˝ kG , given by

F ˝G 7!

nX
iD1

Fgi .G/˝ pi ; for all F;G 2 E;

is bijective. Notice that the simple extension

E.
/ D k.˛/.
/ D k.˛; 
/ D

�
f .˛; 
/

g.˛; 
/
W f; g 2 kŒx; y�; g.˛; ˇ/ ¤ 0

�
can be identified with the algebra E ˝E in such a way that ˛ 7! ˛ ˝ 1 and 
 7! 1˝ ˛. Then,
the inverse of 1E ˝ pk by ˇ is

Pk WD

Y
j¤k

ˇ � gj .˛/

gk.˛/ � gj .˛/
; for all k D 1; : : : ; n:

Indeed, having in mind the identification, for all 1 � k � n we have

ˇ.Pk/ D

nX
iD1

Y
j¤k

1gi .˛/ � gj .˛/gi .1/

gk.˛/gi .1/ � gj .˛/gi .1/
˝ pi D

nX
iD1

Y
j¤k

gi .˛/ � gj .˛/

gk.˛/ � gj .˛/
˝ pi

D

Y
j¤k

gk.˛/ � gj .˛/

gk.˛/ � gj .˛/
˝ pk D 1E ˝ pk :

Hence, following the proof of Theorem 2.79, we know that the map � W E ! E ˝E ˝E, given
by

F 7!

nX
iD1

gi .F /˝ Pi ; for all F 2 E;

makes E into a k-torsor.

Example 2.83 (Noncommutative quantum torsor with no character). For a fixed non-negative
integer n, suppose that the field k contains a n-th primitive root of unity q ¤ 1. For any ˛; ˇ 2 k�,
the k-algebra generated by the elements x and y together with the relations xn D ˛, yn D ˇ,
and xy D qyx, is called the noncommutative algebra without character A.n/

˛;ˇ
. It is known that

this algebra is a non-trivial cyclic algebra and dimkA
.n/

˛;ˇ
D n2. If n D 2, it is an algebra of

quaternions (cf. Grunspan, 2003, Example 2.8).
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Taking T D A
.n/

˛;ˇ
, we define � W T ! T ˝ T op ˝ T as

�.x/ D x ˝ x�1
˝ x and �.y/ D y ˝ y�1

˝ y:

Then

.idT ˝ idT op ˝�/�.x/ D .idT ˝ idT op ˝�/.x ˝ x�1
˝ x/ D x ˝ x�1

˝ x ˝ x�1
˝ x

D .�˝ idT op ˝ idT /.x ˝ x�1
˝ x/ D .�˝ idT op ˝ idT /�.x/;

.idT ˝m/�.x/ D .idT ˝m/.x ˝ x�1
˝ x/ D x ˝ 1;

.m˝ idT /�.x/ D .m˝ idT /.x ˝ x�1
˝ x/ D 1˝ x:

The same calculations are valid for y, so T D A
.n/

˛;ˇ
together with � is a quantum k-torsor.

2.9.2. More on quantum torsors

Now we discuss some further results on quantum torsors. For instance, Grunspan found that if
the base ring is a field then we can attach two Hopf algebras to any quantum torsor.

Theorem 2.84 (Reconstruction Theorem, [4, Theorem 2.10]). Let T be a quantum k-torsor with
associated map � W T ! T ˝ T op ˝ T and Grunspan map � W T ! T . Take

Hl.T / WD f´ 2 T ˝ T op
W .idT ˝ idT op ˝� ˝ idT op/.�˝ idT op/.´/ D .idT ˝�op/.´/g: (41)

Then, the following assertions hold:

(i) If ´ 2 Hl.T /, then both mT .´/ and mT op.� ˝ idT op/.´/ are equal to a common scalar
denoted by ".´/1T .

(ii) If ´ 2 Hl.T /, then �.´/ WD .�˝ idT op/.´/ 2 Hl.T /˝Hl.T /.

(iii) By definingmHl .T / as the restriction ofmT ˝m
op
T toHl.T / and uHl .T / W k ! Hl.T / as

uHl .T /.1/ D 1T ˝ 1T ,Hl.T / becomes a bialgebra.

(iv) Im.uT / � Hl.T / ˝ T and 
T WD � W T ! Hl.T / ˝ T embeds T with a left Hl.T /-
comodule structure.

Moreover, if we set SHl .T /.´/ WD �T .� ˝ idT op/.´/, for all ´ 2 Hl.T /, then we obtain
Im.SHl .T // � Hl.T / and henceHl.T / is a Hopf algebra.

In fact, the result is also valid for kŒŒx��-torsors, providing T is topologically free over kŒŒx�� [4].

Similarly, for every k-torsor T , we can define a Hopf algebra structure on the set

Hr.T / D f´ 2 T op
˝ T W .idT op ˝� ˝ idT op ˝ idT /.idT op ˝�/.´/ D .�op

˝ idT /.´/g: (42)

We also have Im.�/ � T ˝ Hr.T / and hence the map ıT WD � D T ! T ˝ Hr.T / equips
T with a right Hr.T /-comodule algebra structure. Moreover, relation 20 implies that the two
structures of leftHl.T /-comodule algebra and rightHr.T /-comodule algebra are compatible.
Therefore, we get the following result.

Corollary 2.85 ([4, Corollary 4.13]). Let T be a quantum k-torsor. Then T is a .Hl.T /;Hr.T //-
bicomodule algebra of k.
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Grunspan proved that, in fact, T is a .Hl.T /;Hr.T //-biGalois object, while also providing
properties ofHl.T / andHr.T / and their explicit calculation for examples.

Roughly speaking, the next result establishes that these Hopf algebras attached to quantum torsors
and the ones found in Hopf biGalois extensions (see e.g. [22]) are the same. Since the proof uses
either Hopf biGalois theory, or Miyashita–Ulbrich techniques, and those topics are not covered in
this document, we shall omit it (see [96, Section 4]).

Proposition 2.86 ([96, Proposition 3.4]). (i) Let T be a faithfully flat H -Galois object and
consider the quantum torsor structure associated in Theorem 2.79. ThenHr.T / Š H and
Hl.T / D .T ˝ T /coH .

(ii) If T is a quantum torsor, then the quantum torsor associated in Theorem 2.79 to theHr.T /-
Galois object T coincides with T .

We end this section by discussing a generalization of quantum torsors proposed by Schauen-
burg [23]. For that, let B be a K-algebra and B � T an algebra extension such that T is a
faithfully flat K-module. Since T ˝B T is obviously a .B;B/-bimodule, we can consider the
centralizer

CB.T ˝B T / WD ft 2 T ˝B T W b � t D t � b; for all b 2 Bg:

This module is endowed with an algebra structure.

Lemma 2.87. The centralizer CB.T ˝B T / is a K-algebra with multiplication given by .x ˝

y/.´˝ w/ WD ´x ˝ yw, for all x ˝ y and ´˝ w 2 CB.T ˝B T /, and unit 1T ˝ 1T .

Proof. If x ˝ y; ´˝ w 2 CB.T ˝B T /, then

bŒ.x ˝ y/.´˝ w/� D b.´x ˝ yw/ D b´x ˝ yw D .x ˝ y/.b´˝ w/ D .x ˝ y/Œb.x ˝ w/�

D .x ˝ y/Œ.´˝ w/b� D .x ˝ y/.´˝ wb/ D ´x ˝ ywb D .´x ˝ yw/b

D Œ.x ˝ y/.´˝ w/�b:

Thus, CB.T ˝B T / is indeed closed under this operation. The other properties are immediate to
check.

Definition 2.88 (Generalized quantum torsor). Let B be a K-algebra and B � T an algebra
extension such that T is a faithfully flat K-module. A generalized quantum B-torsor structure on
T is a map � W T ! T ˝ CB.T ˝B T / such that if the induced map �0 W T ! T ˝ T ˝B T is
denoted by �0.x/ WD x.1/ ˝ x.2/ ˝ x.3/ for any x 2 T , then the following relations hold:

x.1/x.2/ ˝ x.3/ D 1˝ x 2 T ˝B T;

x.1/ ˝ x.2/x.3/ D x ˝ 1 2 T ˝ T;

�.b/ D b ˝ 1˝ 1; 8b 2 B; (43)

�.x.1//˝ x.2/ ˝ x.3/ D x.1/ ˝ x.2/ ˝ �.x.3// 2 T ˝ T ˝B T ˝B T: (44)

Note that (43) implies that � is a left B-module map and hence the relation (44) actually makes
sense. This generalization of quantum torsor also induces a descend datum.

Universitas Scientiarum:58–161 http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum

http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum


110 Some interactions between Hopf Galois extensions and noncommutative rings

Lemma 2.89 ([23, Lemma 2.8.3]). Let T be a generalized quantumB-torsor with associated map
�. ThenD.x˝ y/ D xy.1/ ˝ y.2/ ˝ y.3/ defines a T=K-descent datum on T ˝B T . Moreover,
it satisfies .T ˝D/�.x/ D x.1/ ˝ 1˝ x.2/ ˝ x.3/, and D.T ˝B T / � T ˝ CB.T ˝B T /.

Proof. The calculations are completely similar to those made for Lemma 2.75. The only new part
is the last inclusion, which is immediately obtained from noticing that, by definition, y.2/ ˝ y.3/

is in the centralizer.

Recall that for an arbitrary descent datumD onDD.S=R/ overM , Lemma 2.74 gives an associated
R-module DM D fm 2 M W D.m/ D 1˝mg. From the above, we conclude that in our setup
D.T ˝B T / � CB.T ˝B T /. Hence, the following result generalizes Theorem 2.76.

Theorem 2.90 ([23, Theorem 2.8.4]). Let T be a generalized quantum B-torsor with associated
map � such that T is faithfully flat as right B-module. If

H WD
D.T ˝B T / D fx ˝ y 2 T ˝B T W xy.1/ ˝ y.2/ ˝ y.3/ D 1˝ x ˝ yg;

then the following assertions hold:

(i) H is a K-flat Hopf algebra. The algebra structure is that of a subalgebra of the algebra
CB.T ˝B T /; comultiplication and counit are given by

�.x ˝ y/ D x ˝ y.1/ ˝ y.2/ ˝ y.3/ and ".x ˝ y/ D xy:

(ii) T is a rightH -comodule algebra with structure map � WD �. Moreover, T coH D B .

(iii) B � T is a rightH -Galois extension.

Proof. Again, the calculations are not essentially different from the ones for Theorem 2.76,
the only difference being that, in this case, the assumption of faithful flatness of TB is used to
deduce, along the bijectivity of the Galois map ˇ W T ˝B T ! T ˝H , thatH is a faithful flat
K-module.

Finally, we have the following result which, together with the previous one, establishes the
equivalence

Generalized quantum torsors , Hopf Galois extensions;

provided conditions of faithful flatness.

Theorem 2.91 ([23, Lemma 2.8.5]). LetH be a faithfully flat K-Hopf algebra and T coH � T a
faithfully flat rightH -Galois extension. If B WD T coH , then T is a generalized quantum B-torsor
with associated map � W T ! T ˝ CB.T ˝B T / defined by

�.x/ D x.0/ ˝ x.1/
Œ1�

˝ x.1/
Œ2�; for all x 2 T; (45)

where hŒ1� ˝ hŒ2� WD ˇ�1.1˝ h/ 2 T ˝B T , whit ˇ W T ˝B T ! T ˝H the Galois map.
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2.10. Hopf Galois systems

Almost parallel to the development of quantum torsors, Bichon presented another formulation for
noncommutative torsors [6]. That approach was made by noticing that a classical torsor naturally
gives rise to a grupoid with two objects. Although the axiomatisation looks slightly complicated,
it is also more natural an easier to handle.

Definition 2.92 (Hopf Galois system). A K-Hopf Galois system consists of four K-algebras
.A;B;Z; T / satisfying the following axioms:

(HGS1) A and B are K-bialgebras,

(HGS2) Z is an .A;B/-bicomodule algebra with respective structure maps ˛Z W Z ! A˝Z

and ˇZ W Z ! Z ˝ B .

(HGS3) There exist algebra morphisms 
 W A ! Z ˝ T and ı W B ! T ˝ Z such that the
following relations hold:

.
 ˝ idZ/˛Z D .idZ ˝ı/ˇZ ; (46)
.idA˝
/�A D .˛Z ˝ idT /
; (47)
.ı ˝ idB/�B D .idT ˝ˇZ/ı: (48)

(HGS4) There exists a K-linear map S W T ! Z such that the following relations hold:

mZ.idZ ˝S/
 D uZ"A; (49)
mZ.S ˝ idZ/ı D uZ"B : (50)

We may extend Heyneman–Sweedler notation to Hopf Galois systems by writing


.a/ D aZ ˝ aT and ı.b/ D bT ˝ bZ ; for all a 2 A and b 2 B:

It can be proved that in any Hopf Galois system .A;B;Z; T / the bialgebras A and B are in fact
Hopf algebras, and S W T ! Zop is an algebra morphism [6, Corollaries 1.3 and 1.10].

The following result relates Hopf Galois systems with Hopf biGalois objects.

Theorem 2.93 ([6, Theorem 1.2]). Let .A;B;Z; T / be aK-Hopf Galois system withZ faithfully
flat over K. Then Z is an .A;B/-biGalois object.

Proof. First, we have to prove that the composition

ˇl W Z ˝Z A˝Z ˝Z A˝Z
˛Z˝idZ idA ˝mZ

is bijective. For that, let �l W A˝Z ! Z ˝Z be the map defined as the composition

�l W A˝Z Z ˝ T ˝Z Z ˝Z ˝Z Z ˝Z:

˝idZ idZ ˝S˝idZ idZ ˝mZ
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For all a 2 A and ´;w 2 Z we have the equalities

.idZ ˝S ˝ idZ/.
 ˝ idZ/.idA˝mZ/.a˝ ´˝ w/

D .idZ ˝S ˝ idZ/.
 ˝ idZ/.a˝ ´w/

D .idZ ˝S ˝ idZ/.aZ ˝ aT ˝ ´w/ D aZ ˝ S.aT /˝ ´w

D .idZ ˝ idZ ˝mZ/.aZ ˝ S.aT /˝ ´˝ w/

D .idZ ˝ idZ ˝mZ/.idZ ˝S ˝ idZ ˝ idZ/.aZ ˝ aT ˝ ´˝ w/

D .idZ ˝ idZ ˝mZ/.idZ ˝S ˝ idZ ˝ idZ/.
 ˝ idZ ˝ idZ/.a˝ ´˝ w/;

so,

.idZ ˝S ˝ idZ/.
 ˝ idZ/.idA˝mZ/

D .idZ ˝ idZ ˝mZ/.idZ ˝S ˝ idZ ˝ idZ/.
 ˝ idZ ˝ idZ/: (51)

Hence,

�lˇl D .idZ ˝mZ/.idZ ˝S ˝ idZ/.
 ˝ idZ/.idA˝mZ/.˛Z ˝ idZ/
(51)
D .idZ ˝mZ/.idZ ˝mZ ˝ idZ/.idZ ˝S ˝ idZ ˝ idZ/.idZ ˝ı ˝ idZ/.ˇ ˝ idZ/
(50)
D .idZ ˝mZ/.idZ ˝uZ"B ˝ idZ/.ˇZ ˝ idZ/
(3)
D idZ˝Z :

Similarly, one can show that ˇl�l D idA˝Z and thus ˇl is bijective. On the other hand, we also
have to prove that the composition

ˇr W Z ˝Z Z ˝Z ˝ B Z ˝ B
idZ ˝ˇZ mZ˝idB

is bijective. For that, we define �r W Z ˝ B ! Z ˝Z as the composition

�r W Z ˝ B Z ˝ T ˝Z Z ˝Z ˝Z Z ˝Z;
idZ ˝ı idZ ˝S˝idZ mZ˝idZ

and similarly to the first part, one can show that �r is the inverse of ˇr . Finally, since Z is
K-faithfully flat, by Proposition 2.32, it is .A;B/-faithfully flat.

