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Abstract

Malaria, driven by the protozoan Plasmodium spp. and transmitted by Anopheles mosquitoes, remains
a significant global health threat. With the emergence of chloroquine-resistant malaria, alternative
treatments derived from natural compounds are pressing. This study explores neem (Azadirachta
indica), a Southeast Asian plant, as a source of antimalarial agents. A Liquid Chromatography-Tandem
Mass Spectrometry (LC-MS/MS) analysis of a neem leaf extract identified 184 compounds, of which
five quinone-derivative compounds were subject to in silico screening against three Plasmodium
falciparum virulence proteins: Purine nucleoside phosphorylases (PNP), dihydroorotate dehydrogenase
(DHODH), and erythrocyte membrane protein 1 (EMP1). Among these five compounds (A-E),
compound C emerged as the top candidate, ranking highly in molecular stability (FMO energy gaps),
drug-likeness (Lipinski’s Rule of 5), bioavailability, and synthetic accessibility. Compound C also
exhibited strong binding affinity to PNP and DHODH in molecular docking and dynamics simulations
and ranked among the top three for binding free energy in MM/PBSA calculations. However, it
lacked predicted antiprotozoal activity in PASS screening, though it shared key enzyme targets with
established antimalarial drugs. These findings nominate compound C as a promising candidate for
further research as a potential antimalarial agent.

Keywords: Bioinformatics; quinine derivatives; antimalarial drug prospection; pathway prediction;
secondary metabolite.

1. Introduction

Malaria is a life-threatening parasitic disease affecting millions worldwide. Malaria parasites
infect human erythrocytes triggering cell morphology changes and symptoms such as fever, chills,
anemia, and an enlarged spleen [1]. Malaria is spread through the bite of a female Anopheles
mosquito infected with the parasite Plasmodium spp. Five known Plasmodium species cause
malaria, and two of them, Plasmodium falciparum and Plasmodium vivax, pose the greatest
threats, whereby P. falciparum is the deadliest malaria parasite. If left untreated, P. falciparum
malaria can progress to severe disease and can cause death within 24 hours [2]. In 2021, there
were an estimated 247 million malaria cases in 84 malaria-endemic countries, representing an
increase of 2 million cases compared to 2020 [2].

Two therapeutic agents against Malaria are chloroquine and artemisinin [3]. Chloroquine is
a 4-aminoquinoline class schizonticide against all malaria types in humans. Unfortunately,
chloroquine and other antimalarial drug-resistant parasites emerge frequently, threatening
treatment efficacy and underscoring the need for alternative therapies with novel action
mechanisms [4]. Consequently, drug combinations are given to patients, as in artemisinin
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combined therapy (ACT), involving artesunate and mefloquine [5]. Artemisinin kills P. falciparum
by inducing intracellular free radicals [6, 7], artesunate works on breaking P. falciparum DNA
double strand [7], and mefloquine kills P. falciparum by inhibiting its lactate dehydrogenase
thus reducing NADH availability and energy production [8]. However, ACT can only be used in
patients with uncomplicated P. falciparum infections [9].

Currently, quinine is a widely used antimalarial compound of plant origin; it has a similar nitrogen
ring structure to mefloquine [10], which was initially isolated from the cinchona tree (Cinchona
officinalis) [11], known as “kina tree” in Indonesia. Further alternative treatments from plant
origins are needed that are inexpensive to produce with low risk levels. Neem (Azadirachta
indica) is native to continental Southeast Asia that has been introduced to other regions including
South Asia, some parts of Indonesia (Sumatra, Java, and Lesser Sunda Islands), Central Africa,
the Caribbean, and some of Central and South American countries [12]. Phytochemical studies on
neem leaf revealed its alkaloid, anthocyanin, betacyanin, cardiac glycoside, coumarin, flavonoid,
glycoside, phenolic, quinone, steroid, saponin, terpenoid, and tannin contents [13]. In a previous
study, a neem leaf extract demonstrated strong activity against P. falciparum sexual and asexual
forms at a median inhibitory concentration of less than 0.5 mg/mL on continuous cultures within
72 hours [14]. Based on this discovery, neem leaf was considered the main antimalarial compound
source addressed in the present study.

This study used neem leaf secondary metabolite data obtained via Liquid Chromatography-Tandem
Mass Spectrometry (LC-MS/MS). Quinone-derived compounds were then selected and tested as
candidate drugs in silico. Quinone-derived compounds were sorted from the total compounds,
given their known antimalarial role against P. falciparum, as quinone structures are part of
quinine and mefloquine. Furthermore, these compounds were tested via docking and molecular
dynamics against three plasmodial proteins central to malaria onset: DHODH, PNP, and EMP1.
Dihydroorotate Dehydrogenase (DHODH) catalyzes the de novo synthesis pathway, which is a key
pathway for malaria parasites [15], and it is inhibited by drugs such as isoxazole pyrimidine [16]
(here, shortened as IZP). Purine Nucleoside Phosphorylases (PNP) are proteins involved in DNA
and RNA formation and energy replenishment, producing enzyme cofactors in metabolic pathways
and signal transduction components [17]. In P. falciparum, PNP is a common binding target for
quinoline drugs, e.g., quinine and mefloquine [18]. Finally, P. falciparum Erythrocyte Membrane
Protein 1 (EMP1), a protein that plays central roles in P. falciparum pathogenicity by adhesion of
parasite-infected erythrocytes to the vasculature or tissues of infected individuals [19], was also
used.

