L
Pontificia Universidad

JAVERIANA

Univ. Sci. 28(1): 23-41, 2023
doi: 10.11144/Javeriana.SC281.ocsp

Bogotd

ORIGINAL ARTICLE

One-compartment stochastic pharmacokinetic model

Ricardo Cano Macias*!, José Alfredo Jiménez Moscoso?, Jorge Mauricio Ruiz Vera’

Edited by
Juan Carlos Salcedo-Reyes
salcedo.juan@javeriana.edu.co

1. Engineering Faculty, Universidad de
La Sabana, Chia, Cundinamarca,
Colombia.

2. Statistics Department, Universidad
Nacional de Colombia, Bogotd D.C.,
Colombia.

3. Mathematics Department, Universidad
Nacional de Colombia,Bogota D.C.,
Colombia.

*ricardocm @unisabana.edu.co

Received: 05-10-2021
Accepted: 12-12-2022
Published online: 08-03-2023

Citation: Cano Macias R, Jiménez
Moscoso JA, Ruiz Vera IM.
One-compartment stochastic
pharmacokinetic model. Universitas
Scientiarum, 28(1): 2341 , 2023.
doi: 10.11144/Javeriana.SC281.ocsp

Funding: n.a.

Electronic supplementary material:
n.a.

Abstract

In this work, we consider a pharmacokinetic (PK) model with first-order drug absorption and first-order
elimination that represent the concentration of drugs in the body, including both the absorption and
elimination parts, and we also add a random factor to describe the variability between patients and the
environment. Using It6’s lemma and the Laplace transform, we obtain the solutions in integral form
for a single and constant dosage regimen in time. Moreover, formulas for the expected value and the
variance for each case of study are presented, which allows the statistical assessment of the proposed
models, as well as predicting the ideal path of drug concentration and its uncertainty. These results
are important in the long-term analysis of drug concentration and the persistence of therapeutic level.
Further, a numerical method for the solution of the stochastic differential equation (SDE) is introduced
and developed.

Keywords: Stochastic differential equations; It6’s lemma; analytic solutions; PK model.

1. Introduction

Drug concentration levels in the body vary among different patients according to their weight,
age, stress, or genetic factors [1]. In addition, it has also been observed that the food intake,
special excercises and some vitamin can affect the drug absorption [2]. Due to the variability and
uncertainty of such factors, several researches have introduced stochastic corrections on the well
known compartmental pharmacokinetics deterministic models [3].

The mathematical modeling of stochastic compartmental systems has received great attention in
the literature and has produced many useful mathematical models. For example, an analysis of
a one-compartment model to describe the spontaneous erratic variations of drug concentration
decay with a single dose administration [4, 5], where the elimination rate fluctates according
a Wiener motion. More recently the same case is studied in [6] where stochastic differential
equations (SDE) driven by the Liu process (see [7]) are proposed and this model presents the
uncertainty that the drug concentration is larger than the minimum effective concentration. In
contrast to [6], in this paper we include the drug absorption phenomena under two kinds of dosage
forms and the elimination using a Wiener motion.

Another approach is presented in [4] and [8] using a Vasicek model to study the stochastic
variability for continuous dosing. Some recent studies have proposed more complex compartments
models [9, 10, 11, 12, 13, 14]. These works consider the noise term as a constant and focus on
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parameter estimation techniques. However, in such works closed expressions for the solution, the
expected value, and the time-dependent variance are not derivated. The aim of this article is to
determine such formulas.

In addition, the problem to determine an optimal dosing timing schedule to control the blood
drug concentration is studied in [2]. The authors combine optimal control theory and stochastic
methods, prove existence, uniqueness of the solution and present the corresponding stability
analisys. In such work the goal is to determine the source term of the SDEs system. On the
other hand, in this paper we are interested in determining the terapeutic range of the drug when
dosification function is known.