The converse is proven using techniques of Tannaka duality (see [98] and [6, Remark 1.9]) that
are not covered in this document.

Theorem 2.94 ([6, Corollary 1.8] and [16, Corollary 1]). LetA be a faithfully flatK-Hopf algebra
and Z a faithfully flat left A-Galois object. Then there exists a Hopf algebra B and an algebra T
such that .A;B;Z; T / is a Hopf Galois system.

Hence with certain assumptions of faithful flatness, if we glue together Theorem 2.76 (quantum
torsors ) Galois objects), Theorem 2.79 (Galois objects ) quantum torsors), Theorem 2.93
(Hopf Galois systems ) (bi)Galois objects) and Theorem 2.94 (Galois objects ) Hopf Galois
systems), we have the following equivalences:

Hopf Galois
systems

Hopf Galois
objects

Quantum
torsors

(52)

Universitas Scientiarum:58–161 http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum

http://ciencias.javeriana.edu.co/investigacion/universitas-scientiarum


Calderón & Reyes 113

Clearly, this means that every Hopf Galois system gives rise to a quantum torsor and vice versa.
However, for the sake of completeness, and because some interesting interactions arise, we will
study the explicit equivalence between quantum torsors and Hopf Galois systems in Section 2.10.2.
Also, notice that we are not saying that the correspondences of (52) are necessarily bijective or
functorial.

2.10.1. Examples of Hopf Galois systems

In this section we address some examples of Hopf Galois systems, which are adapted from [6,
22]. As with quantum torsors, the novelty of this new approach is the inclusion of new examples.

Example 2.95 (Hopf algebras). LetH be a K-Hopf algebra. If we put A D B D Z D T D H ,
˛Z D ˇZ D 
 D ı D �H and S D SH , then .A;B;Z; T / is a Hopf Galois system. Indeed,
(46)-(48) correspond to the coassociativity and (49)-(50) to the main property of the antipode.

Example 2.96 (Hopf algebras twisted by 2-cocycles). LetH be a faithfully flat K-Hopf algebra.
Using the universal property of the tensor product, a given � 2 HomK.H˝H;K/ corresponds to
an unique bilinearK-form, so we shall write �.h˝k/ D �.h; k/, for all h; k 2 H . SinceH ˝H

is a coalgebra and K is an algebra, HomK.H ˝H;K/ is also an algebra with the convolution
product. We say that � W H ˝H ! K is a 2-cocycle if � is a convolution invertible K-linear
map satisfying

�.g.1/; h.1//�.g.2/h.2/; k/ D �.h.1/; k.1//�.g; h.2/k.2// and �.h; 1/ D �.1; h/ D ".h/1;

for all g; h; k 2 H . By [99, Theorem 1.6], if � denotes the convolution inverse of � , then it
satisfies

�.f.1/g.1/; h/�.f.2/; g.2// D �.f; g.1/h.1//�.g.2/h.2// and �.h; 1/ D �.1; h/ D ".h/1;

for all f; g; h 2 H .

For a fixed 2-cocycle � overH , we consider a new multiplication over theK-moduleH , given by

h �� k WD �.h.1/; k.1//h.2/k.2/; for all h; k 2 H:

This new algebra is denoted by �H . Similarly, another possible product forH is

h �� k WD �.h.2/; k.2//h.1/k.1/; for all h; k 2 H;

and the induced algebra is denoted byH� . Notice thatH� is aH -comodule algebra with structure
map �l D �H .

Finally, we can also define a new Hopf algebra �H� , which is isomorphic toH as coalgebra, with
multiplication

k � h WD �.h.1/; k.1//�.h.3/; k.3//h.2/k.2/; for all h; k 2 H;

and antipode S� .h/ WD �.h.1/; S.h.2///�.S.h.4//; h.5//S.h.3//. It can be shown that H� is a
right �H� -comodule algebra with structure map �r D �, and that it is a .H; �H� /-bicomodule
algebra. The details of these constructions can be found in [99, Section 2] and [22, Section 3].
From [6, Proposition 2.1] and [63, Theorem 1.6.(a5)] we know that .H; �H� ;H� ; �H/ is a Hopf
Galois system.
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Example 2.97 (Hopf algebras of a non-degenerate bilinear form). Let k be an algebraically
closed field and n;m > 1. For two fixed invertible matrices Em�m and Fn�n, we denote by
B.E; F / the k-algebra generated by fxij W 1 � i � m; 1 � j � ng together with the relations
F�1tXEX D In and XF�1tXE D Im, where X is the matrix .xij / and In and Im are the
identity matrices of size n and m, respectively. For the particular case n D m and E D F we
simply write B.E/. This (Hopf) algebra was introduced by Dubois-Violette and Launer [100],
and it turns out to be the function algebra on the quantum (symmetry) group of a non-degenerate
bilinear form [101, Section 2]. For any matrix A D .aij / over B.E/, the comultiplication, counit
and antipode are given by

�.aij / D

nX
kD1

aik ˝ aik; ".aij / D ıij and S.A/ D E�1tAE;

where ıij denotes the Kronecker delta.

If tr.EtE�1/ D tr.F tF�1/, Bichon proved that

.B.E/;B.F /;B.E; F /;B.F;E//

is a Hopf Galois system [6, Proposition 3.1]. Even without the assumption on the traces it can be
shown that B.E; F / is a .B.E/;B.F //-biGalois object [101, Proposition 3.3].

Example 2.98 (Free Hopf algebras generated by dual matrix coalgebras). Let C be aK-coalgebra.
We say that a K-Hopf algebra H.C/ is a free Hopf algebra generated by C if there exists a
coalgebra map i W C ! H.C/ such that the following universal property is satisfied: for any
K-Hopf algebra H and any coalgebra morphism f W C ! H there exists an unique Hopf
algebra morphism f W H.C/ ! H such that the following diagram is commutative:

C H.C/

H

f

i

f

From the above, it follows thatH.C/ is unique up to isomorphism. The existence of such free
Hopf algebra is explicitly shown in [102, Section 1] by constructingH.C/ as follows. Let fVigi�0
be the sequence of coalgebras V0 WD C and ViC1 WD V

op
i , for i � 0. We define V WD

L
i�0 Vi ,

which is also a coalgebra via the induced pointwise operations. Considering the tensor algebra
T .V /, we have a coalgebra map S W V ! V op given by .x0; x1; : : :/ 7! .0; x0; x1; : : :/, which
induces a bialgebra map S W T .V / ! T .V /op. Now, let

I D hx.1/S.x.2// � ".x/1; S.x.1//x.2/ � ".x/1 W x 2 V i:

One can check that I is in fact a Hopf ideal of T .V /, and thereforeH.C/ WD T .V /=I is a Hopf
algebra with antipode induced by S .

A particular case of the above is when C D .Mn.k//
�, where Mn.k/ denotes the algebra of

n � n matrices over k. In such case,H.C/ is denoted byH.n/ and corresponds to the k-algebra
generated by fu

.˛/
ij W 1 � i; j � n; ˛ 2 Ng satisfying the relations

.u.˛//tu.˛C1/
D In D u.˛C1/.u.˛//t ;
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where u.˛/ is the n�nmatrix .u.˛/ij / [103, Theorem 3.1]. More generally, form; n � 1 we define
H.m; n/ as the algebra generated by fu

.˛/
ij W 1 � i � m; 1 � j � n; ˛ 2 Ng together with the

relations
.u.˛//tu.˛C1/

D Im and u.˛C1/t .u.˛// D In;

where u.˛/ is the n � m matrix .u.˛/ij /. For m; n � 2, .H.m/;H.n/;H.m; n/;H.n;m// is a
Hopf Galois system [6, Proposition 5.2].

2.10.2. More on Hopf Galois systems

We explore further the connection between Hopf Galois systems and quantum torsors, by men-
tioning some results of Grunspan [4, 16]. Recall that any quantum K-torsor T has an associated
map � W T ! T ˝ T op ˝ T , which is denoted by �.x/ D x.1/ ˝ x.2/ ˝ x.3/, and a Grunspan
map � W T ! T satisfying

�.x/ D x.1/x.2/.3/x.2/.2/x.2/.1/x.3/:

Theorem 2.99 ([4, Theorem 4.2]). Let .A;B;Z; T / be a K-Hopf Galois system. Then the map
� W Z ! Z ˝Zop ˝Z given by � D .idZ ˝S ˝ idZ/.
 ˝ idZ/˛Z makes Z into a quantum
K-torsor.

To see the converse of Theorem 2.99, recall the construction of the Hopf algebra Hl.T / (resp.
Hr.T /) defined in (41) (resp. (42)) as certain subalgebra ofT˝T op (resp. T op˝T ). Summarizing
Theorem 2.84, we have that the simple elements of Hl.T / are of the form xi ˝ yi 2 T ˝ T op

satisfying
x
.1/
i ˝ x

.2/
i ˝ �.x

.3/
i /˝ yi D xi ˝ y

.3/
i ˝ y

.2/
i ˝ y

.1/
i :

Moreover, the comultiplication, counit and antipode onHl.T / are given by

�Hl .T /.xi ˝ yi / D x
.1/
i ˝ x

.2/
i ˝ x

.3/
i ˝ yi ;

uT "Hl .T /.xi ˝ yi / D xiyi ;

SHl .T /.xi ˝ yi / D yi ˝ �.xi /:

Similarly, the elements ofHr.T / are of the form xi ˝ yi 2 T op ˝ T satisfying

xi ˝ �.y
.1/
i /˝ y

.2/
i ˝ y

.3/
i D x

.3/
i ˝ x

.2/
i ˝ x

.1/
i ˝ yi ;

and the comultiplication, counit and antipode are given by

�Hr .T /.xi ˝ yi / D xi ˝ y
.1/
i ˝ y

.2/
i ˝ y

.3/
i ;

uT "Hr .T /.xi ˝ yi / D xiyi ;

SHr .T /.xi ˝ yi / D �.yi /˝ xi :

Theorem 2.100 ([16, Theorem 2]). Let T be a faithfully flat quantum K-torsor with associated
map � and Grunspan map � . Consider A D Hr.T /, B D Hl.T /, and �r W T ! T ˝ A and
�l W T ! B ˝ T given by

�r.x/ D x.1/ ˝ x.2/ ˝ x.3/ 2 T ˝ A � T ˝ T op
˝ T;

�l.x/ D x.1/ ˝ x.2/ ˝ x.3/ 2 B ˝ T � T ˝ T op
˝ T;
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for all x 2 T , which define a structure of .B;A/-biGalois object on T . Then there is a natural
structure of K-algebra on Z WD .A˝ T /coA D .T ˝ B/coB as subalgebra of T op ˝ T ˝ T op,
so that Z becomes an .A;B/-biGalois object (in particular, an .A;B/-bicomodule algebra) via
the morphisms ˛Z D �A ˝ idT W Z ! A˝Z and ˇZ D idZ ˝�B W Z ! Z ˝ B . Moreover,
the algebra morphisms 
 W A ! Z ˝ T and ı W B ! T ˝Z given by


.h/ D xi ˝ y
.1/
i ˝ y

.2/
i ˝ y

.3/
i ; for h D xi ˝ yi 2 A � T op

˝ T;

ı.h/ D x
.1/
i ˝ x

.2/
i ˝ x

.3/
i ˝ yi ; for h D xi ˝ yi 2 B � T ˝ T op;

and the K-linear map ST W T ! Z given by

ST .x/ D Œ.� ˝ idT ˝�/�op�.x/; for allx 2 T;

make .A;B;Z; T / into a K-Hopf Galois system. Furthermore, the quantum torsor associated to
this Hopf Galois system by Theorem 2.99 is isomorphic to T .

In fact, the Hopf Galois system obtained here satisfies some additional conditions of symmetry
that make it total (see [16, Definition 3.1]).

Therefore, by adding Theorem 2.99 (Hopf Galois systems ) quantum torsors) and Theorem 2.100
(quantum torsors ) (total) Hopf Galois systems) to former results, we have explicitly closed
diagram (52):

Hopf Galois
systems

Hopf Galois
objects

Quantum
torsors

3. Families of noncommutative rings

In the last century, noncommutative rings and algebras have appeared in almost every subject of
research, and not only mathematical contexts, but also in theoretical physics. Therefore, the study
of certain algebras given by their generators and relations has become useful. However, within a
more practical approach, some general families of noncommutative rings have been defined and
studied along the years.

Although these collections do not cover, in general, every remarkable example, most of such
families contain a notorious amount of distinguished algebras, even having the case that one object
can be endowed with two or more different structures, as we shall discuss in the examples. In
this section, we will address several of such families of rings, most of them having a polynomial
behavior.

Popular for describing a broad number of algebras and for having a pioneering role in the systematic
research on noncommutative rings, in Section 3.1 we address skew polynomial rings. Section 3.2
is dedicated to PBW extensions, which comprehend rings with the PBW basis property, while
Section 3.3 reviews a generalization of that setup. Finally, in Section 3.4 we present a family of
algebras that generalizes enveloping universal algebras of Lie algebras.
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3.1. Skew polynomial rings

Introduced by Ore [7], skew polynomial rings (also known as Ore extensions) are distinguished
by their elements, which have a polynomial aspect but not necessarily the variable is assumed
to commute with coefficients. For such “commutation” to take place, certain rule involving an
endomorphism and a derivation of the ground ring is established.

Let R be a ring and � W R ! R a ring endomorphism. An additive map ı W R ! R is called
a �-derivation of R if ı.rs/ D �.r/ı.s/ C ı.r/s, for all r; s 2 R. Notice that, in particular,
ı.1/ D ı.1 � 1/ D �.1/ı.1/C ı.1/1 D 2ı.1/, whence ı.1/ D 0.

Definition 3.1 (Skew polynomial ring). Let R be a ring, � W R ! R a ring endomorphism and
ı W R ! R a � -derivation of R. A ring A such that

(O1) A contains R as a proper subring and 1R D 1A,

(O2) There is a distinguishable element x 2 A such that A is a left free R-module with basis
f1; x; x2; x3; : : :g,

(O3) xr D �.r/x C ı.r/, for all r 2 R,

is called a skew polynomial ring over R. In this case we write A WD RŒxI �; ı�.

There are some constructive proofs showing the existence of skew polynomial rings, which verify
the ring structure of A D RŒxI �; ı� without falling in the tedious calculations of a direct proof
[104, Proposition 2.3]. Moreover, such constructions guarantee that, given any ring R, any ring
endomorphism � of R and any �-derivation of R, the skew polynomial ring RŒxI �; ı� always
exists.