2. Material and methods
2.1. Plant material sampling and preparation

Mature neem (A. indica) leaves were collected from wild-grown trees, approximately 10-12 years
old, on Sumbawa Island, Indonesia. These trees were situated in natural sandy soil characteristic
of a semi-dryland ecosystem and embedded among the local vegetation, including grass species
(Cyperus rotundus), small herbs (e.g., Mimosa pudica and Chromolaena odorata), and some trees
(e.g., Ziziphus mauritiana). The leaves were taken to the Laboratory of Microbiology, Faculty
of Life Sciences and Technology at Universitas Teknologi Sumbawa (Indonesia) and dried at
room temperature for three to four days to reduce their moisture content. The dry leaves were
ground in a blender to obtain a fine powder, which was then packed into plastic pouches of 100 g
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each for transport. Samples were sent for Liquid Chromatography Tandem Mass Spectrometry
(LC-MS/MS) analysis in the Forensic Laboratory Center (PUSLABFOR) of the National Police
Headquarters (Bogor, Indonesia).

2.2. LC-MS/MS run

To prepare for LC-MS/MS, the dried samples were mixed to form a homogenized solution.
The weighed and dry neem leaf powder was mixed in methanol, injecting 6 pL of this solution
into the liquid chromatograph (Waters, USA) Electrospray System Ionization [20], positive ion
model. A Superco C18 (RP18) column served as the stationary phase, with a methanol-water and
acetonitrile-water mixture as the mobile phase. The machine column had a length of 50 mm, an
inner diameter of 2.1 mm, and a particle size of 1.8 pm with a flow rate of 0.2 mL/min, operating
at 50 °C for 23.20 minutes.

2.3. LC-MS Data Analysis

LC-MS/MS outputs were processed with MassLynx™ v4.1 (Waters, USA) to assign peak
identities and molecular masses. The converted molecular structures were then annotated with
the ChemSpider database (http://www.chemspider.com) [21]. LC-MS/MS data interpretation and
annotation included assigning compound names, formulation numbers, mass weight, monoisotopic
weight, and compound 2D structures. Quinonoid [22] derivatives were selected to assess all
potential antimalarial drug candidates, which were assigned Simplified Molecular Input Line
Entry System (SMILES) codes for subsequent bioinformatics and computational analyses.

2.4. Insilico preparation and metabolite profiling

Selected metabolites SMILES codes were converted to three-dimensional protein database (PDB)
formats using the Online SMILES Translator and Structure File Generator (National Institute
of Health (NIH)) (https://cactus.nci.nih.gov/translate). SMILES codes fed compound property
studies, drug-likeness predictions, and reverse biosynthesis analyses to predict each compound’s
biosynthesis process. In turn, PDB format compounds served molecular docking and dynamics
analyses.

To predict compound drug-likeness profiles, an absorption-digestion-metabolism-and-excretion
(ADME) analysis in SwissADME (http://www.swissadme.ch/index.php) [23] was used as the
first step. The SMILES input allowed the assessment of the following compound properties:
(1) Lipinski’s Rules of Five (LRo5) obedience [24]; (ii) bioavailability index, predicting the
compound’s ability to be available in systemic blood circulation (scored from O to 1, whereby
zero refers to impossible and one indicates instantaneous availability, only occurring by the aid
of intravenous injection) [25]; and (iii) synthetic accessibility index, ranging from 1 (easy to
synthesize) to 10 (very hard to synthesize) [26].

As a follow-up to the synthetic accessibility index produced by the SwissADME, the
biosynthetic pathway of each compound was predicted with a deep learning analysis provided
by the BioNavi-NP online tool (http://biopathnavi.qmeclab.com) [27] with SMILES codes as
inputs, utilizing built-in libraries (core and extended), and default settings. Lastly, using
SwissTargetPrediction (http://www.swisstargetprediction.ch) [28], the compounds were evaluated
as protein targets, with a list of all targets, and the compound’s possible activity as a drug was
predicted using Way2Drug PASS Online (http://www.way2drug.com/passonline) [29] as the
second tool for drug-likeness prediction process.
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2.5. Electron energy gap calculations for frontier molecular orbitals

All metabolites and controls in PDB format served as input for GaussView v6.0 and Gaussian
vO9W [30] for electron energy calculations. Compound energy level optimizations were performed
with the Avogadro v1.2.0 tool [31], equipped with Open Babel v2.3.90 [32]. Then, energy
levels were calculated following density functional theory (DFT) using Beck’s three-parameter
hybrid model with Lee-Yang-Parr functional (B3LYP), with the following settings: basis set of
6-311G(d,p), ground state condition, and default spin. After simulation, the obtained values of the
frontier molecular orbitals (FMO), consisting of the highest occupied molecular orbitals (HOMO)
and the lowest unoccupied molecular orbitals (LUMO), were used to determine energy gaps on
each compound, including controls, which correlates to molecular kinetic stability.