In this article, we consider an one-compartment PK model where drug is absorbed according to a
first-order process and first order elimination. Such situation is described by a differential equation
coupled with a SDE, that takes into account the variability among individuals under dose regimen.
In order to solve such system, we employ It6’s calculus and Laplace transformation to obtain
a solution in Riemann integral form. The advantage is that one can approximate numerically
the realistic trajectory of the drug concentration by standard quadrature rules. To determine the
therapeutic range of the drug, it is necessary to know the expected value and the time-dependent
variance of the drug concentration. In order to find them, it is possible to solve the differential
equations for the first moment (i.e. the expected value) and for the second moment (and so find the
variance), this is usefull when an exact solution of the corresponding SDE is not known. However,
in this work we obtain an explicit formula for the solution of SDE in an integral form, this allow
us to directly calculate the expected value and variance for this solution.

2. Mathematical model

In order to describe mathematically the absorption and elimination of a drug in the body, we
consider the following hypotheses in the deterministic part of the model [3]:

a) The absorbed drug concentration decreases proportionally to the amount of drug at site of
administration at the time ¢.

b) The drug is rapidly and uniformly distributed throughout the body, i.e., when the body
behaves as a single central compartment.

¢) The drug elimination is considered as a first-order process, ie, is proportional to the amount
of drug in the body

The classical model, which describes drug absorption in a one-compartment and relates the
changes in drug concentration in the blood with time to the absorption and the elimination rates
is based on the Wagner-Nelson method [15]:

Pl raXa)+ 1)
PO o Xa )~ reX(0) M

s.t. Xa(0) = Xa0, X(0) =0,

where dX/ dt is the rate (mg h™!) of change of drug concentration in the blood, X(¢) is the
concentration of drug in the blood or body at time ¢, X, is the concentration of absorbable drug
at the absorption site at time 7, r, and r, are the first-order absorption and elimination constants
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Figure 1. Compartmental Model.

rates, respectively (e.g., h™1), r4 X, is the first-order rate of absorption (mg h™!, ug h™!, etc.),
re X () is the first-order rate of elimination (e.g., mg h_l), X0 1s the initial dose of drug and for
the dosage regimen of the drug per unit of time f'(¢). We consider the following two cases:

* Single dose: f(¢) = 0 with X, # 0.

* Constant dosage: f(t) = rqXp, with X, positive constant.

However, model (1) does not take into account that drug concentration levels vary among different
patients according to their weight, age, stress or genetic factors ([16] and [1]). Therefore, we
consider that the elimination rate r, is not constant in time but randomly fluctuates around a
mean value as r, — {;, where ; is a Gaussian white noise process. Then {; df can be written
as cdW(t), where W(t) is a standard Wiener motion and the positive constant c is a diffusion
coefficient.

Incorporating this assumption into the deterministic model (1), we obtain the following SDE
system

dXa(1) = (—raXa() + f(1)) dt
dX (1) = (raXa(t) —reX(t)) dt + c X (1) dW(2) ()
sit. Xa(0) = Xa0, X(0) =0.

Theorem 2.1. The solution to the initial value problems (2) with f(¢) = r; X, and X}, a positive
constant is given by

X(t) = b+ 27! {—”“ [ et e_CW(")Xa(u)du} )
S+ re 0

where £7! is the inverse Laplace transform operator, s is the Laplace transform parameter and
X4 (2) is the solution of first equation from (2) which is given by the indefinite integral form:

Xa(t) = e_rat (Xa() +/
0

Proof. To determine the solution to problem (2), we use the integration factor method (see [17])
as follows:

t

pra f(u)du) . @)
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1. We solve the non-deterministic part of equation (2), i.e

dX(t) = cX(@)dW(2). (5)
Using It6 formula [18] with F(X,t) = In(X) and after some calculations, we get

X(t) — Ke—%czl-i‘CW(l)‘ (6)

. Applying the method of variation of parameters, we make the constant K of the non-

deterministic solution (6) vary as a function of time, so X (¢) is of the form
X(1) = K()e 2+ WO = k()G (), )
where G(t) satisfies equation (5). Then,

dX(1) = d[K(t)G(1)]
(raXa(t) —reX(t)) dt + cX(1) dW(t) = G(t) dK(t) + K(1) dG(1).