Unless otherwise stated, for the remainder of the section we let A WD RŒxI �; ı� be a skew
polynomial ring over a fixed ring R. From (O3) it is natural to ask for a general formula that
allows us to express xir (i 2 N and r 2 R) as a polynomial with left coefficients. Nevertheless,
those calculations can be tricky. For instance, with i D 3 we end up with

x3r D �3.r/x3 C Œı�2.r/C �ı�.r/C �2ı.r/�x2 C Œı2�.r/C ı�ı.r/C �ı2.r/�x C ı3.r/:

However, using an inductive argument, it can be shown that the multiplication rule can be written
as follows. Given r 2 R and i; k 2 N, we denote by W Œık� i�k�.r/ the evaluation of r in the
function given by the sum of all possible words that can be constructed with the alphabet formed
by k-times the symbol ı and .i � k/-times the symbol � , where the concatenation is understood
as the composition of functions. For instance, if i D 5 and k D 2 we get

W Œı2�3�.r/ D ı2�3.r/C ı�ı�2.r/C ı�2ı�.r/C ı�3ı.r/C �ı2�2.r/

C �ı�ı�.r/C �ı�2ı.r/C �2ı2�.r/C �2ı�ı.r/C �3ı2.r/:

In the general case, if r 2 R and i 2 N, the following formula holds:

xir D

iX
kD0

W Œık� i�k�.r/xi�k : (53)

Moreover, if r; s 2 R and i; j 2 N, then:

.rxi /.sxj / D r

iX
kD0

W Œık� i�k�.s/xiCj�k : (54)
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This discussion shows that in A the product of two terms rxn and sxm is not necessarily another
term, yet in general it will be a polynomial. However, by (O2), it is quite clear that every element
p 2 A can be uniquely written as

p D

nX
iD0

rix
i

D r0 C r1x C r2x
2

C � � � C rn�1x
n�1

C rnx
n; ri 2 R and 0 � i � n:

The element p is usually denoted p.x/ to emphasize the indeterminate x. Following the classical
terminology, the ri are called the coefficients of p.x/. Hence, we conclude that the elements of A
have a polynomial expression, which justifies the name given to this construction.

Definition 3.2. If p.x/ D
Pn
iD0 rix

i is an element of A such that rn ¤ 0, we define:

(i) dg.p.x// WD n as the degree of p.x/,

(ii) lc.p.x// WD rn as the leading coefficient,

(iii) lm.p.x// WD xn as the leading monomial,

(iv) lt.p.x// WD lc.p.x// lm.p.x// D rnx
n as the leading term.

If all coefficient of p.x/ are zero, we say that p.x/ WD 0 is the zero polynomial and in this case
lc.0/ WD 0, lm.0/ WD 0 and lt.0/ WD 0.

Lemma 3.3. If p.x/; q.x/ 2 A and p.x/; q.x/ ¤ 0, then

(i) dg.p.x// � 0,

(ii) dg.p.x/C q.x// � max fdg.p.x//; dg.q.x//g,

(iii) dg.p.x/q.x// � dg.p.x//C dg.q.x//.

Notice that no degree was defined for the zero polynomial. However, some authors put dg.0/ WD

�1, so (ii) and (iii) holds for every p; q 2 RŒxI �; ı� (see e.g. [104, p. 37]).

Since our work concerns algebras, the next result establishes when A has an algebra structure
induced by the ring of coefficients R. We were not able to find a proof of it in the literature.

Lemma 3.4. Let R be a K-algebra. A D RŒxI �; ı� is a K-algebra having R as subalgebra if
and only if � and ı are K-linear maps.

Proof. Suppose first that A is a K-algebra. Hence, for a given k 2 K we must have .k1R/x D

x.k1R/, but by (O3), x.k1R/ D �.k1R/xCı.k1R/. Comparing and using (O2) we get �.k1R/ D

k1R and ı.k1R/ D 0.

Conversely, if � is a K-linear map and ı.k1R/ D 0 for every k 2 K, we must guarantee a ring
morphism � W K ! A such that Im.�/ � Z.A/. Since 1A D 1R and R is already a K-algebra,
define �.k/ D k1R, for all k 2 K. Obviously, � is a (unitary) ring morphism. Moreover,
by (O3), x�.k/ D �.�.k//x C ı.�.k// D �.k1R/x C ı.k1R/ D .k1R/x D �.k/x. Hence,
Im.�/ � Z.A/.

For the remainder of this document, every time we have the hypothesis that R is a K-algebra, we
will automatically assume that � and ı are K-linear, so A is also a K-algebra.
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The following result is known as the universal property of skew polynomial rings.

Theorem 3.5 (e.g. [104, Proposition 2.4]). Assume that B is a ring such that the following
assertions hold:

(i) There is a ring morphism � W R ! B ,

(ii) There is a distinguished element y 2 B such that y�.r/ D �.�.r//y C �.ı.r// for all
r 2 R.

Then there is a unique ring morphism  W A ! B such that  .x/ D y and  jR D �. The last
relation can be represented by the following commutative diagram:

R A

B

�

�

 
(55)

Here � W R ! A is the natural inclusion �.r/ WD r for all r 2 R. Moreover, if R and B are
K-algebras and � is a K-algebra morphism, then  is also a K-algebra morphism.

Proof. B has a right R-module structure via r � b WD �.r/b, for all r 2 R and b 2 B . On the
other hand, by (O2), A is a right free R-module with basis fxi W i � 0g. Hence we can define a
morphism of left R-modules  W A ! B via  .xi / D yi , for all i � 0. Then  is given by

 .r0 C r1x C � � � C rnx
n/ D r0 �  .1/C r1 �  .x/C � � � rn �  .xn/

D �.r0/C �.r1/y C � � � C �.rn/y
n:

By definition, the diagram (55) is commutative. Furthermore,  preserves the unity element
since  .1/ D  .1x0/ D �.1/y0 D 1. We want  to be a ring morphism, so the only thing left
to check is that

 .rxnsxm/ D  .rxn/ .sxm/; (56)

for all r; s 2 R and n;m 2 N. This is done by induction over n. The case n D 0 is trivial. If
n D 1, we have

 .rxsxm/ D  .rŒ�.s/x C ı.s/�xm/ D  .r�.s/xmC1
C rı.s/xm/

D  .r�.s/xmC1/C  .rı.s/xm/ D �.r�.s//ymC1
C �.rı.s//ym

D �.r/Œ�.�.s//y C �.ı.s//�ym D �.r/y�.s/ym

D  .rx/ .sxm/:

Assume now that (56) holds for a fixed n. Then

 .rxnC1sxm/ D  .rxnxsxm/ D  .rxnŒ�.s/x C ı.s/�xm/

D  .rxn�.s/xmC1/C  .rxnı.s/xm/

D  .rxn/ .�.s/xmC1/C  .rxn/ .ı.s/xm/

D  .rxn/Œ�.�.s//y C �.ı.s//�ym

D  .rxn/y�.s/ym D  .rxnC1/ .sxm/:

Therefore  is a ring morphism. By construction,  is uniquely determined.
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Finally, suppose that R and B are K-algebras, and that � is an algebra morphism. Then,
 .krxi / D �.kr/yi D k�.r/yi D k .rxi /, for all r 2 R, k 2 K and i � 0. This guarantees
that  is K-linear and, since it is already a ring morphism, we have shown that it is an algebra
map.

Corollary 3.6 (e.g. [104, Corollary 2.5]). Assume that B is a ring such that the following
assertions hold:

(i) There is a ring morphism � W R ! B ,

(ii) There is a distinguished element y 2 B such that y�.r/ D �.�.r//y C �.ı.r// for all
r 2 R,

(iii) B satisfies the universal property of Theorem 3.5.

Then there exists a ring isomorphism between B and A. Moreover, if R and B are K-algebras,
then the isomorphism is an algebra map.

Proof. Since A satisfies the universal property and the condition (ii) of Theorem 3.5 holds for B ,
there is an uniquely ring morphism � W A ! B such that �.x/ D y and the diagram

R A

B

�

�

 

is commutative. Similarly, since B satisfies the universal property and the relation

xr D �.r/x C ı.r/ D �.�.r//x C �.ı.r//; for all r 2 R;

holds in A, then there exists an uniquely ring morphism ' W B ! A such that '.y/ D x and the
diagram

R B

A

�

�

'

is commutative. Moreover, using the respective universal properties of A and B with themselves,
we get two additional commutative diagrams:

R A

A

�

�

idA

R B

B

�

�

idB

Since ' .x/ D x and ' � D �, by uniqueness ' D idA. Similarly,  '.y/ D y and '� D �,
so  ' D idB . Hence, we conclude B Š A as ring. The last claim is clear from the fact that the
universal property lifts algebra maps.

Now we list some basic ring-theoretical properties of skew polynomial rings.

Proposition 3.7. Assume that � is injective. If R is a domain, then A is also a domain.
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Proof. Let p.x/ D p0 C p1x C � � � C pnx
n ¤ 0 and q.x/ D q0 C q1x C � � � C qmx

m ¤ 0 be
two elements of A such that pn; qm ¤ 0. Then lt.pq/ D pn�

n.qm/x
nCm ¤ 0, by the injectivity

of � . Hence, pq ¤ 0.

It is clear that under these conditions, gr.pq/ D gr.p/C gr.q/ for all p; q 2 A � f0g. Moreover,
the units of A coincide with the units of R.

Recall that R is said to be left Noetherian if any ascending chain of left ideals stabilizes. We
mention a result of huge relevance which generalizes the well known Hilbert’s Basis Theorem.

Theorem 3.8 (Hilbert’s Basis Theorem for skew polynomial rings, e.g. [104, Theorem 2.6]).
If R is a left (resp. right) Noetherian ring and � is bijective, then A is also a left (resp. right)
Noetherian ring.

The construction of skew polynomial rings can be applied several times to obtain an iterated skew
polynomial ring of the form RŒx1I �1; ı1� � � � ŒxnI �n; ın�. For 1 � i � n, notice that �i and ıi
must be defined as

�i ; ıi W RŒx1I �1; ı1� � � � Œxi�1I �i�1; ıi�1� �! RŒx1I �1; ı1� � � � Œxi�1I �i�1; ıi�1�:

For iterated skew polynomial rings an explicit basis over the original base ring is given.

Lemma 3.9. IfA D RŒx1I �1; ı1� � � � ŒxnI �n; ın� is an iterated skew polynomial ring overR, then
the set Mon.x1; : : : ; xn/ WD

˚
x
˛1

1 � � � x
˛n
n W .˛1; : : : ; ˛n/ 2 Nn

	
is a left R-basis of A.

Proof. We proceed by induction over n, the number of variables. We denote

Ai WD RŒx1I �1; ı1� � � � Œxi I �i ; ıi �; for all 1 � i � n:

Since for n D 1 the statement reduces to (O2), there is nothing to prove.

Let n D 2. Then, again by (O2), the powers of x2 form an left basis of A2 over A1, meaning that
every element p 2 A2 can be written as

p D p0.x1/C p1.x1/x2 C p2.x1/x
2
2 C � � � C pm.x1/x

m
2 ;

with all pj .x1/ 2 A1, 0 � j � m. Since every pj .x1/ can be generated by powers of x1,
by distributivity, it is clear that p is generated by fx

˛1

1 x
˛2

2 W ˛1; ˛2 2 Ng. Now, suppose that
0 D

Pn;m
i;jD0 rijx

i
1x
j
2 , for some rij 2 R. By associativity,

n;mX
i;jD0

rijx
i
1x
j
2 D

mX
jD0

 
nX
iD0

rijx
i
1

!
x
j
2 ;

so by linearly independence of the powers of x2 on A,
Pn
iD0 rijx

i
1 D 0, for every 1 � j � m.

But now by the linearly independence of the powers of x1 on A1, every rij D 0.

Now, assume that Mon.x1; : : : ; xn�1/ is a left basis for An�1 over R. As the previous case, every
p 2 A can be written as

p D p0.x1; : : : ; xn�1/C p1.x1; : : : ; xn�1/xn

C p2.x1; : : : ; xn�1/x
2
n�1 C � � � C pm.x1; : : : ; xn�1/x

m
n�1;
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with all pj 2 An�1, 0 � j � m. Using the induction hypothesis for every pj , it is clear that
Mon.x1; : : : ; xn/ generates p. Now, suppose that

0 D

X
0�˛i �mi
1�i�n

r˛x
˛1

1 � � � x˛n
n ; for some r˛ 2 R; ˛ WD .˛1; : : : ; ˛n/ 2 Nn:

Associating,

X
0�˛i �mi
1�i�n

r˛x
˛1

1 � � � x˛n
n D

nX
˛nD0

0BB@ X
0�˛i �mi
1�i�n�1

r˛x
˛1

1 � � � x
˛n�1

n�1

1CCA x˛n
n :

Since the powers of xn are a left basis for A over An�1, we must haveX
0�˛i �mi
1�i�n�1

r˛x
˛1

1 � � � x
˛n�1

n�1 D 0;

but again by induction hypothesis, that only happens if and only if every r˛ D 0, which shows the
linearly independence of Mon.x1; : : : ; xn/.

We end this section with some examples, adapted from [9, 104], which illustrate that skew
polynomial rings are indeed a generalization of more particular well-known cases.

Example 3.10 (Classical polynomial ring). Take � D idR and ı D 0. Therefore (O3) reduces
to xr D rx, for all r 2 R. This is simply the classical univariate polynomial ring over R, and
we write RŒxI idR; 0� D RŒx�. Moreover the formula (54) corresponds to usual multiplication of
monomials. In this case, Theorem 3.8 becomes the classical Hilbert’s Basis Theorem. Furthermore,
we consider the classical multivariate polynomial ring over R, RŒx1; : : : ; xn�, as an iterated skew
polynomial ring over R, where �i D id and ıi D 0, for all 1 � i � n.

Example 3.11 (Polynomial ring of endomorphism type). Take ı D 0. Then (O3) becomes
xr D �.r/x, for all r 2 R. In this case we write RŒxI �; 0� D RŒxI ��. The formula (54) reduces
to .rxn/.sxm/ D r�n.s/xnCm, for all r; s 2 R and n;m 2 N. A widely studied, particular case
is when � is an automorphism of R.

Example 3.12 (Polynomial ring of derivation type). Take � D idR. Then (O3) becomes xr D

rx C ı.r/, for all r 2 R. In this case we write RŒxI idR; ı� D RŒxI ı�. Moreover, formula (54)
simplifies to

.rxn/.sxm/ D r

nX
kD0

 
n

k

!
ık.s/xnCm�k; for all r; s 2 R and n;m 2 N:

The generalizations of Examples 3.11 and 3.12 to several variables (i.e., iterated skew polynomial
rings) is straightforward and therefore omitted; a particular case of the later is discussed in
Example 3.21.
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Example 3.13 (Ore algebras). Since the setup in general iterated skew polynomial rings can be
cumbersome, usually additional conditions may be imposed:

�i .xj / D xj ; j < i; (57)
ıi .xj / D 0; j < i; (58)
�i�j D �j�i ; 1 � i � n; (59)
ıiıj D ıj ıi ; 1 � i � n; (60)

where the two last relations are understood to be restricted to R. Iterated skew polynomial rings
satisfying these relations are common, but it does not seem to exist a standard name in the literature.
In the case of one single variable (i.e., no iteration) the relations trivialize.