2.6. Molecular docking preparation and processing

Molecular docking was performed in the PyRx pipeline using the Autodock Vina docking
program [35]. Five metabolite and three control ligands were subjected to Open Babel
v2.3.90 [32] for energy minimization and converted to ready-to-dock ligands. Three protein
receptors were selected: (i) purine nucleoside phosphorylase (PNP) (PDB ID: 5ZNC) with
quinine as the control drug (HMDB: HMDBO0014611) [18]; (ii) dihydroorotate dehydrogenase
(DHODH) (PDB ID: 6GJG), a protein of P. falciparum targeted for triazolopyrimidine
class inhibitor (DSM265) [16], hence isoxazole pyrimidine was used for control (SMILES:
CC1=NC(NC2=CC=C(C=C2)C(F)(F)F)=C2C=NOC2=N1); and (iii) erythrocyte membrane
protein 1 (EMP1) (PDB ID: 6S8U), a virulence protein exported to the surface of P. falciparum
parasitized erythrocytes during severe malarial infections. This protein remodels the erythrocyte
surface with an EMP-1 knob-like structure, which serves as the interaction point with the
intercellular adhesion molecule 1 (ICAM1) [19]. Thus, this docking procedure sought to block
the binding site. Following the ligand preparation, the ligands (and the receptors’ respective
control) were docked to the receptor proteins via multiple ligand-docking procedures on each
protein, using specific search spaces and dimensions (Supp. Table 1). The resulting ligands’
binding affinities (in kcal/mol) of the least root-mean-squared deviation (RMSD) (RMSD = 0 A)
were listed and compared.

2.7. Molecular dynamics and MM/PBSA

Molecular dynamics simulations proceeded using the GROMACS package [36] with the
SiBioLead pipeline (https://sibiolead.com). All receptor-ligand complexes (as shown in Table
1) were simulated under an AMBER99SB force field, an octahedron water box, with water
simulated with a Simple Point Charge (SPC) model and a water box charge neutralized using
0.15 M NaCl. The receptor-ligand complexes were first processed for energy minimization with
5.000 steps of the steepest descent integrator. The equilibration setting was a constant number of
atoms, volume, and temperature (NVT) per a steady number of atoms, pressure, and temperature
(NPT) (NVT/NPT) under a temperature of 300 K, 1 bar of pressure, and a “Leap-frog” integrator.
Molecular dynamics simulations run for 50 ns, with 1000 frames per simulation. Simulations
produced the following data: root-mean-squared deviations (RMSD) for each receptor-ligand
complex and every single protein (later used for control), root-mean-square fluctuation (RMSF)
of the protein receptor under ligand influence, and hydrogen bonds between the protein receptor
and its ligand. RMSFs helped to detect if the receptor protein amino acid residues were stable or
fluctuating less than 3 A of the total number of amino acid residues [20].
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Additionally, the molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) add-on
protocol for GROMACS [37] served to determine receptor-ligand energy profiles and estimate
binding free energies (AGyqin,)- Subsequently, the obtained energy profiles were compared
across all compounds and molecular docking results.

The binding free energy (AGyygin,; in keal/mol, see Eqs. 1-3) arises from the sum of the molecular
mechanic energy in a gas phase, obtained from the sum of A Eyp; and AG;, (Eq. 1), whereby
A Eyy, is the molecular mechanic potential energy, arising from the sum of the van der Waals
(AE,,,) and electrostatic (AE,,;.) interactions (Eq. 2); and AG,, the electrostatic solvation
energy, is the sum of the polar energy contribution calculated via the Poisson-Boltzmann model

(AGpp) and the non-polar contribution of the surface area (AGg,) [38] (Eq. 3).

AGbinding = AE'MM + AGsolv (1) (1)
AEyy = AEyy + AEy. (2) (2)
AG,y = AGpg + AGgy  (3) 3)

3. Results
3.1. Metabolite detection and selection

Of the 184 compounds detected via LC-MS/MS and identified using the ChemSpider database
(see Supp. Table 1, which can be provided upon request), five quinone derivatives were selected
based on structural relevance to known antimalarial agents (Table 1).

The molecular predictions of the five selected compounds, as obtained through conversion to
PDB format, are shown in Fig.1 (a-e) respectively. Likewise, the formulae of the two control
compounds, quinine and isoxazole pyrimidine are shown in Fig. 1 (f and g).

3.2. FMO energy gap profiles

Energy gaps (AE) between each molecule’s FMOs, HOMO and LUMO, were calculated to
compare the compound activity profile to the control compounds and are shown in Fig. 2. The

orbital profiles of the compounds revealed the map of electron distributions on HOMO and
LUMO.