By substituting (7) into the above equation, we have
(raXa(t) —reK(1)G(1)) df + cK ()G (1) dW () = G(t)[ dK(7) + cK(t) dW(1)]

By cancelling the similar terms and dividing by G(#) in both sides of above equation, we
get the following initial value problem

dK(r) _ raXa(t)
i RO =50 )
s.t. K@) =0,

where X, (¢) is given by (4). To solve the initial value problem (8) we use the Laplace
transform, then

dK(t) _ raXa(t)
:ﬁ{ < }+re:£{1<(t)}_§6% G0 }

o0
sK(s) — K(0) + reK(s) = r4 / e~ 6=2M g=eWD x (1) ds
0

o0
(s + e )K(s) = 14 / IR AOT
0

K(s) = — [ % 61 =W X ()41,
S +re Jo

Now, we apply the inverse Laplace transformation on both sides:

S+ e

K(t):ii‘l{ i / e—“—iczﬁe“’W“)Xa(z)dz}. )
0

We plug equation (9) into (7) to obtain the general solution of (2)

X(1) = e 3¢ +eWO 7 % @ / el =Wt ) du} :
S+ re Jo

where u is an auxiliary variable. O
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3. Drug dose regimens

In this section, we analyze the behavior of the drug concentration in the body under constant
dosage (infusion) regimen and the single dose (push) administration.

3.1. Continuous dosage (infusion) of the drug

A constant amount of the drug is supplied continuously for long periods of time, in the treatment
of some chronic diseases. Such types of administration are: intravenous infusion, certain oral
formulations based on the phenomenon of osmosis and certain transdermal patches.

Remark 3.1. When the source function f(t) = r, X, with X, a positive constant, the solution
of the first equation of (2) given by (4) is

Xa(t) = Xp + (Xao — Xp)e 7", (10)
Theorem 3.1. Let f(t) = r, X, be the source function with X, a positive constant that represents

the concentration of the drug that is administered at all time ¢ > 0. Then, the concentration of the
drug is given by the integral form:

t t
X(@t) = / k1 (t —u) ecWO-We) g 4 / ko (t — u) e WO=Wa) gy (11)
0 0
where s
k1(t —u) :=rqXp e~ (ret2e)(—1), (12)
and L
Kz(l _ u) = rg (XaO _ Xp) e—rau—(re-i-ic )(t—u)‘ (13)

Proof. By replacing (10) in (3) we get

X(t) :f_l { raXP /oo e—(s—%cz)u e—cW(u) e—%czt—i-cW(t) du%
S+ 7re Jo

+ !

Ta (Xa() - XI’) /oo e—(s-i—ra—%cz)u e—cW(u) e—%czt—i—cW(t) du
S+ re 0

:f_l { I":Xp /oo o —SU e—%cz(t—u) eC(W(t)_W(“)) du}
ST 7Te Jo

+ &

Ta (Xao - XI’) [00 e—Su e—%cz(t—u) ec(W(t)—W(u)) eTa% gyl
s + e 0

using the convolution theorem, we obtain

t
X0 =7 X [ €770 0 WO g,
0

t
+ra (Xao — Xp) / e Tet—u) e—%c2(t—u) CWD=WwW) p=rau g,
0
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Finally, we get the integral form

t t
X@) = / Ky (1 —u) ecWO=W) gy 4 / Ko (1 — u) e¢WO=Wa) gy
0 0
where k1 (¢ — u) and x» (¢ — u) are defined as in (12) and (13) respectively. O

Remark 3.2. In conclusion, the solution of the system (2) with f(¢) = ry X, is

Xa(t) = Xp + (XaO - Xp)e_r“t,
X(t) = [y x1(t —u) e WOV dqy 4 (% ey (t — u) ecWO-WaD) gy

with k1 (¢ — u) and k(¢ — u) as in (12) and (13).