It can be shown that (57)-(60) are equivalent to the following relations:

xixj D xjxi ; 1 � i; j � n; (61)
�i .R/; ıi .R/ � R; 1 � i � n: (62)

Therefore, under these conditions the maps �i ; ıi can be seen as maps �i ; ıi W R ! R.

We mention a particular case of the above, distinguished by its well behavior on computational
implementations (see e.g. [105]). Let kŒt1; : : : ; tn� be a classical multivariate polynomial ring over
k. If A D kŒt1; : : : ; tn�Œx1I �n; ı� � � � ŒxnI �n; ın� is an iterated Ore extension satisfying (57)-(60),
then A is called an Ore algebra.

We present concrete cases of the above.

Example 3.14 (Enveloping universal algebra of sl2.k/). Recall from Example 2.11 that a k-basis
for sl2.k/ is formed by

x D

�
0 1

0 0

�
; y D

�
0 0

1 0

�
; h D

�
1 0

0 �1

�
;

and thus U WD U.sl2.k// can be seen as a the k-algebra generated by x; y; h subject to the
relation Œx; y� D h, Œh; x� D 2x and Œh; y� D �2y. It is possible to show that U is isomorphic to
either of the following iterated polynomial rings:

kŒx�ŒhI ı1�ŒyI �2; ı2� Š kŒh�ŒxI �1�ŒyI �2; ı2�;

where

ı1 D 2x
d

dx
; �1.h/ D h � 2; �2.x/ D x;

�2.h/ D hC 2; ı2.x/ D �h; ı2.h/ D 0:

By Theorem 3.5 and Proposition 3.7, U is a Noetherian domain.

Example 3.15 (Quantum enveloping algebra of sl2.k/). Recall from Example 2.13 that for
q 2 k an invertible element such that q ¤ ˙1, Uq WD Uq.sl2.k// is the k-algebra generated by
e; f; k; k�1 subject to the relations

kk�1
D k�1k D 1; (63)

kek�1
D q2e; (64)

kf k�1
D q�2f; (65)

Œe; f � D ef � fe D
k � k�1

q � q�1
: (66)
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We realized that this algebra is in fact a Hopf algebra. In this example we will show that it can
also be seen as an iterated skew polynomial ring.

Let A0 WD kŒk; k�1� be the Laurent polynomial ring in the variable k, in which (63) is satisfied.
Notice that A0 is a Noetherian domain and that fklgl2Z is a k-basis of A0. Now, consider the
automorphism �1 ofA0 given by �1.k/ WD q2k and the respective Ore extensionA1 WD A0Œf I �1�.
Then, using a similar argument to the one given in the proof of Lemma 3.9, we can prove that a
k-basis forA1 is ff jkl W j 2 N; l 2 Zg. Moreover, by Theorem 3.8, A1 is a Noetherian domain.
We have f k D �1.k/f D q2kf which corresponds to the relation (65). By the universal
property of free algebras and Theorem 3.5, A1 is isomorphic to the free algebra generated by
f; k; k�1 subject to the relations (63) and (65).

Now we construct A2 WD A1ŒeI �2; ı�. Let

�2.f
jkl/ WD q�2lf jkl ; j 2 N; l 2 Z: (67)

Then �2 is an automorphism of A1. If we denote by ı.f /.k/ the Laurent polynomial k�k�1

q�q�1 , let

ı.kl/ WD 0; ı.f jkl/ WD

j�1X
iD0

f j�1ı.f /.q�2ik/kl : (68)

We must verify that ı is a �2-derivation ofA1. For that, it suffices to check that for every j;m 2 N

and l; n 2 Z we have

ı.f jklf mkn/ D �2.f
jkl/ı.f mkn/C ı.f jkl/f mkn: (69)

Indeed, starting from the right side of (69) and using (65), (67) and (68), we have

�2.f
jkl/ı.f mkn/C ı.f jkl/f mkn

D

m�1X
iD0

q�2lf jklf m�1ı.f /.q�2ik/kn C

j�1X
iD0

f j�1ı.f /.q�2ik/klf mkn

D

m�1X
iD0

q�2l�2l.m�1/f jCm�1ı.f /.q�2ik/klCn C

j�1X
iD0

q�2lmf mCj�1ı.f /.q�2i�2mk/klCn

D

m�1X
iD0

q�2lmf mCj�1ı.f /.q�2ik/klCn C

jCm�1X
iDm

q�2lmf mCj�1ı.f /.q�2ik/klCn

D q�2lm

0@jCm�1X
iD0

f jCm�1ı.f /.q�2ik/klCn

1A D q�2lmı.f jCmklCn/ D ı.f jklf mkn/:

Thus, in particular ı.f / D
k�k�1

q�q�1 and ı.k/ D 0, whence ek D �2.k/e C ı.k/ D q�2ke, which

corresponds to (64), and ef D �2.f /e C ı.f / D fe C
k�k�1

q�q�1 , which is (66).

Therefore, Uq is isomorphic to kŒk; k�1�Œf I �1�ŒeI �2; ı� and hence, it is a Noetherian domain
with k-basis feif jkl W i; j 2 N; l 2 Zg.

Example 3.16 (The algebra of shift operators). Let kŒt � the classical univariate polynomial ring
over a field k. If �h W kŒt � ! kŒt � is the endomorphism defined by �h.p.t// D p.t � h/, with
p.t/ 2 kŒt �, then the skew polynomial ring Sh D kŒt �ŒxhI �h� over kŒt � is known as the algebra
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of shift operators. If p.t/; q.t/ 2 kŒt �, the formula (54) becomes

p.t/xnhq.t/x
m
h D p.t/q.t � nh/xnCm

h
; for all n;m 2 N:

Notice that Sh is an Ore algebra. When k D R and h > 0, it is used to model time-delays systems
[106].

Example 3.17 (Weyl algebra). Let kŒt � be as in Example 3.16 and denote by d
dt

the derivate
operator with respect to t . The skew polynomial ring A1.k/ D kŒt �ŒxI

d
dt
� over kŒt � is known as

the first Weyl algebra. If p.t/; q.t/ 2 kŒt � the formula (54) becomes

p.t/xnq.t/xm D p.t/

nX
kD0

 
n

k

!
q.k/.t/xnCm�k; for all m; n 2 N:

Here, q.k/.t/ is the k-th derivate of q.t/with respect to t . The n-th Weyl algebra (n � 1) is defined
as the Ore algebra An.k/ WD kŒt1; : : : ; tn�Œx1I

@
@t1
� � � � ŒxnI

@
@tn
�. One of the main applications of

Weyl algebras is the theory ofD-modules (see e.g. [107]).

Example 3.18 (The mixed algebra). For every h 2 k, we define the mixed algebra (also known
as the algebra of delayed differential operators [106]) asDh WD kŒt �ŒxI

d
dt
�ŒxhI �h�, where �h is

as in Example 3.16. We haveDh D A1.k/ŒxhI ıh� and hence it is an Ore algebra.

Example 3.19 (The algebra for multidimensional discrete linear systems). The Ore algebra defined
asD WD kŒt1; : : : ; tn�Œx1I �1� � � � ŒxnI �n�, where

�i .p.t1; : : : ; tn// D p.t1; : : : ; ti�1; ti C 1; tiC1; : : : ; tn/; for 1 � i � n;

is known as the algebra for multidimensional discrete linear systems [106].

More properties and examples of skew polynomial rings can be found in the literature (e.g. [9,
104]).

3.2. PBW extensions

Although (iterated) skew polynomial rings describe a large amount of noncommutative algebras,
these do not cover some remarkable examples, such as the generalized differential operator ring
or the enveloping algebra of a finite dimensional Lie algebra. Hence, Bell and Goodearl defined a
new family of rings that cover those having the PBW property and polynomial aspect [10].

Definition 3.20 (PBW extension). LetR andA be two rings. We say thatA is a Poincaré-Birkhoff-
Witt (PBW) extension of R if the following conditions hold:

(PBW1) A contains R as a proper subring and 1R D 1A,

(PBW2) (PBW property) There exist finitely many elements x1; : : : ; xn 2 A such that A is a free
left R-module with basis

Mon.A/ WD
˚
x
˛1

1 � � � x˛n
n W ˛ WD .˛1; : : : ; ˛n/ 2 Nn

	
;

(PBW3) For each r 2 R and every 1 � i � n, xir � rxi 2 R,
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(PBW4) For every 1 � i; j � n, xixj � xjxi 2 RCRx1 C � � � CRxn.

Under these conditions, we write A D Rhx1; : : : ; xni, andR will be called the ring of coefficients
of the extension A.

The basis Mon.A/ is usually called the set of standard monomials (of A) and also denoted
by Mon.x1; : : : ; xn/. Inspired by the PBW Theorem (see Example 2.10), Mon.A/ is called
a PBW basis for A. In general, the elements xi and xj do not commute when i ¤ j . If
only (PBW1) and (PBW2) hold, we say that A is a ring of left polynomial type overR with respect
to fx1; : : : ; xng.

Before giving some properties, we review a few examples of PBW extensions adapted from [10].

Example 3.21 (Ore extensions of derivation type). Let R be a ring and let

A WD RŒx1I �1; ı1� � � � ŒxnI �n; ın�

be an iterated skew polynomial ring of R satisfying (57)-(60) (or equivalently, (61)-(62)). We
say that A is an (iterated) Ore extension of derivation type if �i D idR, for all 1 � i � n.
These extensions are all PBW extension, since for every r 2 R and 1 � i; j � n we have
xir � rxi D ıi .r/ and xixj � xjxi D 0, proving (PBW3) and (PBW4). Condition (PBW1) is
trivial and (PBW2) is Lemma 3.9. In particular, the classical multivariate polynomial ring (see
Example 3.10) and Weyl algebras (see Example 3.17) are PBW extensions.

Nevertheless, not every (iterated) skew polynomial ring is a PBW extension. Indeed, by taking
A D RŒxI �; ı� with � ¤ idR, condition (PBW3) does not hold. A particular example of this is
the algebra of shift operators (see Example 3.16). The other inclusion is also not true, as the next
example shows.

Example 3.22 (Universal enveloping algebra of a finite dimensional Lie algebra). Let g be a finite
dimensional k-Lie algebra with ordered basis X D fx1; : : : ; xng. The PBW Theorem for the
U.g/ (see Example 2.10) guarantees that (PBW1) and (PBW2) are satisfied when we take R D k.
With this, it is immediate that U.g/ is a PBW extension of k, since for all k 2 k and xi ; xj 2 X ,
xik�kxi D 0 2 k, and xixj �xjxi D Œxi ; xj � 2 g D kx1C� � �Ckxn � kCkx1C� � �Ckxn,
which are precisely (PBW3) and (PBW4). However, in general, U.g/ is not necessarily an iterated
skew polynomial ring, since in the expansion of the product xixj , the variables xk (with k > j )
may appear. Nonetheless, for some particular Lie algebras, the enveloping algebra can be seen
both as PBW extension and as iterated skew polynomial ring (e.g. Example 3.14).

We end this section by giving two additional examples of PBW extensions involving the algebra
U.g/.

Example 3.23 (Tensor product with the universal enveloping algebra of a finite-dimensional Lie
algebra). Let g be a k-Lie algebra with basis X D fxigi and let R be an arbitrary k-algebra. The
k-algebra R˝ U.g/ is also a left R-module via the multiplication by elements of R.

If W WD fx
˛1

i1
� � � x

˛t

it
W xij 2 X; ˛i � 0; t � 1g is the k-basis for U.g/ given by the PBW

Theorem, then 1 ˝ W WD f1 ˝ ´ W ´ 2 W g is an R-basis for R ˝ U.g/. Indeed, if M is a
left R-module and f W 1 ˝ W ! M is any function, then we can induce a k-bilinear map
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f W R � U.g/ ! M given by 
r;
X
i

�iXi

!
7! r �

X
i

�if .1˝Xi /;

with Xi 2 W and �i 2 k. Hence, by the universal property of tensor products, we can uniquely
induce a k-linear map f 0 W R˝ U.g/ ! M such that the diagram

R � U.g/ R˝ U.g/

M

f

�

f 0

is commutative, where � is the canonical map. In fact, f 0 is a R-morphism since for every s 2 R,

f 0

 
s �

 
r ˝

X
i

�iXi

!!
D f 0

 
sr ˝

X
i

�iXi

!
D f

 
sr;
X
i

�iXi

!

D .sr/ �

X
i

�if .1˝Xi / D s �

 
r �

X
i

�if .1˝Xi /

!

D s � f

 
r;
X
i

�iXi

!
D s � f 0

 
r ˝

X
i

�iXi

!
:

Moreover, it is clear that the diagram

1˝W R˝ U.g/

M

f

j

f 0

is commutative, where j is the inclusion map. Additionally, by the uniqueness of f , the map
f 0 is the only one satisfying such commutativity. Hence, since every function from 1˝W to
an arbitrary left module of R can be extended to a R-morphism from R˝ U.g/ to such module,
1˝W is indeed an R-basis.

Notice that R ,! R˝ U.g/ via r 7! r ˝ 1 D r � .1˝ 1/, which corresponds to (PBW1). If g is
finite-dimensional with X D fx1; : : : ; xng, then we just proved that

1˝W D f.1˝ x1/
˛1 � � � .1˝ xn/

˛n W ˛ D .˛1; : : : ; ˛n/ 2 Nn
g D Mon.1˝ x1; : : : ; 1˝ xn/

is an R-basis for R ˝ U.g/, which is (PBW2). Furthermore, (PBW3) and (PBW4) hold, for if
r 2 R and 1 � i; j � n, then

.r ˝ 1/.1˝ xi / � .1˝ xi /.r ˝ 1/ D r ˝ xi � r ˝ xi D 0 2 R;

.1˝ xi /.1˝ xj / � .1˝ xj /.1˝ xi / D 1˝ xixj � xjxi D 1˝ Œxi ; xj �

2 RCR.1˝ x1/C � � � CR.1˝ xn/:

Thus R˝ U.g/ is a PBW extension of R.
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Example 3.23 holds if we change U.g/ to any PBW extension with a finite number of indetermi-
nates.

Example 3.24 (Crossed product with the universal enveloping algebra of a finite-dimensional Lie
algebra). Let g be a k-Lie algebra with basis X D fxigi and let R be an arbitrary k-algebra. We
say that a k-algebra S is a crossed product of R by U.g/ if the following conditions hold:

(i) S contains R as a proper subalgebra,

(ii) There exists an injective k-algebra morphism g ! S , denoted by x 7! x,

(iii) xr � rx 2 R and r 7! xr � rx is a k-derivation of R, for all r 2 R,

(iv) xy � yx 2 Œx; y�CR, for all x; y 2 g,

(v) S is a free right left R-module with the standard monomials over fxig as a basis.

In such case, we write S D R �U.g/. By definition if X is finite (that is, g is finite-dimensional),
thenR�U.g/ is a PBW extension ofR. Particular examples of crossed products with the universal
enveloping algebra of a Lie algebra can be found in [9, page 1.7.13].