Control drug FMO energy gaps were notably higher than those of the five test compounds
(Fig. 3). Of these five compounds, compounds A, E, and C are the ones with the broadest energy
gaps, while compound D possesses the narrowest energy gap. This profile suggests compound
A possesses the highest kinetic stability to form a stable chemical bond, while compound D
might create the least stable bond. To find out the interactions between compounds and receptor
proteins, molecular docking, and molecular dynamic analyses were subsequently conducted.
These resulted in predictions on static (docking) and time-dependent processes (dynamics) for
the studied compounds.
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Table 1. Selected quinone-derived metabolites.
Compound Formula Compound Name Peak ChemSpider Average Monoisotopic
Code ID Weight Weight
(Da) (Da)
A C,1HyNO, 6-Methoxy-8-quinolinecarbaldehyde  3.98 25069090 187.195 187.063
B C33HyyN,Og  1,9,11,14-Tetrahydroxy-7-methoxy- 5.74 24611442 594.568  594.164
10-methyl-8,13-dioxo-3-(1,2,3,4-
tetrahydro-2 -quinazolinyl)-5,6-
dihydrobenzo[a]tetracene-2-
carboxylic acid
C C;0H3NsO,4  2-Amino-N-[2-(3,4- 8.29 2833819 525.598  525.238
diethoxyphenyl)ethyl]-1-
(3-methoxyphenyl)- 1H-pyrrolo[2,3-
b]quinoxaline- 3-carboxamide
D Cy3HgN O, N-{4-[7-(2-Furyl)-4- 9.02 28624201 466.455  466.161
methyl[1,2,4]triazolo[5,1-
c][1,2,4]triazin-3-yl]-2-pyrimidinyl } -6-
methoxy-4-methyl-2-quinazolinamine
E C39HssCINgO N-(5-Amino-2-pentanyl)-N’-[4-({4- 18.55 34223155 551.25 550.413

[(6-methoxy-8-quinolinyl)
amino }pentyl)amino)pentyl]-1,4-
pentanediamine hydrochloride

Figure 1. Molecular projections of five selected quinone derivatives, compounds (a-e); control drugs: quinine (f) and
isoxazole pyrimidine (g); and the three studied protein receptors: Purine nucleoside phosphorylase (PNP) (h),
dihydroorotate dehydrogenase (DHODH) (i), and erythrocyte membrane protein 1 (EMP1) of Plasmodium falciparum
(j)- PNP is the drug target for quinine and DHODH is the inhibitor drug target for isoxazole pyrimidine.
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Figure 2. Map of the FMO, consisting of HOMO and LUMO of all compounds (Compound A to E, a-e) and controls
(ctl and ct2).
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Figure 3. HOMO-LUMO energy gaps of all compounds (controls and test compounds A to E).
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3.3. Metabolite prospective drug profiles

Compound characterization via ADME analysis served to assess compound compliance with
LRo5 rules and establish its bioavailability and synthetic accessibility profile. Table 2 provides
the feature values for each studded compound. Compound B failed to comply with LRo5 due to its
high molecular weight and number of hydrogen acceptor and donor atoms. The other compounds
followed the LRo5 even with a single permissible violation. However, compound A did not violate
a single LRo5 criterion. In terms of bioavailability, compound B was the least bioavailable, with
a value of 0.17, while the rest of the compounds had a bioavailability score of 0.55. In terms
of synthetic accessibility, compound E was the hardest to synthesize, while compound A was
the simplest. Subsequently, BioNavi-NP was used to confirm each compound’s biosynthetic
pathways.

Table 2. ADME analysis results for control and studied metabolites.

ID Molecular LRO5S LROS Bioavailability Synthetic Accessibility

Weight (Da) Violation?

VA Y 294.23 Yes 0 0.55 2.93
Quinine 324.42 Yes 0 0.55 4.34
A 187.19 Yes 0 0.55 1.3

B 594.57 No 3(1,3,4) 0.17 4.88

C 525.6 Yes 1(1) 0.55 3.8

D 466.45 Yes 1(3) 0.55 3.69

E 551.25 Yes 1(1) 0.55 5.35

LROS violation details: (1) MW > 500, (2) MLOGP > 4.15, (3) H acceptor (N or O) > 10, (4) H donor (NH or OH)

> 5. Bioavailability: score range: 0 to 1, whereby 0 implies its impossibility to reach the systemic bloodstream and 1

means instantaneous access that is typically done by intravenous injection [25]. Synthetic Accessibility: Range of 1 to
10, 1 is easiest to build and 10 is nearly impossible [26].

The BioNav-NP pathway prediction (Supp. Fig. 1 and Supp. Data 1 provided upon request) tool
was employed to check if the SwissADME synthetic accessibility prediction matched pathway
prediction (i.e., whether high synthetic accessibility values correlate with high intermediary
numbers within the pathway and vice versa), whereby a low score value implies a high likelihood of
numerous intermediaries. The intermediary numbers per compound were as follows: Compound
Ahad3,B,4;C,3;D,2;andE, 2. Implying that compounds D and E had the shortest building path,
and compound B had the longest. Of all compounds, only compound E was very likely involved
with recognized enzymatic reactions, e.g., pyruvate: ubiquinone oxidoreductase (gene: poxB;
MetaNetX ID: MNXR143500; EC: 1.2.5.1; score: 2.9 ) and succinyl-CoA: acetate CoA-transferase
(gene: aarC; MetaNetX ID: MNXR188880; EC: 2.8.3.18; score: 5.1). However, the overall
compound scores did not correlate with the previous results on synthetic accessibility values. As
for the controls, IZP has nine intermediates, and quinine only has two intermediates.

The PASS results predicted compound activities on certain biological functions, with high
probability values representing a high likelihood for the compound to be active within a given
function. Of all five studied compounds (Fig. 4), only A and E were likely to have specific
antiprotozoal and antiplasmodial functions, although none scored higher than quinine. The rest
of the compounds were improbable to have activities with these two functions.