Corollary 3.1. Single dose (push) administration Let X;, = 0 in equation (10) and the dose is
supplied at the initial time (¢ = 0). Then the concentration is given by the integral form

t

X(t) = raXao f e+ 3e)a1) e WO-WW) g (14)
0

Proof. As X, = 0, it follows from (12) and (13) that
k1(t —u) =0, and ka(t —u) = rqaXao e Tau=(re+5cA)t—u)
Thus, immediately from (11) the result is obtained. O

3.1.1. Expected value and variance for constant dose

In this section we obtain explicit formulas for the expected value and the variance of the drug
concentration X (¢). Having these formulas, we can identify the model parameters from observed
data and to establish therapeutic ranges of the drug for each dosing regimen. At this point,
it is important to differentiate the case when the absorption constant rate r, is equal to the
elimination constant rate r, to determine the relevant pharmacokinetic parameters (see 3.3). In
the deterministic model similar results have been obtained in [23] and [24].

Proposition 3.1. The expected value of the stochastic process X (¢) given by (11) is

Ta _ —ret (XGO_XP) —ret _ ,—Tqt :
E[X()] = 1 72 Xp(l—e77eh) + T—rejra (e ety if re #£rg (15)

Xp(l — e_r“t) + (Xa0 — Xp)rate™ ! if re=rg,.

Proof. Since W(t)—W(u) ~ N(0,t—u) then exp{c(W(¢t)—W(u))} has alog-normal distribution
with parameters

E[ec(W(t)—W(u))] — e%cz(t—u) and Var [ec(W(t)—W(u))] — ecz(t—u) (ecz(t—u) _ 1).
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e If re # r, the expected value of X(¢) in (11) is given by

E[X(1)] = /

0

t t
Kk1(t —u) E[ec(W(’)_W(”))] du + / ko (t —u) E[ec(W(’)_W(”))] du
0

t t
= / k1(t —u) ez gy / Ko (t —u) e2¢%(t=u) gy,
0

0
t t
_ [ raXp e Tet=u) 4y, + / Ta (Xao — Xp) e Tau—Te(t—u) 4, (16)
0 0
= DX, (1= el 4~ (Xa0 — Xp) (77 — &),
re ra - re
* For the case that r, = r,4, the result is obtained easily from equation (16). L]

Proposition 3.2. If r, # {ra,ra+c?. 74 +c?/2,c?,¢?/2}, the variance of the stochastic process
X(t) given by (11) is

2r2 X2 12 2r2 X2 2
Var[ X(1) ] =—— 2“2 (1 — e 20e=3cDty _ _7a"P (1 _ ,=(re=c)t),—ret
al‘[ ()] ”e(zre_cz)( ) re(re_cz) ( )

2r2XP (XaO - XP) —rgt —ret —(re—c?)t
T arere—er) € ¢ )(1-e )

2’"3 (XaO - XP)2 (e—Zrat - e—2(re—%cz)t) (17)
Fg —Te z(ra _re) +c?

2}"3 (Xa0 — XP)2 (e—(re+ra)t _ e—Z(Fe—%Cz)l‘)
Fq—Telq—Te+ 2

+

Xa0— X 2
— [r—“Xp(l —eTeh) + ra(Xa0 = Xp) (e77et — e_r“t)} )
Te Fa —Te
Proof. Details of the calculation of Var[X (t)] can be seen in Appendix B. O

Proposition 3.3. If r, = r,, the variance of the stochastic process X (¢) given by (11) is

2r2 5 1, » 2rqa X2 )
Var[X(1)] ==2 (X, — Xa0) e 2t [ = (e€" = 1) —1¢ ——P(e(c —2’a)’—1)
ar[ ()] c2 ( p aO) (Cz( ) 2ry — 2

ro—c2 (XP + ra(Xp — Xa0) t)(e_(r“_cz)t _ 1)

2
— (Xp (€7 = 1) + rate™" (X, — Xao) )

Proof. The result can be obtained from the variance definition and equation (23) in Appendix B.
O

Remark 3.3. The expected value given in (15) satisfies the ordinary differential equation given
in (1) when f(t) = rq Xp, since if we differentiate (15) with respect to t and substitute into (1), it
is satisfied. Furthermore, if X, = 0 in (15), this expression coincides with the exact solution of
(1), that is, in the absence of the stochastic term.