3.3. Skew PBW extensions

We saw in the previous section that if a skew polynomial ringA D RŒxI �; ı� is such that � ¤ idR,
then A is not a PBW extension of R. In order to solve this incompatibility without losing the
polynomial behavior, Gallego and Lezama introduced skew PBW extensions as a generalization of
PBW extensions [12] and Ore extensions [7]. Since then, several authors have studied algebraic
and geometrical properties of these objects [12, 108–119]. As a matter of fact, a book containing
research results about these extensions has been recently published (see [11]).

Definition 3.25 (Skew PBW extension). Let R and A be two rings. We say that A is a skew PBW
extension of R (also called � -PBW extension) if the following conditions hold:

(SPBW1) A contains R as a proper subring and 1R D 1A,

(SPBW2) There exist finitely many elements x1; : : : ; xn 2 A such that A is a free left R-module
with basis

Mon.A/ WD Mon.x1; : : : ; xn/ D
˚
x
˛1

1 � � � x˛n
n W ˛ WD .˛1; : : : ; ˛n/ 2 Nn

	
;

(SPBW3) For each r 2 R � f0g and every 1 � i � n, there exists ci;r 2 R � f0g such that
xir � ci;rxi 2 R,

(SPBW4) For every 1 � i; j � n, there exists ci;j 2 R � f0g such that we have the relationship
xixj � ci;jxjxi 2 RCRx1 C � � � CRxn.

Under these conditions we write A D �.R/hx1; : : : ; xni, and R is called the ring of coefficients
of the extension.

Remark 3.26. Several facts can be immediately deduced from Definition 3.25.

(i) By (SPBW2), the elements ci;r and ci;j of (SPBW3) and (SPBW4) are unique.
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(ii) For i D j , in (SPBW4), ci;i D 1. Indeed, since x2i � ci;ix
2
i D 0, then 1 � ci;i D 0. If

r D 0, we define ci;0 D 0.

(iii) Every ci;j 2 R, with 1 � i < j � n, is left invertible. Indeed, ci;j and cj;i are such that

xixj � ci;jxjxi 2 RCRx1 C � � � CRxn;

xjxi � cj;ixixj 2 RCRx1 C � � � CRxn:

Since Mon.A/ is an R-basis then 1 D ci;j cj;i .

(iv) We denote the elements of Mon.A/ as x˛ when it is important to highlight the exponents
˛ D .˛1; : : : ; ˛n/ 2 Nn. An alternative notation for an arbitrary element of Mon.A/
is using the capital letter X . By (SPBW2), each element f 2 A � f0g has a unique
representation in the form f D c1X1 C : : :C ctXt , with ci 2 R � f0g and Xi 2 Mon.A/,
for every 1 � i � t .

(v) It is clear that the verification of (SPBW2) in most cases can be cumbersome. There
are several techniques for that purpose, including Lemma 3.9 for skew polynomial rings,
computation of Gröbner bases of two-sided ideals for free algebras [11], the Bergman’s
Diamond Lemma [120] and the existence theorem for skew PBW extensions [121].

The following result justifies the notation for skew PBW extensions.

Proposition 3.27 ([12, Proposition 3]). Let A be a skew PBW extension of R. Then for each
1 � i � n there exist an injective ring endomorphism �i W R ! R and a �i -derivation ıi W R ! R

such that xir D �i .r/xi C ıi .r/, for every r 2 R.

Proof. By (SPBW3), for each 1 � i � n and every r 2 R, there exist elements ci;r ; ri 2 R such
that xir D ci;rxi C ri . Since Mon.A/ is a R-basis of A, these elements are unique for r , so
we can define the maps �i ; ıi W R ! R by �i .r/ WD ci;r and ıi .r/ WD ri . Moreover, it is clear
that if r ¤ 0, then ci;r ¤ 0, which means that �i is injective. It is easy to check that �i is an
endomorphism and that ıi is a �i -derivation.

We mention some particular cases.

Definition 3.28 (Quasi-commutative skew PBW extension, bijective skew PBW extension). Let
A be a skew PBW extension of R.

(i) A is said to be quasi-commutative if (SPBW3) and (SPBW4) are replaced by

(SPBW3’) For every 1 � i � n and r 2 R � f0g, there exists ci;r 2 R � f0g such that
xir D ci;rxi .

(SPBW4’) For every 1 � i; j � n, there exists ci;j 2 R � f0g such that xjxi D ci;jxixj .

(ii) A is said to be bijective if �i is bijective, for every 1 � i � n, and each ci;j is invertible,
for any 1 � i; j � n.
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Remark 3.29. If A is a quasi-commutative skew PBW extension of R, then A is isomorphic to
an iterated skew polynomial ring of endomorphism type [115, Theorem 2.3]. Nevertheless, skew
PBW extensions of endomorphism type (i.e., with all derivations ıi zero) are indeed more general
than iterated skew polynomial rings of the same type. To clearly illustrate this, we consider the
situations of only two and three indeterminates.

For a skew polynomial ring RŒxI �x�ŒyI �y � of endomorphism type we have the relations

xr D �x.r/x; yr D �y.r/y; yx D �y.x/y;

for any r 2 R. On the other hand, for a skew PBW extension �.R/hx; yi of endomorphism type
we deduce from Definition 3.25 the equations

xr D �1.r/x; yr D �2.r/y; yx D d1;2xy C r0 C r1x C r2y;

for some elements d1;2; r0; r1; r2 2 R. When we compare the defining relations of both algebraic
structures, it is clear that the former is more general.

Similarly, for an iterated skew polynomial ring RŒxI �x�ŒyI �y �Œ´I �´� of endomorphism type we
have

xr D �x.r/x; yr D �y.r/y; ´r D �´.r/´;

yx D �y.x/y; ´x D �´.x/´; ´y D �´.y/´

for any r 2 R. On the other hand, for a skew PBW extension �.R/hx; y; ´i of endomorphism
type we deduce

xr D �1.r/x; yr D �2.r/y; ´r D �3.r/´;

yx D d1;2xy C r0 C r1x C r2y C r3´; ´x D d1;3x´C r 0
0 C r 0

1x C r 0
2y C r 0

3´

´y D d2;3y´C r 00
0 C r 00

1x C r 00
2y C r 00

3´;

for some elements d1;2; d1;3; d2;3; r0; r 0
0; r

00
0 ; r1; r

0
1; r

00
1 ; r2; r

0
2; r

00
2 ; r3; r

0
3; r

00
3 2 R. As we can see,

as the number of indeterminates increases the generality of skew PBWextensions of endomorphism
type becomes more notorious.

We mention two remarkable properties of skew PBW extensions that are similar to those of
classical polynomial rings and skew polynomial rings.

By (SPBW4), for every 1 � i; j � n, we know that there exist a unique finite set of constants
ci;j ; di;j ; a

k
ij 2 R�f0g such that xixj D ci;jxjxiCa

.1/
ij x1C� � �Ca

.n/
ij xnCdij . Such constants,

together with the coefficient ring R, the number of variables n, the injective endomorphism �k
and the �k-derivations ık are known as the parameters of the extension.

Theorem 3.30 (Universal property of skew PBW extensions, [121, Theorem 3.1]). Let A D

�.R/hx1; : : : ; xni be a skew PBW extension of R with corresponding parameters R, n, �k , ık ,
cij , dij , a.k/ij , for 1 � i; j � n and 1 � k � n. Let B a ring together with a ring morphism
� W R ! B and elements y1; : : : ; yn such that:

(i) yk�.r/ D �.�k.r//yk C �.ık.r//, for every r 2 R and 1 � k � n,

(ii) yjyi D �.cij /yiyj C �.a
.1/
ij /y1 C � � � C �.anij /yn C �.dij /, for every 1 � i; j � n.
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Then, there exists a unique ring morphism  W A ! B such that  .xi / D yi , for 1 � i � n, and
the following diagram

R �.R/hx1; : : : ; xni

B

�

�

 

(70)

is commutative, where � is the inclusion map.

Theorem 3.31 (Hilbert’s Basis Theorem for skew PBW extensions, [115, Corollary 2.4]). Let
A D �.R/hx1; : : : ; xni be a bijective skew PBW extension of R. If R is a left (resp. right)
Noetherian ring then A is also a left (resp. right) Noetherian ring.

The proof of this last result uses techniques of graduation-filtration, since the graded associated
ring of A is an iterated skew polynomial ring of endomorphism type (see e.g. [11, Section 3.1]).

We end this section by mentioning some examples of skew PBW extensions, which were adapted
from [11, 12, 115].

Example 3.32 (PBW extensions). Any PBW extension is a bijective skew PBW extension since
in that case �i D idR (1 � i � n) and ci;j D 1 (1 � i; j � n).

Example 3.33 (Skew polynomial rings of injective type). Any skew polynomial ring A D

RŒxI �; ı� with � injective is a skew PBW extension, RŒxI �; ı� D �.R/hxi. If additionally ı D 0,
then RŒxI �� is quasi-commutative.

Moreover, an iterated skew polynomial ring A D RŒx1I �1; ı1� � � � ŒxnI �n; ın� is a skew PBW
extension of R if the following conditions hold:

(i) �i is injective, for 1 � i � n.

(ii) �i .R/; ıi .R/ � R, for 1 � i � n.

(iii) There exist ci ; di 2 R such that ci is left invertible and �j .xi / D cixi C di , for i < j .

(iv) ıj .xi / 2 RCRx1 C � � � CRxn, for i < j .

Under these conditions, we have A D RŒx1I �1; ı1� � � � ŒxnI �n; ın� D �.R/hx1; : : : ; xni and A is
called of injective type.

A particular case of such situation is given by iterated skew polynomial rings satisfying (57)-(60)
with each �i being injective. If specifically R D kŒt1; : : : ; tn�, then we have an Ore algebra (cf.
Example 3.13), and

kŒt1; : : : ; tn�Œx1I �n; ı� � � � ŒxnI �n; ın� D �.kŒt1; : : : ; tn�/hx1; : : : ; xni:

Hence, concrete examples are the algebra of shift operators Sh (Example 3.16), the Weyl algebras
An.k/ (Example 3.17), themixed algebraDh ( Example 3.18) and the algebra formultidimensional
discrete linear systems D (Example 3.19). Observe that all of these examples are not PBW
extensions.
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Example 3.34 (Additive analogue of the Weyl algebra). Given elements q1; : : : ; qn 2 k � f0g,
let An.q1; : : : ; qn/ be the algebra generated by x1; : : : ; xn; y1; : : : ; yn together with the relations

xjxi D xixj ; yjyi D yiyj ; for 1 � i; j � n;

yixj D xjyi ; for i ¤ j;

yixi D qixiyi C 1; for 1 � i � n:

An.q1; : : : ; qn/ is known as the additive analogue of the Weyl algebra [122] and it is isomorphic
to kŒx1; : : : ; xn�Œy1I �1; ı1� � � � ŒynI �n; ın� over kŒx1; : : : ; xn�, where

�j .yi / D yi ; ıj .yi / D 0; for 1 � i < j � n;

�i .xj / D xj ; ıi .xj / D 0; for i ¤ j;

�i .xi / D qixi ; ıi .xi / D 1; for 1 � i � n:

SinceAn.q1; : : : ; qn/ is an iterated Ore extension of injective type, it is also a skew PBW extension
of kŒx1; : : : ; xn�. Moreover, it is bijective and

An.q1; : : : ; qn/ D �.kŒx1; : : : ; xn�/hy1; : : : ; yni:

Nonetheless, notice that An.q1; : : : ; qn/ can also be viewed as a skew PBW extension of k, by
putting An.q1; : : : ; qn/ D �.k/hx1; : : : ; xn; y1; : : : ; yni. If qi D q ¤ 0, for all 1 � i � n, then
An.q1; : : : ; qn/ becomes the algebra of q-differential operators [123].

Example 3.35 (Multiplicative analogue of the Weyl algebra). Given �ij 2 k � f0g, with 1 � i <

j � n, let On.�ij / be the algebra generated by x1; : : : ; xn and subject to the relations

xjxi D �ijxixj ; for 1 � i < j � n:

The algebra On.�ij / is known as the multiplicative analogue of the Weyl algebra [124] and it
is isomorphic to the iterated skew polynomial ring kŒx1�Œx2I �2� � � � ŒxnI �n� over kŒx1�, where
�j .xi / D �ijxi , for 1 � i < j � n. Since On.�ij / satisfies conditions (i)-(iv) of Example 3.33,
it is also a skew PBW extension of KŒx1� and hence On.�ij / D �.KŒx1�/hx2; : : : ; xni. Notice
that On.�ij / is quasi-commutative and bijective, and can also be viewed as a skew PBW extension
of k by putting On.�ij / D �.k/hx1; : : : ; xni. On.�ij / is also called the homogeneous solvable
polynomial algebra. If n D 2, then O2.�12/ is the quantum plane (e.g. [125]). If all �ij D

q�2 ¤ 0, for some q 2 k � f0g, then On.�ij / becomes the well-known coordinate ring of the
the quantum affine n-space [126].

Example 3.36 (q-Heisenberg algebra). Given q 2 k � f0g, let hn.q/ be the algebra generated by
x1; : : : ; xn; y1; : : : ; yn; ´1; : : : ; ´n together with the relations

xjxi D xixj ; j́´i D ´i j́ ; yjyi D yiyj ; for 1 � i; j � n;

j́yi D yi j́ ; j́xi D xi j́ ; yjxi D xiyj ; for i ¤ j;

´iyi D qyi´i ; ´ixi D q�1xi´i C yi ; yixi D qxiyi ; for 1 � i � n:

hn.q/ is known as the q-Heisenberg algebra [127] and it is isomorphic to the iterated skew
polynomial ring kŒx1; : : : ; xn�Œy1I �1� � � � ŒynI �n�Œ´1I �1; ı1� � � � Œ´nI �n; ın� over kŒx1; : : : ; xn�,
where

�j .´i / D ´i ; ıj .´i / D 0; �j .yi / D yi ; for 1 � i < j � n;

�j .yi / D yi ; ıj .yi / D 0; �j .xi / D xi ; ıj .xi / D 0; �j .xi / D xi ; for i ¤ j;

�i .yi / D qyi ; ıi .yi / D 0; �i .xi / D q�1xi ; ıi .xi / D yi ; �i .xi / D qxi ; 1 � i � n:
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Since ıi .xi / D yi … kŒx1; : : : ; xn�, considering the extension over kŒx1; : : : ; xn�, hn.q/ does
not satisfy the condition (iii) of Example 3.33. However, if the base ring is k, it does satisfy
conditions (i)-(iv) and hence hn.q/ is a bijective skew PBW extension of k, that is, hn.q/ D

�.k/hx1; : : : ; xn; y1; : : : ; yn; ´1; : : : ; ´ni. This algebra has its roots in the study of q-calculus
[128].

Example 3.37 (Dispin algebra). Let U.osp.1; 2// be the algebra generated by x; y; ´ together
with the relations

y´ � ´y D ´; ´x C x´ D y and xy � yx D x:

Then U.osp.1; 2// D �.k/hx; y; ´i. As was pointed to us by David A. Jordan, this algebra
may also be seen as the skew polynomial ring U.osp.1; 2// Š kŒy�Œ´I ��ŒxI˛; ı� over kŒy�Œ´I ��,
where �.y/ D y � 1, ˛.´/ D �´. ˛.y/ D y C 1 (it restricts to ��1 on kŒy�), ı.y/ D 0, and
ı.´/ D y (see [129, Example 1.2.(ii)] and [130, Example 1.3]). As an algebra, U.osp.1; 2//
corresponds to the universal enveloping algebra of the Lie superalgebra osp.1; 2/ (e.g. [131,
page C4.1]).