The SwissTargetPrediction tool identified the proteins probably targeted by the assessed
compounds. Table 4 shows only enzyme targets, and further details are provided in Supp. Data
2 (upon request only). Moreover, Supp. Fig. 2 shows all potential targets. The presence of
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Figure 4. PASS results of the controls and the five metabolites (Compound A to E in X-axis; Table 1) with the
probability of being “active” set for antiprotozoal (general) and antiplasmodial activities

shared enzyme targets suggested similarities among the compounds. Compound A targets 13
enzymes (35 %), a kinase (13 %), and a protease (11 %). Compound B targets enzymes of the
AG protein-coupled receptor family (26 %), followed by a kinase (19 %), and a lyase (7 %).
Compound C targets a kinase (27 %), followed by 18 enzymes (18 %), and a member of the AG
protein-coupled receptor family (11 %). Compound D targets a protease (38 %), a member of the
AG protein-coupled receptor family (17 %), and multiple enzymes (14 %). Finally, compound E
is likely to target a kinase (32 %), a member of the AG protein-coupled receptor family (23 %),
and a lyase (9 %).

As for the control compounds, IZP targets a kinase (19 %), receptors of the protein-coupled CG
family (15 %), and receptors of the protein-coupled AG family (10 %), whereas quinine targets a
kinase (37 %), receptors of the protein-coupled AG family (20 %), and multiple enzymes (6 %).

The studied compounds and controls can share multiple enzyme targets (Supp. Table 2).
Compound A and quinine can target the enzyme nitric oxide synthase. Compounds C and
D each share one enzyme with IZP: acyl-CoA desaturase and 11-fg-hydroxysteroid dehydrogenase,
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respectively. Compound A and compound C share one target, glutamine y-glutamyltransferase.
Lastly, compound C shares one target, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3,
with compound D. In conclusion, compounds A, C, and D are more favorable candidates due to
their shared enzyme targets with the controls.

3.4. Molecular docking

The static yet flexible structural interactions, as binding affinity energies between the studied
compounds with three protein targets as receptors, were tested using molecular docking. Molecular
docking tools evaluate rigid or flexible docking regarding ligand insertion protocol, and Autodock
Vina uses flexible ligand docking [39]. Targeted against three protein receptors and compared
with control ligands (for PNP and DHODH protein targets), compounds B, C, and D surpassed
quinone’s binding affinity with PNP, and Compounds C and E had stronger binding affinities than
1ZP with DHODH. Compound C revealed the strongest affinity with these two protein receptors
(Table 3).

Docked against EMP1, compound D revealed the highest binding among the tested compounds,
followed by C and B. All the dominant interactions came from the hydrophobic interactions (van
der Waals), and the conventional hydrogen bonds contributed only from one to a maximum of
five interactions (on average, two interactions). Only compound D revealed one unfavorable bond
(donor-donor interaction). Ultimately, C and D are arguably the best docking compounds (detailed
interaction data for the top compounds versus controls, except for EMP1, provided in Fig. 5)

3.5. Molecular dynamics and MM/PBSA calculations

Molecular dynamics simulations helped to overcome the limitations of the static interactions
predicted with molecular docking. Molecular dynamics uses solvation and time-dependent
calculations. Following the 50 ns of simulation runtime with the three protein receptors (Fig. 6a),
compounds A, B, C, and quinine fluctuated below the protein fluctuation baseline (average protein
fluctuation) in PNP. None of the compounds fell below the baseline; however, compound C and
IZP came closest to it in DHODH. Compounds A, C, and D were the closest to the baseline in
EMPI.

Protein fluctuations remained relatively stable during simulations, with less than 10 % of the
residues fluctuating over 0.3 A of each protein’s total residues and all residues fluctuating almost in
the same pattern as the average protein baseline in all compound simulations (Fig. 6b). Throughout
the simulations, the number of protein-ligand hydrogen bonds fluctuated, and only compounds C
and E exhibited the highest and the densest amount of hydrogen bonds per simulation runtime
(refer to Supp. Fig. 3). These molecular dynamics simulations revealed compound C as having
the best properties of an inhibitory drug compound.