Remark 3.4. To compute the variance of process X (¢) in presence of flip-flop kinetics (re > ry),
we consider the cases re = rq + cZ and re = rq + 2 /2 (see Appendix B).
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Remark 3.5. In pharmacology is very important to determine the therapeutic range of a drug,

which is the range in which the drug can be used without causing toxic or lethal effects on the

individual. From equations (15) and (17) we obtain that in the stationary state (t — o0), the

minimum effective concentration X,;, and the concentration maximum admissible X,.x must be
such that

Ta

Xmin =—

Te

r
Xp—20x@) < X() < r—aXp + 20x(r) < Xmax»
e

crqaXp

Fev/2re —c?

where o) = when t — oo.

4. Numerical simulation

Several numerical schemes have been used to solve SDEs (for example [19] and [20]). Howeyver,
in this work we propose an alternative method to simulate the evolution of the drug concentration,
when a single dose or constant dose are administrated. To compute numerically an approximation
of the solution (11), let us denote by o := r, + ¢?/2, B := & — rq, when X, # O then
h(t) = ra Xpe @'+ ® and g(1) := (X40/ X, — 1)h(¢). Hence the solution (11) can be written
as follows

t t
X(1) = h(t) f e W gy 4 o(t) f ePremcwl) gy (18)
0 0

Note that the integrals in (18) are just Riemann Integrals, then in order to evaluate X (¢). First, we
divide the interval [0, t;u4x] into N sub-intervals of equal length Az := t,,4x /N . This defines a
set of discrete times t; = i At,i = 1,..., N. Next, we discretize the Wiener process with a time
step At and interpolate linearly the term e = ®) on the interval [;_1, #;]. Then, an approximation
of X(ty)fork =1,...,N is

k t au L au
h(t foe*™(t; —u)du foe*(u—ti—1)du
X() = (A];) ) [ o + =t l
i=1

ecw(ti—1) ecw ()
) [ fi, P —wdu [l Pt y)du .
+ At - f ecwi—1) + ecw(t;) ’ (19)
1=

where X (o) = X(0) = 0 and the integrals are computed exactly.
4.1. Single dosage (push) administration

We consider the experimental data of Theophylline concentrations (in mg/L) for 12 subjects
following a single oral dose of 320 mg. The data is reported in [21] and its time series graphs are
shown in Figure 2(a). From this data we identify the parameters re, 4, X540 and c (see Figure 2(a))
by the method of moments (see [22]). We found that elimination rate, absorption rate, coefficient
of variance, and initial absorption concentration are r, = 0.0782, r, = 1.7603, ¢ = 0.1004 and
Xa0 = 9.5206 respectively. Figure 2(b) shows a simulation of the drug concentration decay. As
we can observe, computational simulations are consistent with the experimental measurements.
Furthermore, in both figures, the sample paths are in between the strip formed by E [X (t)] +20x(r).
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4.2. Continuous dosage (infusion) of the drug

We will now study the Propofol concentration behavior during 60 minutes infusion dose adminis-
tration with an infusion rate of 25 g kg~ ! min~! . Experimental data are taken from [25]. We
estimate the parameters of the model by the method of moments, we find that r, = 0.8261,r, =
0.1247,c¢ = 0.1435, X, = 0.0029 and X,0 = 0.0137.

From Figure 3(a) we see that the average mean of data (red dots) almost coincides with the
expected value (black curve). Furthermore, the experimental data lie within a band around the
expected value with a width of two standard deviations. Figure 3(b) illustrates a simulation of the
drug concentration in five individuals when the dosage is continuous (infusion). Here, solution of
the differential equation (2) with f(t) = r,X), was evaluated by the numerical approximation
(19).