We already discussed in Remark 3.29 the relation of skew PBW extensions with iterated skew
polynomial rings when no derivations are considered. However, from these examples one could
think that in the general case skew PBW extensions coincide with (iterated) skew polynomial
rings of injective type. However, that is also not the case as the following examples show.

Example 3.38 (Quantum algebra U 0
q.so3/). Given q 2 k � f0g, let U 0

q.so3/ be the algebra
generated by I1; I2; I3 subject to the relations

I2I1 � qI1I2 D �q1=2I3; I3I1 � q�1I1I3 D q�1=2I2 and I3I2 � qI2I3 D �q1=2I1:

This algebra is a skew PBW extension of k, U 0
q.so3/ D �.k/hI1; I2; I3i. Moreover, from the

relations it is clear that it cannot be expressed as a skew polynomial ring over k, since the
commutation rule of two variables involves the third. This algebra was introduced by Gavrilik and
Klimyk [132] and it is a nonstandard q-deformation of the universal enveloping algebra U.so3/
of the Lie algebra so3 [133].

Example 3.39 (Hayashi algebra). Given q 2 k � f0g, let Wq.J / be the algebra generated by
x1; : : : ; xn; y1; : : : ; yn; ´1; : : : ; ´n together with the relations

xjxi D xixj ; j́´i D ´i j́ ; yjyi D yiyj ; for 1 � i; j � n;

j́yi D yi j́ ; j́xi D xi j́ ; yjxi D xiyj ; for i ¤ j;

´iyi D qyi´i ; yixi D qxiyi ; for 1 � i � n;

.´ixi � qxi´i /yi D 1 D yi .´ixi � qxi´i /; for 1 � i � n:

Wq.J / is known as the Hayashi algebra [134]. Notice that Wq.J / is a skew PBW extension of
the multivariate Laurent polynomial ring kŒy˙1

1 ; : : : ; y˙1
n �, since

xiy
�1
j D y�1

j xi ; ´iy
�1
j D y�1

j ´i ; yjy
�1
j D y�1

j yj D 1; for 1 � i; j � n;

´ixi D qxi´i C y�1
i ; for 1 � i � n:

One can check that Wq.J / D �.kŒy˙1
1 ; : : : ; y˙1

n �/hx1; : : : ; xn; ´1; : : : ; ´ni.
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Example 3.40 (Diffusion algebras). A diffusion algebra with parameters aij 2 C � f0g (1 �

i; j � n) is a C-algebra A generated by variables x1; : : : ; xn, subject to relations

aijxixj � bijxjxi D rjxi � rixj ; i < j; bij ; ri 2 C;

and such that the indeterminates x’s form a C-basis of the algebra A. Diffusion algebras arise in
physics as a way of understand a large class of 1-dimensional stochastic process [135]. In such
applications, the parameters aij are strictly positive reals and the parameters bij are positive reals
as they represent unnormalised measures of probability. These algebras are not skew polynomial
rings over CŒx1; : : : ; xn� but are skew PBW extensions of it [136].

In the literature it has been shown that skew PBW extensions also generalize several families of
noncommutative rings such as the almost normalizing extensions defined by McConnell and Rob-
son [9], ambiskew polynomial rings introduced by Jordan [129, 130], solvable polynomial rings
introduced by Kandri-Rody and Weispfenning [137], and others. As we saw in Definition 3.25,
the advantage of skew PBW extensions is that they do not require the coefficients to commute with
the variables and, moreover, those coefficients need not come from a field. In fact, skew PBW
extensions contain well-known classes of algebras such as some types of Auslander-Gorenstein
rings, several Calabi-Yau and skew Calabi-Yau algebras, certain Artin-Schelter regular algebras,
some Koszul algebras, quantum polynomials, some quantum universal enveloping algebras, sev-
eral examples of G-algebras, and various skew graded Clifford algebras. Several connections
between skew PBW extensions and other algebras with PBW bases (such as PBW rings [138])
can be found in [9, 11, 112, 115, 139, 140]. Ring-theoretical properties and more examples of
skew PBW extensions have been studied in [136, 141–144].

We end this section by adressing 3-dimensional skew polynomial algebras, which is a family
of rings included in the class of PBW extensions. Some remarkable examples are the universal
enveloping algebra U.sl.2;k// (Example 2.11), the Dispin algebra (Example 3.37) U.osp.1; 2//
and the Woronowicz’s algebra W�.sl.2;k// [131, 145]. These algebras were introduced by Bell
and Smith, and are very important in noncommutative algebraic geometry (see e.g. [131, Section
C.4.3]).

Definition 3.41 (3-dimensional skew polynomial algebra). A 3-dimensional skew polynomial
algebra A is a k-algebra generated by the variables x; y; ´, subject to relations

y´ � ˛´y D �; ´x � ˇx´ D �; xy � 
yx D �;

and such that

(i) �;�; � 2 k C kx C ky C k´, and ˛; ˇ; 
 2 k � f0g,

(ii) The set of standard monomials fxiyj´l W i; j; l � 0g is a k-basis of the algebra.

From Definition 3.41, it is clear that a 3-dimensional skew polynomial algebra A is a skew PBW
extensions over k, A Š �.k/hx; y; ´i [146]. These algebras can, in fact, be classified.

Proposition 3.42 ([131, Theorem C.4.3.1]). If A is a 3-dimensional skew polynomial algebra,
then A is one of the following algebras:

(a) If jf˛; ˇ; 
gj D 3, then A is defined by y´ � ˛´y D 0, ´x � ˇx´ D 0, xy � 
yx D 0.

(b) if jf˛; ˇ; 
gj D 2 and ˇ ¤ ˛ D 
 D 1, then A is one of the following algebras:
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(i) y´ � ´y D ´, ´x � ˇx´ D y, xy � yx D x,

(ii) y´ � ´y D ´, ´x � ˇx´ D b, xy � yx D x,

(iii) y´ � ´y D 0, ´x � ˇx´ D y, xy � yx D 0,

(iv) y´ � ´y D 0, ´x � ˇx´ D b, xy � yx D 0,

(v) y´ � ´y D a´, ´x � ˇx´ D 0, xy � yx D x,

(vi) y´ � ´y D ´, ´x � ˇx´ D 0, xy � yx D 0,

where a; b are any elements of k. All nonzero values of b give isomorphic algebras.

(c) If jf˛; ˇ; 
gj D 2 and ˇ ¤ ˛ D 
 ¤ 1, then A is one of the following algebras:

(i) y´ � ˛´y D 0, ´x � ˇx´ D y C b, xy � ˛yx D 0,

(ii) y´ � ˛´y D 0, ´x � ˇx´ D b, xy � ˛yx D 0.

In this case, b is an arbitrary element of k. Again, all nonzero values of b give isomorphic
algebras.

(d) If ˛ D ˇ D 
 ¤ 1, then A is the algebra defined by the relations y´ � ˛´y D a1x C b1,
´x�˛x´ D a2yCb2, xy�˛yx D a3´Cb3. If ai D 0 (for i D 1; 2; 3), then all nonzero
values of bi give isomorphic algebras.

(e) If ˛ D ˇ D 
 D 1, then A is isomorphic to one of the following algebras:

(i) y´ � ´y D x, ´x � x´ D y, xy � yx D ´,

(ii) y´ � ´y D 0, ´x � x´ D 0, xy � yx D ´,

(iii) y´ � ´y D 0, ´x � x´ D 0, xy � yx D b,

(iv) y´ � ´y D �y, ´x � x´ D x C y, xy � yx D 0,

(v) y´ � ´y D a´, ´x � x´ D ´, xy � yx D 0.

Parameters a; b 2 k are arbitrary, and all nonzero values of b generate isomorphic algebras.

Ring and theoretical properties of 3-dimensional skew polynomial algebras and diffusion algebras
have been studied in several papers [11, 129, 130, 144, 146–150] and references therein.

3.4. Almost symmetric algebras

In this section, we introduce a certain class of N-filtered algebras whose main purpose is to
generalize universal enveloping algebras of Lie algebras [151]. Several preliminaries of graded
and filtered rings not included in this document will be used (see e.g. [9]). Throughout we assume
that the base ring is a field k. Given a N-filtered algebra A with filtration fFn.A/gn2N , we denote
by gr.A/ its associated graded algebra.

Definition 3.43 (Almost symmetric algebra). Let A be a N-filtered algebra. A is said to be almost
symmetric if there exists a graded algebra isomorphism between gr.A/ and the symmetric algebra
S.gr.A/1/.
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Remark 3.44. If A is an almost symmetric algebra, then F0.A/ Š k. Indeed, since S.gr.A/1/ is
connected we have gr.A/0 Š k. But

k Š gr.A/0 D F0.A/=F�1.A/ D F0.A/=0 Š F0.A/:

In order to classify these algebras, we give some definitions. Recall that, for any k-vector space
V , a bilinear form f W V � V ! k is said to be alternating if f .v; v/ D 0, for all v 2 V .

Definition 3.45 (2-cocycles of Lie algebras). Let g be a Lie algebra and f W g � g ! k be a
bilinear alternating form. We say that f is a 2-cocycle of g if

f .x; Œy; ´�/C f .y; Œ´; x�/C f .´; Œx; y�/ D 0; for all x; y; ´ 2 g:

The set of 2-cocycles of g is denoted by Z2.g;k/.

We introduce Sridharan enveloping algebras [13, Definition 2.1] and our next goal is to prove that
those coincide with almost symmetric algebras.

Definition 3.46 (Sridharan enveloping algebra). Let g be a Lie algebra and f 2 Z2.g;k/. If
T .g/ is the tensor algebra over g and

If WD hx ˝ y � y ˝ x � Œx; y� � f .x; y/ W x; y 2 gi;

the (associative) algebra Uf .g/ WD T .g/=If is called a f -Sridharan enveloping algebra of g.

Notice that Sridharan enveloping algebras are a generalization of universal enveloping algebras of
Lie algebras (see Example 2.10).

Lemma 3.47. If g is a Lie algebra and f 2 Z2.g;k/, then Uf .g/ is N-filtered.

Proof. Since T .g/ is N-graded by fg˝igp2N , the family f
L
i�p g

˝igp2N becomes a N-filtration.
Hence the quotient Uf .g/ D T .g/=If is also N-filtered. Explicitly,

Fp.Uf .g// WD �f

0@M
i�p

g˝i

1A ; for all p 2 N;

where �f W T .g/ ! Uf .g/ D T .g/=If is the canonical algebra map, i.e., �f .´/ D ´ WD ´C If ,
for every ´ 2 T .g/.

The restriction of �f W T .g/ ! Uf .g/ to g induces a k-linear map if W g ! Uf .g/ which, for
every x; y 2 g, satisfies

if .x/if .y/ � if .y/if .x/ D xy � yx D x ˝ y � y ˝ x

D Œx; y�C f .x; y/ D if .Œx; y�/C f .x; y/ � if .1/: (71)

Lemma 3.48 ([13, Lemma 2.4]). Let g be a k-Lie algebra and f 2 Z2.g;k/. If x1; : : : ; xp 2 g
and � is a permutation of .1; : : : ; p/, then

if .x1/ � � � if .xp/ � if .x�.1// � � � if .x�.p// 2 Fp�1.Uf .g//:
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Proof. Decomposing the permutation as a product of transpositions, it suffices to consider the
case of a transposition interchanging two consecutive indexes j and j C 1. In this case, relation
(71) gives

if .xj /if .xjC1/ � if .xjC1/if .xj / D if .Œxj ; xjC1�/C f .xj ; xjC1/ � if .1/:

Since Œxj ; xjC1� 2 g and f .xj ; xjC1/ 2 k, then if .Œxj ; xjC1�/ C f .xj ; xjC1/ � if .1/ 2

F2.Uf .g//, as required.

Proposition 3.49 ([13, Proposition 2.3]). Let g be a k-Lie algebra and f 2 Z2.g;k/. Then
gr.Uf .g// is a commutative algebra.

Proof. The set fif .x/ W x 2 gg [ fif .1/g generates Uf .g/ as an algebra. By Lemma 3.48
those generators commute in the associated graded algebra gr.Uf .g// and hence it must be
commutative.

Let X D fxigi2J be a k-basis for g and � be a total order in J . We write yi WD if .xi / 2 Uf .g/.
Sridharan showed that the set containing 1 and all standard monomials of the form

yi1yi2 � � �yin ; with i1 � i2 � � � � � in;

is a k-basis of Uf .g/ [13, Theorem 2.6], i.e., the PBW Theorem holds for Sridharan enveloping
algebras. This fact implies that if is injective [13, Corollary 2.8] and the following result.

Theorem 3.50 ([13, Theorem 2.5]). Let g be a k-Lie algebra and f 2 Z2.g;k/. Then
gr.Uf .g// Š S.g/ as graded algebras.

Proof. With the notation above, we denote a standard monomial of Uf .g/ by y WD yi1yi2 � � �yin
(with i1 � i2 � � � � � in in the index set J ). Similarly, since we have the identification
g � T .g/, we write ´i WD xi 2 S.g/ for every i 2 J , and ´ WD ´i1´i2 � � � ´in . Hence, PBW
theorem for Sridharan enveloping algebras guarantees the existence of an unique k-linear map
 0 W Uf .g/ ! S.g/ such that  0.y/ D ´. With the canonical N-filtration on S.g/ (which
comes from its graduation), it is clear that  0 is filtered. Then we can induce a graded map
 WD gr. 0/ W gr.Uf .g// ! S.g/.

On the other hand, the filtered algebra map �f W T .g/ ! Uf .g/ mentioned above induces a
graded algebra morphism gr.�f / W T .g/ ! gr.Uf .g//. Using the universal property of S.g/,
we have a graded algebra morphism � W S.g/ ! gr.Uf .g//. Notice that, by construction,
�.´/ D y 2 gr.Uf .g//. Thus, it is clear that  is the inverse of �, and then gr.Uf .g// Š S.g/
as graded algebras.

Recall that, for any Lie algebra g, a k-subspace I is said to be a Lie ideal if

ŒI; g� WD spankfŒx; y� W x 2 I; y 2 gg � I:

In this case, the quotient space g=I has Lie algebra structure given by

Œx; y� WD Œx; y�; for all x; y 2 g:

Before the main theorem of this section, we recall a result on graded algebras.
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Proposition 3.51. Let A;B be two N-filtered rings (resp. k-algebras) with respective filtration
fFp.A/gp2N and fFp.B/gp2N . If f W A ! B is a filtered map such that gr.f / W gr.A/ ! gr.B/
is injective (resp. surjective, bijective), then f is also injective (resp. surjective, bijective).

Proof. For every p 2 N, we denote by Fp.f / W Fp.A/ ! Fp.B/ the restriction of f to
Fp.A/. Notice that Fp.f / is a group morphism, for every p 2 N. Moreover, F0.f / is injec-
tive (resp. surjective, bijective). Indeed, since gr.f / is injective (resp. surjective, bijective),
then every gr.f /p is also injective (resp. surjective, bijective). In particular, the morphism
gr.f /0 W gr.A/0 D F0.A/ ! gr.B/ D F0.B/ is injective (resp. surjective, bijective), which by
construction coincides with F0.f /.