The binding free energies (AGyyging) between tested ligands and the protein receptors were
estimated using MM/PBSA, revealing that compounds C, D, and E constantly topped energy
values with all three protein receptors (Fig. 7).
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Table 3. Molecular docking results of five tested metabolite ligands on three protein receptors and their essential
bonds. Binding affinity in kcal/mol.
Receptor Ligand Binding H-bonds Receptor-Ligand Interactions Unfavorable
Affinity bonds
Quinine -8.2 1 (Asp 206) 10 (Gly23, Asp24, Arg88, Cys92, Gly93, Serl157,
(Control) Glul182, Pro209, Trp212, Asp218)
PNP Compound A -7.6 1 (Trp212) 8 (Cys92, Gly93, Glul82, Metl83, Asp206,
(PDBID: Gly207, Cys208, Asp218)
SZNC) Compound B -8.7 1 (Ser91) 12 (Val22, Gly23, Asp24, Arg88, Alag9, Glu182,
Metl183, Glul84, Ile204, Leu221, Leu226,
Met229)
Compound C  -9.3 2 (Ser91, 11 (Gly23, Asp24, Gly90, Cys92, Gly93, Glul82,
Asp218) Asp206, Gly207, Cys208, Asn219, Asn220)
Compound D  -8.7 1 (Tyr160) 7 (Gly23, Asp24, Val66, Ala89, Asp206, Asp218,
Asn219)
Compound E  -7.5 2 (Ala89, Ser91) 22 (Val22, Gly23, Asp24, Arg27, Ile31, Val66,
Arg88, Gly90, Gly93, Ser157, Met159, Leul70,
Glul82, Glul84, Asp206, Gly207, Cys208,
Asp218, Leu221, Leu226, Met229, 11e230)
Isoxazole -9.7 0 5 (I1e237, Leu240, I1e263, Leu531, Met536)
Pyrimidine
(Control)
DHODH
(PDB ID: Compound A -7.3 1 (Lys229) 6 (Ala225, Gly226, Cys276, Lys429, The459,
6GIG) Serd77)
Compound B -4.7 0 2 (Ile179, Thr256)
Compound C  -11.1 5 (His185, 18 (Leul72, Gly181, Phel88, Ala224, Ala225,
Asn274, Cys276, Gly226, Thr249, Arg265, Gly277, Asn342,
Ser345, Tyr528) Asn347, Lys429, Asn458, Thr459, Serd77,
Ser505, Gly506, Ser529)
Compound D -5.5 3 (Arg265, 11 (Gly181, Phel88, Gly226, Lys229, Phe264, 1 (I1le263)
Asnd58, Serd77) Cys276, Phe278, Asn342, Ser345, Lys429,
Ser529)
Compound E  -8.7 2 (Ala89, Ser91) 20 (Leul89, Gly192, Leul97, Phe227, Lys229,
Cys233, 11e237, Leu240, Arg265, 11e272, Gly277,
Phe278, Ser345, Pro246, Asn347, Lys429,
Asnd58, Thr459, Serd77, Gly535)
Compound A -5 1 (Gly1110) 5 (Alal104, Phell08, Alal109, Thrlll11,
EMPI GInl121)
(PDB ID: Compound B -7.5 1 (Glu1099) 7 (Asp838, Asp840, Lys1096, GIn1103, Thr1111,
6S8U) Ser1112, Gly1115)
Compound C  -7.7 2 (Argl118, 8 (Arg928, Asn974, Glu982, Ser1112, Phel113,
GIn1121) Glyl1114, Asp1119, GIn1122)
Compound D -8.8 2 (Phel113, 8 (Asp758, Ala759, Arg928, Asn974, Ser1112,
GInl1121) Gly1114, Asp1119, GIn1122)
Compound E  -5.2 1 (Glu1099) 9 (Thr837, Asp840, Asp1095, Lys1096, Glu1098,

GIn1103, Ile1106, Gly1114, Gly1115)
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Control compound-to-protein receptor interactions were assessed for given combinations. The error bars indicate the

standard deviation value generated from the total simulation.
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4. Discussion
4.1. Neem extract and compound characteristics

Neem extract and juice have been tested as antimalarial drug candidates on mice and revealed
significant results against Plasmodium [40,42,43]. The present study evaluated with an in silico
approach whether quinone-derivative compounds present in neem extract are potential targets of
three plasmodial, malaria-related proteins (DHODH, PNP, and EMP1).

In our study, five quinone-derivative compounds, selected from 184 compounds detected via
LC-MS on neem extract, were assessed for energy gaps between two types of molecular orbitals,
HOMO, as the outermost orbital filled with electrons serves as the electron donor to the LUMO
orbital, which is the lowest energy orbital with spaces to accept electrons [44]. In comparison to
the control compounds (quinine for PNP and IZP for DHODH), which have the broadest electron
energy gaps between HOMO and LUMO (4.104 and 4.824 eV for quinine and IZP, respectively),
compounds A, E, and C revealed the broadest energy gaps among the selected compounds, with
3.826 eV, 3.720 eV, and 3.623 eV, respectively (Fig. 3). These ample energy gaps contribute to
molecule stability when bonding to the other molecules, which in this case, are the protein amino
acid residues.

Following compound drug-likeness profiling with an ADME analysis, focusing on bioavailability
and synthetic accessibility (Table 3), compounds A, C, and D obtained the most favorable scores for
both features. Bioavailability score values inversely correlate with a drug’s molecular mass, with
larger molecules generally exhibiting lower bioavailability [45]. Synthetic accessibility, on the
other hand, reflects molecular complexity [26]. Compound B obtained the lowest bioavailability
score (0.17) and the second least favorable synthetic accessibility score (4.88). In contrast,
compound E obtained the same bioavailability score as the top-scoring compounds A and C (0.55)
but received the least favorable synthetic accessibility score (5.35). Compound B is the largest
molecule with complex ring structures, likely compromising its bioavailability score. In turn,
compound E, despite being a molecule with only a simple quinone ring, has a long chain, which
hinders its synthetic accessibility without altering its bioavailability.