EX(®]
®  Sample mean
EIX(t)] + 20

X(t)

12 :
X, ()
E[X(1)]
..... EIX(®)] + 20,

(t)

0 5 10 15 20 25

Figure 2. (a) Experimental data of the Theophylline concentrations. (b) Simulation of the decay of the Theophylline
concentration after the administration of a single dose (push). Five sample paths, expected value of the process
(2) and the graphs of]E[X(t)] =+ 20x(;)- e = 0.0782, g = 1.7603, ¢ = 0.1004, Xo = 0, Xq0 = 9.5206 and
f&)=0.
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— EX(0]
0.035 F ® Samplemean

— (0] 220,

E
=
(=)
3 002
<
0.015
0.01
0.005
o#
time (h)
(@)
0.035
— X0
oosl — EX( ]
’ " eea s EIXO) 220,
0.025 B
E oo02h B
=
o
=
Z o015 ,
3
§
.
0.01 F\ 3 |
g
i
0.005 - B
o , , , ,

Figure 3. (a) Experimental data of the Propofol concentrations. (b) Simulation of the drug concentration under a
constant dosage regimen. Samples of five paths, expected value of the process (2) and the graphs of E[X (t)] de
20x(s), 'a = 0.8261,r, = 0.1247,¢ = 0.1435, X = 0.0029 and X490 = 0.0137.

5. Conclusions

We study an one compartment stochastic differential model that describe absorption and elimina-
tion of a drug under a single and constant dosage regimens. We derived an integral equation for
the solution, that allow to determine an explicit formulas for the expected value and variance. The
model is identified using the formulas of the expected value and the variance, which allows to
predict the realistic path of the solution and its uncertainty, as well as, to determine the therapeutic
range of the drug. Further, a numerical method for the solution of the SDE is introduced and
developed, in this case, using a quadrature rule; instead of solving the SDE system by standard
numerical methods. We leave the convergence analysis of the numerical method for future work.
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A. Basic notions

1. According to [22], if S ~ N(O, ), its mgf is

E[e’“s] — e37a,

. Since W(t) ~ N(0, 1), it follows that d W(t) ~ N(0, dt). Therefore,

Var[dW(t)] = E[dW(t) —E[dW(@)]]* = E[dW(1)]* = dr.

. Square of the sum of N real numbers

(éan) Za +2Z Z aia;.

j=li=j+1

n/ot fu) (/Ou f(v)dv)n_1 du = (/Ot f(v) dv)n (20)

Proof. In the left hand we make change of variable

Z=F(u)=/0uf(v)dv, dz=d[F(u)]=f(u)du

F(1)
n/o " ldz =7 F(t) (/ f(v)dv).

. Identity

we obtain

B. Calculation of variance for a constant dose

From equation (11) we get

E[X2(t)] = E[I7(1)]+2E[11(t) ()] + E[15(1)],

where the integrals are

t
1 (1) :=/ it —u)ecWOW gy j =12
0

and «; (t — u) are given by the equations (12) and (13) respectively. Using the identity (20) with
n = 2, we obtain

! 2
E[If (0] = E[( / k1t —u) eV O-WW) du) ]
0
E|:2/t1(1(t —u)eC(W(t)—W(u))(/“ k1(t — v) e WO-W W) dv)duj|
0 0

t
- 2/ /“ K1(t —u) k(1 —v) IE[ec[2(W(t)_W(u))HW(u)_W(v))]] dv du.
0 JO
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For simplicity, we denote the increments over different time by W(u) = W() — W(u) and
W(v) = W(u) — W(v), then

t pu
E[I7(t)] = 2/0 /0 K1t —u)ier(t = v) M,y (2¢) M,y (c) dv du
roru L (50)2 1.2
=2/ / K1 (1 — u) k(1 — v) @23 37 U=v) gy qy
o Jo
roru 22 1.2
=2/ / i1 (t —u) k1 (f — v) @268 o267 (=) gy gy
o Jo
Substituting (13) in the above expression, it results

t
E[I1}(1)] =212 X, / / ¥ erelu 0] g0 gy gy
0 JO

t
:2r3X§ e 20re—3c?)t / e(re=c?u (/'" e’ dv) du @2y
0 0

If r, # c? and re # ¢2/2 then
v=u
)du
v=0

E[12()] =2r2 X} e 20re=3) /

t Fel
ore—cu (e
0

I'e

_y"a %0 oo yedn | e (gren 1) gy
Te 0
2 VazXﬁ2 o—2re=1e?y (e(re—cz)t _ 1)
Fele —C
e (1) 2 (1) e