We assume by induction that Fp�1.f / is injective (resp. surjective, bijective). Hence we can
consider the following commutative diagram:

0 Fp�1.A/ Fp.A/ gr.A/p 0

0 Fp�1.B/ Fp.B/ gr.B/p 0

Fp�1.f / Fp.f / gr.f /p

Since Fp�1.f / and gr.f /p are injective (resp. surjective, bijective) and each row is exact, the
Short Five Lemma implies that the map Fp.f / is also injective (resp. surjective, bijective). Since
p 2 N was arbitrary, the assertion has been proved.

The next result gives a complete characterization of almost symmetric algebras.

Theorem 3.52 (Sridharan’s classification, [13, Section 3]). Let A be an almost symmetric algebra.
Then there exist a Lie algebra g and a 2-cocycle f W g˝g ! k such thatA Š Uf .g/ as N-filtered
algebras.

Proof. By definition gr.A/ is isomorphic to a symmetric algebra, so it must be commutative
and hence, for every x; y 2 F1.A/, we have xy � yx D 0 in gr.A/2 D F2.A/=F1.A/. Thus
xy � yx 2 F1.A/ and the k-space F1.A/ acquires a structure of Lie algebra given by

Œx; y� WD xy � yx; for all x; y 2 F1.A/:

Also, F0.A/ D k is a Lie ideal of F1.A/. Indeed, Œk; x� D kx � xk D 0, for all k 2 k and
x 2 F1.x/. Hence g WD F1.A/=k becomes a Lie algebra with induced Lie bracket given by

Œx; y� WD Œx; y� D xy � yx; for all x; y 2 F1.A/:

Here x D x C k 2 g. Then we have the exact short sequence

0 k F1.A/ g 0;
� j

where � is the inclusion and j is the quotient map. Since this sequence is made of k-vector spaces,
it splits and hence there exist a k-linear map t W g ! F1.A/ such that jt D idg. Define the
k-bilinear map f W g � g ! k by

f .x; y/ WD Œt .x/; t.y/� � t .Œx; y�/; for all x; y 2 F1.A/:

A quick computation shows that f is, in fact, a 2-cocycle, and then we can consider Uf .g/.
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By definition, gr.A/ Š S.g/, i.e., there is a graded algebra isomorphism ˛ W gr.A/ ! S.g/. This
induces a filtered algebra map ˛0 W A ! S.g/ such that gr.˛0/ D ˛. On the other hand, in the
proof of Theorem 3.50 we define a filtered algebra map  0 W Uf .g/ ! S.g/ that was lifted up
to a graded algebra isomorphism  W gr.Uf .g// ! S.g/ such that gr. 0/ D  . Notice that
�0 WD  �1jIm. 0/ can be seen as a map from S.g/ toUf .g/, and by construction it is filtered. This
yields the filtered composition map �0˛0 W A ! Uf .g/. Moreover, since gr is a functor, we have
the graded algebra isomorphism gr.�0˛0/ D  �1˛. By Proposition 3.51, we get A Š Uf .g/.

This classification is used to endow almost any symmetric algebra with a comodule structure and
thus obtain new examples of Hopf Galois extensions.

Theorem 3.53 ([74, Proposition 6.5]). Let A be an almost symmetric k-algebra. Then there
exists a Lie algebra g such that A is an U.g/-Galois object.

Proof. By Theorem 3.52, there exist a Lie algebra g and f 2 Z2.g;k/ such that A Š Uf .g/.
Let h W T .g/ ! Uf .g/˝U.g/ be the k-linear map induced by x 7! x˝ 1C 1˝ x, for all x 2 g.
This map factorizes through an algebra map � W Uf .g/ ! Uf .g/˝ U.g/ and hence Uf .g/ is a
U.g/-comodule algebra such that �.x/ D x ˝ 1C 1˝ x, for all x 2 g. Let X D fxigi2J be a
k-basis for g and � a total order in J . By the PBW Theorem there exists an unique k-linear map
� W U.g/ ! Uf .g/ such that �.1/ D 1 and

�.xi1xi2 � � � xin/ D xi1 xi2 � � � xin ; for every i1 � i2 � � � � � in:

One can easily check that � is in fact a U.g/-comodule morphism. Moreover, � is bijective and
hence Uf .g/coU.g/ D k.

A result from Bell [152, Proposition 1.5] states that all faithfully flat U.g/-Galois extensions
BcoH � B , with B a U.g/-comodule algebra, are characterized by maps � W g ! B such that
�.�.x// D �.x/ ˝ 1 C 1 ˝ x, for all x 2 g. Then, by taking B WD Uf .g/ and � WD if , it
immediately follows that k � Uf .g/ is an U.g/-Galois object.

We end this section mentioning a classification for Sridharan enveloping algebras (and thus for
almost symmetric algebras) when the associated Lie algebra is of dimension three over an algebraic
closed field k of characteristic 0.

Theorem 3.54 ([153, Theorem 1.3]). Let g be a Lie algebra such that dimk.g/ D 3, and
f 2 Z2.g;k/. Then the Sridharan enveloping algebra Uf .g/ is isomorphic to one of the ten
algebras presented in Table 1.

Although some of the algebras presented in Table 1 are iterated skew polynomial rings over k

(e.g. type 1, 7 or 8), not all of them are so (e.g., type 6). Nevertheless, all these are skew PBW
extensions of k, that is, Uf .g/ Š �.k/hx; y; ´i.

3.5. Some interactions with Hopf Galois theory

In this last section, we will review relations between Hopf Galois extensions defined in Part 2
and some families (and particular examples) discussed in Part 3. Specifically, in Section 3.5.1
we describe coactions over skew polynomial rings. Section 3.5.2 relates almost symmetric
algebras with Hopf Galois systems and Section 3.5.3 endows Kashiwara algebras with a quantum
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Table 1. Each row corresponds to an algebra generated by x, y and ´, together with the commutating relations
presented. ˛ denotes a non-zero scalar.

Type xy � yx D y´ � ´y D ´x � x´ D

1 0 0 0
2 0 x 0
3 x 0 0
4 0 ˛y �x

5 0 �y �.x C y/

6 ´ �2y �2x

7 1 0 0
8 1 x 0
9 x 1 0
10 1 y x

torsor structure. We remark that the focus here is on Hopf Galois theory, but relations between
noncommutative rings and Hopf algebras in general have been also studied (see e.g. [14, 15, 154,
155]). Throughout,H will denote an arbitrary K-Hopf algebra (faithfully flat, if needed).

3.5.1. Coactions over skew polynomial rings

Our goal here is to describe those coactions of an arbitrary Hopf algebraH over a skew polynomial
ring induced by the algebra of coefficients. For that, we develop some preliminary facts. All the
results of this section are probably new.

Lemma 3.55. Let R;B be two K-algebras. If A D RŒxI �; ı� is a skew polynomial ring over R,
then

A˝K B Š .R˝K B/Œ´I � ˝ idB ; ı ˝ idB �;
B ˝K A Š .B ˝K R/Œ´I idB ˝�; idB ˝ı�

as K-algebras.

Proof. We shall prove the first isomorphism since the argument for the second one is quite similar.
Provided that � is aK-algebra morphism, �˝idB is also of the same type. Also, since ı is additive
and ı.k1/ D 0, for all k 2 K, it follows that ı ˝ idB is also additive and .ı ˝ idB/.k1˝ 1/ D 0.
Furthermore, for all r; s 2 R and b; c 2 B , we have

.ı ˝ idB/Œ.r ˝ b/.s ˝ c/�

D .ı ˝ idB/.rs ˝ bc/ D ı.rs/˝ bc D .�.r/ı.s/C ı.r/s/˝ bc

D �.r/ı.s/˝ bc C ı.r/s ˝ bc D .�.r/˝ b/.ı.s/˝ c/C .ı.r/˝ b/.s ˝ c/

D Œ.ı ˝ idB/.r ˝ b/�Œ.ı ˝ idB/.s ˝ c/�C Œ.ı ˝ idB/.r ˝ b/�.s ˝ c/:

Thus, ı ˝ idB is a .� ˝ idB/-derivation of R ˝ B . Then we can consider the K-algebra
.R˝K B/Œ´I � ˝ idB ; ı ˝ idB �.

Now, since the map R � B ! A˝ B given by .r; b/ 7! r ˝ b is K-bilinear, by the universal
property of the tensor product, there exists a K-linear map � W R ˝ B ! A ˝ B given by
�.r ˝ b/ D r ˝ b, for all r 2 R � A and b 2 B . In fact, � is a K-algebra morphism. Now,
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since for all r 2 R,

.x ˝ 1/�.r ˝ b/ D .x ˝ 1/.r ˝ b/ D xr ˝ b D .�.r/x C ı.r//˝ b

D �.r/x ˝ b C ı.r/˝ b D �.�.r/˝ b/.x ˝ 1/C �.ı.b/˝ b/

D �Œ.� ˝ idB/.r ˝ b/�.x ˝ 1/C �Œ.ı ˝ idB/.r ˝ b/�;

by Theorem 3.5, there exists an uniquely K-algebra morphism

 W .R˝ B/Œ´I � ˝ idB ; ı ˝ idB � ! A˝ B

such that  .´/ D x ˝ 1 and �jR˝B D �. Explicitly,  is given by

 

 
nX
iD0

.ri ˝ bi /´
i

!
D

nX
iD0

�.ri ˝ bi /.x ˝ 1/i D

nX
iD0

.ri ˝ bi /.x ˝ 1/i D

nX
iD0

rix
i

˝ bi :

Conversely, since the map A � B ! .R˝ B/Œ´I � ˝ idB ; ı ˝ idB � given by 
nX
iD0

rix
i ; b

!
7!

nX
iD0

.ri ˝ b/´i

is K-bilinear, by the universal property of the tensor product, there exists a K-linear map ' W

A˝ B ! .R˝ B/Œ´I � ˝ idB ; ı ˝ idB � given by

'

 
nX
iD0

rix
i

˝ b

!
D

nX
iD0

.ri ˝ b/´i :

Now, the calculation

 '

 
nX
iD0

rix
i

˝ b

!
D  

 
nX
iD0

.ri ˝ b/´i

!
D

nX
iD0

rix
i

˝ b;

' 

 
nX
iD0

.ri ˝ bi /´
i

!
D '

 
nX
iD0

rix
i

˝ bi

!
D

nX
iD0

'.rix
i

˝ bi / D

nX
iD0

.ri ˝ bi /´
i ;

proves that these maps are inverse of each other.

Via the isomorphism, the indeterminate ´ in .R˝B/Œ´I � ˝ idB ; ı˝ idB � can be identified with
the element x ˝ 1 of RŒxI �; ı�˝ B , and hence we write .R˝ B/Œx ˝ 1I � ˝ idB ; ı ˝ idB �.

Proposition 3.56. LetH be a K-Hopf algebra. Suppose that R is a rightH -comodule algebra
with structure map �R W R ! R˝H , and let A D RŒxI �; ı� be a skew polynomial ring over R
such that � and ı areH -comodule morphisms. Then A is also a rightH -comodule algebra with
induced structure map �A W A ! A˝H given by

�A

 
nX
iD0

rix
i

!
D

nX
iD0

.ri /.0/x
i

˝ .ri /.1/; with ri 2 R; 0 � i � n:

Moreover, AcoH D RcoH ŒxI �; ı�, where � and ı are considered restricted to RcoH .
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Proof. By Lemma 3.55 we haveA˝H Š .R˝H/Œx˝1I �˝ idH ; ı˝ idH � as algebras. Hence,
since R is a right comodule algebra, �R W R ! R˝H � .R˝H/Œx˝ 1I � ˝ idH ; ı˝ idH � is
an algebra morphism. Moreover, for every r 2 R, since � and ı are comodule morphisms, we
have

�R.�.r//.x ˝ 1/C �R.ı.r// D .�.r/.0/ ˝ �.r/.1//.x ˝ 1/C ı.r/.0/ ˝ ı.r/.1/

D .�.r.0//˝ r.1//.x ˝ 1/C .ı.r.0//˝ r.1//

D Œ.� ˝ idH /.r.0/ ˝ r.1//�.x ˝ 1/C .ı ˝ idH /.r.0/ ˝ r.1//

D .x ˝ 1/.r.0/ ˝ r.1// D .x ˝ 1/�R.r/:

Hence, by Theorem 3.5, there exists an algebra morphism

� W A ! .R˝H/Œx ˝ 1I � ˝ idH ; ı ˝ idH �

such that �.x/ D x ˝ 1 and �jR D �R. Explicitly,

�

 
nX
iD0

rix
i

!
D

nX
iD0

�R.ri /.x ˝ 1/i D

nX
iD0

..ri /.0/ ˝ .ri /.1//.x ˝ 1/i :

Now, we use the isomorphism  of the proof of Lemma 3.55 to define the algebra morphism
�A W A ! A˝H as �A WD  �. Then, we have

�A

 
nX
iD0

rix
i

!
D  �

 
nX
iD0

rix
i

!

D  

 
nX
iD0

..ri /.0/ ˝ .ri /.1//.x ˝ 1/i

!

D

nX
iD0

.ri /.0/x
i

˝ .ri /.1/:

Furthermore,

Œ.idA˝�/�A�

 
nX
iD0

rix
i

!
D .idA˝�/

 
nX
iD0

.ri /.0/x
i

˝ .ri /.1/

!

D

nX
iD0

.ri /.0/x
i

˝ .ri /.1/ ˝ .ri /.2/

D .�A ˝ idH /

 
nX
iD0

.ri /.0/x
i

˝ .ri /.1/

!

D Œ.�A ˝ idH /�A�

 
nX
iD0

rix
i

!
;

and

Œ.idA˝"/�A�

 
nX
iD0

rix
i

!
D .idA˝"/

 
nX
iD0

.ri /.0/x
i

˝ .ri /.1/

!

D

nX
iD0

.ri /.0/x
i

˝ "..ri /.1//1

D

nX
iD0

.ri /.0/"..ri /.1//x
i

˝ 1 D

nX
iD0

rix
i

˝ 1;
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which proves that A is a right H -comodule with structure map �A. Moreover, since, �A is an
algebra morphism, A is indeed a rightH -comodule algebra.

Now, we define

RcoH ŒxI �; ı� WD

(
nX
iD0

rix
i

2 A W ri 2 RcoH ; 0 � i � n

)
� A;

which, since � and ı are comodule morphisms, is indeed a subalgebra of A. For a given p.x/ DPn
iD0 rix

i 2 RcoH ŒxI �; ı� we have

�A.p.x// D �A

 
nX
iD0

rix
i

!
D

nX
iD0

rix
i

˝ 1 D p.x/˝ 1;

so p.x/ 2 AcoH . Conversely, if p.x/ D
Pn
iD0 rix

i 2 AcoH , then

nX
iD0

.ri /.0/x
i

˝ .ri /.1/ D

nX
iD0

rix
i

˝ 1 2 A˝H:

Using the isomorphism of Lemma 3.55, this means
nX
iD0

..ri /.0/ ˝ .ri /.1//.x ˝ 1/i D

nX
iD0

.ri ˝ 1/.x ˝ 1/i 2 .R˝H/Œx ˝ 1I � ˝ idH ; ı ˝ idH �:

By (O2) we must have �R.ri / D ri ˝ 1 for all 0 � i � n, so each ri lies in RcoH and hence
p.x/ is an element of RcoH ŒxI �; ı�. Then AcoH D RcoH ŒxI �; ı�.