Analysis with BioNavi-NP provided further insights into the compounds’ molecular characteristics.
Quinine, one of the control compounds, is synthesized from the amino acid tryptophan into
tryptamine and then merged with secologanin to form strictosidine in quinoline alkaloid
biosynthesis [46]. From the BioNavi-NP analysis, quinine revealed two synthesis intermediates,
while the other control drug compound, IZP, was predicted to have nine synthesis intermediates.
Notably, compounds D and E displayed the least intermediary compounds in their predicted
biosynthesis pathway, resembling quinine’s profile. Compounds A and C followed, with three
intermediaries each. Finally, compound B exhibited the number of four intermediates. Compound
E, being of an overall large size, is relatively simple, possibly due to its long chain bound to a
single ring. In summary, compounds A and C emerge as the most promising drug candidates
based on their favorable FMO electronic gaps and structural features contributing to bioavailability
and synthetic accessibility.

4.2. Likely activity and protein interaction predictions

The PASS server predicted the likelihood of compound activity using a machine learning algorithm
based on a database of over 300,000 organic compounds with known biological activities,
categorized into 4,000 terms [47]. According to the predictions, none of the five compounds
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showed higher antiprotozoal and antiplasmodial properties than quinine. However, compound E
exhibited the closest resemblance, while compound A showed moderate similarity. Compounds
B, C, and D did not exhibit these properties. The close resemblance in compound E is supported
by the data from the National Center for Biotechnology Information, with the bioassay record
showing that compound E (PubChem CID: 90665546) activity in P. berghei-infected mice reduced
parasitemia at 25 mg/kg/day dosage (per oral; 4 days up to day 60) relative to control [48], being
the only compound in the present study tested so far.

The SwissTargetPrediction tool predicted the proteins likely targeted by the compounds [28]. This
approach aimed to identify compound similarities with the control drugs and other compounds
by assessing shared enzyme targets. According to the predictions (Table 4), compound A was
the only one sharing an enzyme target with quinine, while compounds C and D each shared one
protein target with IZP. Interestingly, compound A also shared enzyme targets with compound C,
which also shared targets with compound D. Thus, compounds A, C, and D were identified as the
most promising candidates for further evaluation through molecular docking and dynamics tests
to assess their activity against control drugs.

4.3. Molecular simulations

Molecular docking results indicated that compounds C and D exhibit superior binding affinities
compared to the control drugs. During docking, compounds C and D formed interactions with
more amino acid residues compared to the control drugs. IZP formed interactions with multiple
residues, including various types of pi (x)-bonds, such as z-alkyl, z-z stack, and z-sigma/z-o
bonds. In addition to z- and hydrogen bonds, hydrophobic interactions also contributed to the
strong binding between compound C and the amino acid residues. Compound C formed more
interactions (including z-bonds, hydrogen bonds, and hydrophobic interactions) with the PNP
amino acid residues than quinine. Larger molecules can establish more interactions during docking
as they can access more residues within the catalytic pocket, likely explaining why compound D
exhibited the second-largest binding affinity, after compound C, with PNP, while ranking third
after compounds C and E. Compound D surpassed compound C in binding affinity for EMP1,
possibly due to the larger contact area available in this protein.

Among all compounds, compound B emerged as the weakest candidate in molecular dynamics
simulations, exhibiting notably high fluctuations in both DHODH and EMP1 during the 50 ns
simulations (Fig. 4). In MM/PBSA testing, compounds C, D, and E exhibited the highest binding
free energies (Fig. 5), indicating stronger interactions and bonds, which correlate positively with
the docking binding affinity. The high binding free energy implies stronger interactions and
bonds, correlating positively with docking binding affinity [49]. During molecular dynamics
simulations, incorporating solvation and time-dependent dynamics, compound C overtook the
other compounds regarding fluctuation stability with all proteins. In PNP, compound C exhibited
shorter fluctuations than the baseline average RMSD of the protein.

4.4. Impact on natural compound-based antimalarial drug discovery

This study’s findings hold significant implications for natural compound-based antimalarial
drug discovery, offering promising avenues for future research and drug development. Natural
compounds derived from plants have long been a valuable source of medicinal agents, and this
study underscores their potential in combating malaria, which continues to pose a significant
global health burden.
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By harnessing the power of multiple tools, liquid chromatography-tandem mass spectrometry
(LC-MS/MS) analysis combined with the in-silico data analysis, this study identified five
quinone-derivative compounds from neem leaves, identifying compound C as superior to all
other compounds, shedding light on its potential as an antimalarial drug. Other studies also
applied similar methods to different malarial virulence factors [50,51]. The findings in this study
not only contribute to our understanding of the molecular mechanisms underlying antimalarial
activity but also pave the way for the development of novel plant-based antimalarial drugs
by characterizing them with novel tools, gaining insight into their roles and functions within
their source organisms, i.e., pathway characterization and target prediction. By leveraging the
rich diversity of natural compounds and employing advanced computational methodologies,
researchers can expedite the discovery and optimization of potent antimalarial agents using locally
known plants. Furthermore, integrating traditional knowledge with modern scientific approaches
holds promise for the sustainable utilization of medicinal plants in the fight against malaria. Given
neem’s established use in herbal medicine, compound C in silico profile adds to the evidence
supporting plant-based antimalarial agents. Further studies on neem-derived compounds could
contribute to sustainable, accessible therapies in malaria-endemic regions.