To compute IE[IZ2 (t)] of process is similar to previous one, then

t u
E[lzz(t)] — 2r§(Xa0 o XP)Z e—2(re—;c2)t/ e(re_ra_cz)u ([ e(re—ra)v dv) du (23)
0 0

If re # rq and rp # rq + c? then

E[Izz(t)] _ 2r;  (Xa0 — Xp)* (e—2rat _ e—z(re—%&)z)
Fa —Te 2(rg —re) + c2

27‘5 (X(JO - XP)22 <e_(re+ra)t _ e—Z(re—%Cz)t) . (24)
Ta —Tela—Tet+C
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By Fubini’s Theorem we have that:
t t
E[1:() ()] = E[(/ k1 (1 — u)ecWO=Waw) du) (/ Ka(t — v) e€WO-WW) dv)i|
0 0
t pt
_ / / k1t — 1) kat — ) E[ec[2(W(r>—W<u>)+(W(u)—W(v))]] dv du
0 Jo
t pt
= /0 /0 K1(t —u) ka(t —v) MW(M)(ZC) Mﬁ;(v)(c) dv du
t t 2 2 1.2
= / / K1 (t —u) ko (f — ) @267 @267 (=) gy gy
o Jo
Substituting (13) in the above expression, it results

t t
E[11(t) I(1)] = — r7 Xp(Xa0 — Xp) / / e~ 2(re=3¢)1 p(re=c?u o=(ra=re)v g4y gy
o Jo

2 _ t t
= — ra Xp(Xa? Xp) (/ e("e—Cz)u du) (/ e—(ra—re)v dv) (25)
e2(re—§cz)t 0 0

If ro # ry and rp # c? then
u=t) (e_(ra_"e)v v=t)
u=0 Ta = Te v=0

2

_ rg Xp (Xao - XP) e—z(rg—%cz)t (e(re—cz)t _ 1) (e—(ra—re)t _ 1)
(rg —re)(re — c?)

_ rgXp(XaO - Xp)

(ra —re)(re —c?)

ere—c?

2

E[11(1) 1>(1)] =r2 Xp(Xa0 — Xp) e—zm—;cz)z( o
—

(1 _ e—(re—cl)t) (e—rat _ e—ret) . (26)

Thus, from (15), (22), (24) and (26) we obtain

Var[X(1)] = E[X*(1)] — (E[X(®)])
re(re —1q) rez (re—”a)(re_cz)
( ?rg(Xao — Xp)? ) o—2ral _ 2¢*r7Xp(Xao — Xp)e—rat
(Va—re)z(z(”e—”a)_cz) re(ra—re)(re_cz)
_ 2ra(Xao — Xp) c2(reXa0 — raXp) — (re — ra)ZXp o~ (retra)t
re(re_ra)z ”e_ra_c2

2

217 Xp(Xp — Xa0) o~ (retra—c?)t —czrgXIf
(re —rq)(re —c?) r3(2re—62)
N ( 2r2(Xp — Xa0)?
(re —ra — c%)(2(re —rq) —¢?)

2r§Xp[(c2 —Te—Ta)Xp + 2re — cz)Xao] e—Z(re—%cz)t
(re —ra)(re — c2)(2re — c2)

Since the parameters of the model can have the same values, from expressions (21), (23) and (25),
we obtain the following cases for the variance:
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—2rgt __
Var[X(1)] = f 2672t (X, = Xao)? (€77 1) = rax2E— L