Corollary 3.57. LetH be aK-Hopf algebra. Suppose that R is a rightH -comodule algebra with
structure map �R W R ! R ˝H , and let A D RŒx1I �1; ı1� � � � ŒxnI �n; ın� be an iterated skew
polynomial ring over R such that each �i and ıi are H -comodule morphisms, for 1 � i � n.
Then A is also a rightH -comodule algebra with induced structure map �A W A ! A˝H given
by

�A

 
nX
iD0

riXi

!
D

nX
iD0

.ri /.0/Xi ˝ .ri /.1/; with ri 2 R and Xi 2 Mon.A/; 0 � i � n:

Moreover, AcoH D RcoH Œx1I �1; ı1� � � � ŒxnI �n; ın�, where �i and ıi are considered restricted
to RcoH Œx1I �1; ı1� � � � Œxi�1I �i�1; ıi�1�, for every 1 � i � n.

Now, we prove that for a certain type of skew polynomial rings the Hopf Galois extension condition
is preserved.

Theorem 3.58. LetH be a k-Hopf algebra, R a k-algebra and A D RŒxI �� a polynomial ring
of endomorphism type over R such that R is a rightH -comodule algebra and � is an injective
comodule morphism. If R is a right H -Galois object, then kŒxI �� � A is a right H -Galois
extension.

Proof. R being a right H -Galois object means that the map ˇR W R ˝ R ! R ˝H given by
ˇR.r˝ s/ D .r˝1/�R.s/ D rs.0/˝ s.1/, for all r; s 2 R, is bijective. For A, with the comodule
structure induced by Proposition 3.56, we have that the Galois map ˇA W A˝AcoH A ! A˝H
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is given by

ˇA

0@ nX
iD0

rix
i

˝

mX
jD0

sjx
j

1A D

 
nX
iD0

rix
i

˝ 1

!
�A

0@ mX
jD0

sjx
j

1A
D

 
nX
iD0

rix
i

!0@ mX
jD0

.sj /.0/x
j

1A˝ .sj /.1/: (72)

To prove that ˇA is injective it suffices to show that if for r; s 2 R and i; j 2 N we have
ˇA.rx

i ˝ sxj / D 0, then rxi ˝ sxj D 0. By (72) we have

0 D ˇA.rx
i

˝ sxj / D .rxi /.s.0/x
j /˝ s.1/

(54)
D r� i .s.0//x

iCj
˝ s.1/:

Using the isomorphism of Lemma 3.55, we have .r� i .s.0// ˝ s.1//.x ˝ 1/iCj D 0, which
by (O2) means that r� i .s.0//˝ s.1/ D ˇR.r ˝ � i .s// D 0 2 R˝R. By hypothesis, it follows
that r ˝ � i .s/ D 0. Since the tensor product is taken over the field k it follows that r D 0 or
� i .s/ D 0 (see e.g. [156, Theorem 14.5]). Hence, by the injectivity of � , r D 0 or s D 0. Either
case, rxi ˝ sxj D 0.

Now, for the surjectivity of ˇA, recall the notation of Section 2.9, i.e., we write ˇ�1
R .1˝ h/ D

hŒ1� ˝ hŒ2� 2 R˝R, for all h 2 H . Then, for any
Pn
iD0 rix

i ˝ h 2 A˝H , we have

ˇA

 
nX
iD0

ri�
i .hŒ1�/xi ˝ hŒ2�

!
D ˇA

 
nX
iD0

rix
ihŒ1� ˝ hŒ2�

!

D

nX
iD0

rix
ihŒ1�hŒ2�.0/ ˝ hŒ2�.1/

D

 
nX
iD0

rix
i

˝ 1

!
.hŒ1�hŒ2�.0/ ˝ hŒ2�.1//

(30)
D

 
nX
iD0

rix
i

˝ 1

!
.1˝ h/

D

nX
iD0

rix
i

˝ h:

Thus ˇ is bijective and the extension is Galois.

Notice that the calculations above strongly depend on the fact that the skew polynomial ring
involved has no derivations. We end this section by formulating questions that, as far as the
authors know, are still open:

• Is the description given in Proposition 3.56 unique? More precisely, do all coactions of a
Hopf algebra on a skew polynomial ring arise in this manner?

• Under some additional compatibility conditions, can Theorem 3.58 be extended to skew
polynomial rings with non-zero derivations?

• May Theorem 3.58 be extended to (skew) PBW extensions?
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3.5.2. Almost symmetric algebras and Hopf Galois systems

We saw in Section 3.4 that for any almost symmetric algebra A, there exists a Lie algebra g such
that k � A is an U.g/-extension. In this section, we mention an alternative path for that result
using the equivalence between Hopf Galois objects and Hopf Galois systems (see diagram (52)).

Theorem 3.59 ([16, Theorem 3]). Let g be a k-Lie algebra and f 2 Z2.g;k/. Consider the
Sridharan enveloping algebras Uf .g/ and U�f .g/, and define 
 W U.g/ ! Uf .g/˝U�f .g/ and
ı W U.g/ ! U�f .g/˝ Uf .g/ as x 7! 1˝ x C x ˝ 1, for all x 2 g, and S W U�f .g/ ! Uf .g/
as S.x/ D �x, for all x 2 g. Then, .U.g/; U.g/; Uf .g/; U�f .g// is a k-Hopf Galois system.

By the equivalence theorems of Section 2.10, we have the following immediate results.

Corollary 3.60 ([16, Corollaries 2 and 3]). Let g be a k-Lie algebra and f 2 Z2.g;k/. Then the
following assertions for Uf .g/ hold:

(i) Uf .g/ is a quantum k-torsor with associated map �.x/ D x˝ 1� 1˝ x˝ 1C 1˝ 1˝ x,
for x 2 g, and Grunspan map � D idUf .g/. Moreover,Hl.Uf .g// Š Hr.Uf .g// Š U.g/.

(ii) Uf .g/ is a .U.g/; U.g//-biGalois object.

3.5.3. Kashiwara algebras and quantum torsors

Kashiwara [157] defined a type of algebras useful in the study of crystal bases. In this section,
we introduce the preliminaries for such algebras and then prove that these are examples of Hopf
Galois systems. As a reference for basic terminology, we follow [158, 159].

Definition 3.61 (Generalized Cartan matrix). A square matrix A D Œaij �
n
i;jD1 with entries in Z

is called a generalized Cartan matrix if it satisfies the following conditions:

(i) ai i D 2, for 1 � i � n,

(ii) aij � 0, for i ¤ j ,

(iii) aij D 0 if and only if aj i D 0.

Moreover, A is said to be indecomposable if for every pair of nonempty subsets I1; I2 � I D

f1; : : : ; ng with I1 [ I2 D I , there exists some i 2 I1 and j 2 I2 such that aij ¤ 0.

Throughout we will suppose that every generalized Cartan matrix is symmetrizable, i.e., there
exists a diagonal matrixD with entries in Z>0 such thatDA is symmetric.

Let P_ be a free Abelian group of rank 2n � rank.A/ with a Z-basis

fhi W 1 � i � ng [ fds W s D 1; : : : ; n � rank.A/g:

The group P_ is known as the dual weight lattice. The k-linear space spanned by P_, h WD

k ˝Z P
_, is called the Cartan subalgebra. We also define the weight lattice to be

P WD f� 2 h�
W �.P_/ � Zg:

The elements of a linear independent subset… WD f˛i W 1 � i � ng � h� satisfying j̨ .hi / D aij
and j̨ .ds/ 2 f0; 1g, for all 1 � i; j � n and s D 1; : : : ; n � rank.A/, are called simple roots.
Similarly, each element of the set…_ WD fhi W 1 � i � ng is called a simple coroots.
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Definition 3.62 (Cartan datum). LetA D Œaij �
n
i;jD1 be a generalized Cartanmatrix. The quintuple

.A;…;…_; P; P_/ defined as above is said to form a Cartan datum associated to A.

Recall that if V is a k-vector space, the space gl.V / of all k-linear maps on V acquires a Lie
algebra structure via the Lie bracket Œx; y� D xy � yx, for all x; y 2 gl.V /, and it is called the
general linear Lie algebra. If V D kn, we denote the general linear Lie algebra by gl.n;k/.
Given a Lie algebra g we define the Lie morphism ad W g ! gl.g/, given by ad x.y/ D Œx; y�, for
all x; y 2 g, which is called the adjoint representation of g.

With this, we are able to define a type of algebras of great relevance since they are considered a
natural generalization of semisimple Lie algebras to the infinite dimensional case [159, Chapter
1].

Definition 3.63 (Kac-Moody algebra). Let .A;…;…_; P; P_/ be a Cartan datum associated to
a generalized Cartan matrix A D Œaij �

n
i;jD1. The Kac-Moody algebra associated to the Cartan

datum is the k-Lie algebra generated by the elements ei , fi (1 � i � n) and h 2 P_ subject to
the following defining relations:

(KMA1) Œh; h0� D 0 for all h; h0 2 P_,

(KMA2) Œei ; fj � D ıijhi for all i; j 2 I ,

(KMA3) Œh; ei � D ˛i .h/ei for all i 2 I and h 2 P_,

(KMA4) Œh; fi � D �˛i .h/fi for all i 2 I and h 2 P_,

(KMA5) .ad ei /1�aij ej D 0 for all i ¤ j , i; j 2 I ,

(KMA6) .adfi /1�aij fj D 0, for all i ¤ j , i; j 2 I .

Conditions (KMA1)-(KMA4) are called the Weyl relations, while (KMA5)-(KMA6) are known
as the Serre relations.

Given a Kac-Moody algebra g associated to the Cartan datum .A;…;…_; P; P_/, we define an
inner product on the Cartan subalgebra h� so that

.˛i ; ˛i / 2 N and hhi ; �i D 2.˛i ; �/=.˛i ; ˛i /; for all � 2 h�:

Our base ring is K WD QŒŒ„��, the formal power series ring over Q. We also set q D exp.„/,
qi D qh˛i ;˛i i=2, ti D qhi ,

Œn�i D
qni � q�n

i

qi � q�1
i

and Œn�i Š D

nY
kD1

Œk�i :

Definition 3.64 (Kashiwara algebra). Given a Kac-Moody algebra g associated to the Cartan
datum .A;…;…_; P; P_/, the Kashiwara algebra Bq.g/ is the associative K-algebra generated
by the elements e0

i , fi (1 � i � n) and qh; h 2
Ln
iD1Zhi (with hi 2 …_) together with the
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relations:

qhe0
iq

�h
D qhh;˛i ie0

i ;

qhfiq
�h

D q�hh;˛i ifi ;

e0
ifj D q

hhi ; j̨ i

i fj e
0
i C ıij ;

1�hhi ;˛kiX
kD0

.�1/kX
.k/
i XjX

.1�hhi ; j̨ i/

i D 0;

where X D e0; f and X .n/i D Xni =Œn�i Š.

Theorem 3.65 ([16, Theorem 4]). Let B WD Bq.g/ be a Kashiwara algebra. Then the map
� W B ! B ˝ Bop ˝ B defined by

�.e0
i / WD 1˝ 1˝ e0

i � 1˝ e0
i ti ˝ t�1i C e0

i ˝ ti ˝ t�1i ;

�.fi / D 1˝ 1˝ fi � 1˝ fi ti ˝ t�1i C fi ˝ ti ˝ t�1i ;

�.qh/ D qh ˝ q�h
˝ qh;

makes B into a quantum torsor. Moreover, the Grunspan map � W B ! B is given by

�.e0
i / D t�1i e0

i ti ; �.fi /t
�1
i fi ti and �.qh/ D qh;

so the torsor is autonomous.

Using characterization theorems, Grunspan gave an explicit description of the two Hopf algebras
Hl.B/ and Hr.B/ (which turn out to be quantum groups) that can be attached to the torsor,
endowing it with a Hopf Galois system [16, Section 4.2].

4. Conclusions

The investigation of properties of algebraic structures is a topic of interest for the mathematical
community, and in this document we have shown several of those features, both from the point
of view of Hopf Galois extensions and of noncommutative families of rings. We have presented
in detail various relations between Hopf Galois extensions and different algebraic structures.
Moreover, with examples, results and properties we illustrate the scope of the theory. Additionally,
the study of the interactions between these algebraic contexts give rise to new open problems both
in Hopf theory and in noncommutative algebra.
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Algunas interacciones entre extensiones de Hopf Galois y anillos no conmutativos

Resumen: En este artículo, nuestros objetos de interés son las extensiones de Hopf Galois
(p. ej., álgebras de Hopf, extensiones de Galois de cuerpos algebraicos, álgebras fuerte-
mente graduadas, productos cruzados, fibrados principales, etc.) y familias de anillos no
conmutativos (p. ej., anillos polinomiales torcidos, extensiones PBW y extensiones PBW
torcidas, etc.). Recopilamos y sistematizamos preguntas, problemas, propiedades y avances
recientes en ambas teorías desarrollando explícitamente ejemplos y haciendo cálculos que
generalmente se omiten en la literatura. En particular, para las extensiones de Hopf Galois
consideramos enfoques desde el punto de vista de torsores cuánticos (también conocidos como
”heaps” cuánticos) y sistemas de Hopf Galois, mientras que para algunas familias de anillos
no conmutativos presentamos avances en la caracterización de propiedades homológicas
y teóricas de anillos. Cada tema desarrollado se ejemplifica con abundantes referencias a
obras clásicas y actuales, por lo que este trabajo sirve de referencia para los interesados en
cualquiera de las dos teorías. A lo largo de este trabajo, se presentan las interacciones entre
ambos.

Palabras Clave: álgebra de Hopf; extensión de Hopf Galois; anillo no conmutativo; extensión
de Ore; extensión PBW torcida.

Algumas interações entre extensões de Hopf Galois e anéis não comutativos

Resumo: Neste artigo, nossos objetos de interesse são extensões de Hopf Galois (por exemplo,
álgebras de Hopf, extensões de Galois de cuerpos algebraicos, álgebras fortemente graduadas,
produtos cruzados, fibrados principais, etc.), e famílias de anéis não comutativos (por exemplo,
anéis polinomiais torcidos, extensões PBW e extensões PBW torcidas, etc.). Coletamos e
sistematizamos questões, problemas, propriedades e avanços recentes em ambas as teorias,
desenvolvendo explicitamente exemplos e fazendo cálculos que geralmente são omitidos na
literatura. Em particular, para extensões de Hopf Galois consideramos abordagens do ponto
de vista de torsores quânticos (também conhecidos como heaps quânticos) e sistemas Hopf
Galois, enquanto para algumas famílias de anéis não comutativos apresentamos avanços na
caracterização de propriedades homológicas e teóricas de anéis. Cada tema desenvolvido é
exemplificado com abundantes referências a obras clássicas e atuais, por isso este trabalho
serve como referência para os interessados em qualquer uma das duas teorias. Ao longo desde
trabalho, as interações entre os dois são apresentadas.

Palavras-chave: álgebra de Hopf; extensão de Hopf Galois; anel não comutativo; extensão
de Ore; extensão PBW torcida.
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