5. Conclusion

From 184 metabolites found in neem leaf extract using LC-MS, five compounds (A-E) were
selected, and after a suite of in silico analyses with these five, compound C emerged as the most
promising neem-derived antimalarial candidate. Compound C revealed favorable binding affinities
(comparable to established antimalarials, PNP, and IZP in DHODH) in molecular docking and
stability in molecular dynamics analyses, had the highest binding free energy among the top three
compounds in MM/PBSA, and could also bind to EMP1. Compound C met LRo5 ADME criteria,
revealing the same bioavailability as three other assessed compounds (0.55) and having reasonable
synthetic accessibility. Biosynthetic pathway predictions determined that Compound C has three
intermediates, whereas quinine and IZP have two and nine, respectively. Even though compound
C has no predicted activity in antiprotozoal and antiplasmodial categories, it shared three enzyme
targets with IZP in the target prediction assessments. These findings strongly support further in
vitro and in vivo studies on compound C to validate its potential as a sustainable antimalarial
treatment.
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Bioprospeccion in silico de alcaloides derivados de quinina con potencial antimalarico
en neem (Azadirachta indica)

Resumen: La malaria, causada por el protozoo Plasmodium spp. y transmitida por mosquitos
Anopheles, sigue siendo una amenaza significativa para la salud a nivel mundial. Con la
aparicion de cepas resistentes a la cloroquina, es urgente encontrar tratamientos alternativos
basados en compuestos naturales. Este estudio explora el neem (Azadirachta indica), una
planta del sudeste asitico, como fuente de agentes antimalaricos. Mediante un analisis de
Cromatografia Liquida-Espectrometria de Masas en Tandem (LC-MS/MS) de un extracto de
hojas de neem, se identificaron 184 compuestos, de los cuales cinco derivados de quinona
fueron evaluados in silico contra tres proteinas de virulencia de Plasmodium falciparum:
fosforilasa de nucleésidos de purina (PNP), dihidroorotato deshidrogenasa (DHODH) y
la proteina de membrana eritrocitaria 1 (EMP1). Entre estos cinco compuestos (A-E), el
compuesto C se destac6 como el mejor candidato, obteniendo una alta clasificaciéon en
estabilidad molecular (brechas de energia FMO), parecido a farmaco (Regla de los 5 de
Lipinski), biodisponibilidad y accesibilidad sintética. Ademas, el compuesto C presentd una
fuerte afinidad de unién con PNP y DHODH en los estudios de acoplamiento molecular
y simulaciones dindmicas, y se ubicd entre los tres primeros en cuanto a energia libre de
unién en los calculos MM/PBSA. Sin embargo, no mostrd actividad antiprotozoaria en la
evaluacion PASS, a pesar de compartir objetivos enziméticos clave con fArmacos antimalaricos
establecidos. Estos hallazgos sugieren que el compuesto C es un candidato prometedor para
futuras investigaciones como posible agente antimalarico.

Palabras Clave: Bioinformatica; derivados de quinina; metabolito secundario; prediccién de
rutas; prospeccion de firmacos antimalaricos.
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Bioprospeccao in silico de alcaloides derivados da quinina com potencial antimalarico
no neem (Azadirachta indica)

Resumo: A maléria, causada pelo protozoario Plasmodium spp. e transmitida por mosquitos
Anopheles, continua sendo uma ameaca significativa a satide global. Com o surgimento
de cepas resistentes a cloroquina, € urgente encontrar tratamentos alternativos baseados
em compostos naturais. Este estudo explorou o neem (Azadirachta indica), uma planta
do Sudeste Asiatico, como fonte de agentes antimalaricos. Por meio de uma analise de
Cromatografia Liquida-Espectrometria de Massas em Tandem (LC-MS/MS) de um extrato
de folhas de neem, foram identificados 184 compostos, dos quais cinco derivados de quinona
foram avaliados in silico contra tr€s proteinas de viruléncia de Plasmodium falciparum:
fosforilase de nucleosideos de purina (PNP), diidroorotato desidrogenase (DHODH) e proteina
de membrana eritrocitiria 1 (EMP1). Entre esses cinco compostos (A-E), o composto
C se destacou como o melhor candidato, obtendo uma alta classificacdo em estabilidade
molecular (diferencas de energia FMO), semelhanca com fairmacos (Regra dos 5 de Lipinski),
biodisponibilidade e acessibilidade sintética. Além disso, o composto C apresentou forte
afinidade de ligagdo com PNP e DHODH nos estudos de acoplamento molecular e simulacdes
dindmicas, posicionando-se entre os trés primeiros em termos de energia livre de ligacao
nos calculos MM/PBSA. No entanto, o composto ndo demonstrou atividade antiparasitaria
na avaliagdo PASS, apesar de compartilhar alvos enzimaticos chave com medicamentos
antimalaricos ja estabelecidos. Esses achados sugerem que o composto C € um candidato
promissor para futuras pesquisas como um possivel agente antimalérico.

Palavras-chave: Bioinformaética; derivados de quinina; metabolito secundario; predicdo de
rotas; prospec¢do de farmacos antimalaricos.
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