1. Ifre = rg + %then

2
e (ra+§c) —1 2 1.2
—\raX — Zr (X, — Xg0) (e72¢7F — 1)e et
(“ P g e K (€
4

¢ (ra = 5¢?) (ra + 3¢2)
_ 12 e—(ra—jcz)t _ 1
12X (Xp — Xgo) €7t (€757 —1) S
ra - _C
1. Xfro. = rq + 2 then
2r§t 2 —(2rg+c?)t 2 ,—(ra+c? ) “ral —1]
Var[X(t)] = — 62 (Xp_Xa()) e +2r X r—{——cz
a
2
- a+c) _
"a —(ra+c?)t —rqt € (r 1
—(c—2 (Xp_XaO) (e ( ) — e )—raXpra—i_—cz

2},3 5 2 B e—(2ra+(,‘2)t -1
— 2 (X, —X ( ct_l) 2rqt 22X2

! (Xp a0)” (e € Tadp (2rg + ¢2) (ra + ¢?)
2ra

- 5% (Xp = Xao) (€77~ 1) (e —1) e

1. Ifrp = < then

—2rqt __ 1 8

_ 2€ 2v2 —1e2¢ (12
Var[X(t)] =TIq (Xp—Xa()) W—C—“raxpe 2 <€2 —1)
2
e~ Tal _p=3% o 12,
i ( (Xp = Xao) 5 = Garap (73 1)

5 e—(ra—i-%cz)t -1
(ra = 3¢2) (ra + 3¢?)

4t
+ c—zrng —2r2 (Xp — Xao)

1

4 e~ Tal _ p—3¢%t , |
+ —zrgXp (Xp - XaO) — 1, (eiczt - 1)
c Fa — 5¢C

1. If ro = ¢? then
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ra C2 4 a“"p
2, e %t e~ Tat
—C
—( SraXy (e — 1) + ra (Xp — Xa0) —
e—c2t e—2rat
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Modelo farmacocinético estocastico de un compartimento

Resumen: En este trabajo, consideramos un modelo farmacocinético (PK) con absorcion
de farmacos de primer orden y eliminacién de primer orden que representa la concentracion
de farmacos en el cuerpo, incluyendo tanto la parte de absorcién como la de eliminacidn,
y también agregamos un factor aleatorio para describir la variabilidad entre los pacientes
y el medio ambiente. Utilizando el lema de It6 y la transformada de Laplace, obtenemos
las soluciones en forma integral para un régimen de dosificacién Unico y constante en el
tiempo. Ademads, se presentan férmulas para el valor esperado y la varianza para cada caso de
estudio, lo que permite evaluar estadisticamente los modelos propuestos, asi como predecir
la trayectoria ideal de concentracion del farmaco y su incertidumbre. Estos resultados son
importantes en el andlisis a largo plazo de la ruta de concentracién del fAirmaco y la persistencia
del nivel terapéutico. Adicionalmente, se introduce y desarrolla un método numérico para la
solucién de la ecuacion diferencial estocastica (SDE).

Palabras Clave: soluciones analiticas; lema de Itd; modelo PK; ecuaciones diferenciales
estocasticas.

Modelo farmacocinético estocastico de um compartimento

Resumo: Neste trabalho, consideramos um modelo farmacocinético (PK) com absorcao de
drogas de primeira ordem e eliminag@o de primeira ordem que representa a concentracao
de drogas no corpo, incluindo as partes de absorc¢ao e eliminagdo, e também adicionamos
um fator aleatdrio para descrever a variabilidade entre os pacientes e o ambiente. Utilizando
o lema de It6 e a transformada de Laplace, obtemos as solu¢des na forma integral para um
regime de dosagem Unico e constante no tempo. Além disso, sdo apresentadas férmulas do
valor esperado e da variancia para cada caso de estudo, o que permite avaliar estatisticamente
os modelos propostos, bem como prever a trajetdria ideal de concentragdo do farmaco e sua
incerteza. Esses resultados sdo importantes na andlise a longo prazo da concentragdo da
droga e da persisténcia do nivel terapéutico. Adicionalmente, um método numérico para a
solucdo da equagao diferencial estocéstica (SDE) € introduzido e desenvolvido.

Palavras-chave: solucdes analiticas; lema de It6; modelo PK; equagdes diferenciais estocas-
ticas.
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