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Abstract

The protozoan Trypanosoma cruzi causes Chagas’ disease, a neglected illness that remains a relevant public 
health concern in Latin America. In Brazil, Benznidazole is available for its treatment. This compound is 
effective against circulating forms of  the parasite in the acute phase of  the disease, but its efficacy during 
the chronic stage is debatable. The search for new medications that can treat Chagas’ disease is therefore 
mandatory. Natural sources display a wide range of  secondary metabolites and may play an important role 
in the discovery of  new potential drugs. Miconia is one of  the largest genus of  the family Melastomataceae 
and includes approximately 1,000 plant species; Brazil alone is home to approximately 250 of  these 
species, which exist in forests and savannas. Studies on the various biological activities of  the Miconia 
species have reported promising results. Several researchers have screened these plants as well as their 
extracts in vitro against trypomastigote forms of  T. cruzi, which displayed significant trypanocidal activity. 
It has been demonstrated that the presence of  ursolic and oleanolic determines this biological activity.
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Introduction

Neglected tropical diseases (NTDs) are life-
threatening or disabling infections affecting more 
than a billion people worldwide. Underprivileged 
populations living in remote rural areas, urban 
slums, or conflict zones, often in underdeveloped 
and developing countries, are at the highest risk of  
acquiring NTDs. Consequently, people suffering 
from these diseases constitute an unattractive 
market to private-sector research. This situation 
is a matter of  significant concern–NTDs not only 
affect health directly, but they also represent an 
impasse of  socioeconomic impact that perpetuates 
poverty in a sizable number of  the population 
(Schmidt et al. 2012a).

Natural products and Chagas’ disease: the action of  
triterpenes acids isolated from Miconia species
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An estimated 1.2 billion people are currently 
infected with NTDs; about one billion of  these 
people live on less than $1 per day. In some areas, 
women and children with NTDs are considered as 
neglected populations, because they have limited 
access to health and social support services. Other 
vulnerable groups that face poverty and live under 
the impact of  NTDs include peri-urban slum 
dwellers (Herrera et al. 2011). The major effects 
of  NTDs on public health stem from chronic 
conditions that result in disfigurement as well 
as lifelong disability and morbidity (Hotez et al. 
2009).

The drugs that are currently available to treat 
NTDs have long been in the market and exhibit 
many toxic effects (Lemke 2012); this makes the 
search for more effective and safer medications 
to fight these conditions mandatory. However, 
a fundamental problem regarding NTDs is to 
convince pharmaceutical companies to invest 
resources and develop effective treatments: the 
population affected by these diseases cannot 
afford expensive drugs (Dimitri 2012).

An evaluation of  the drugs approved by the 
FDA (Food and Drug Administration) between 
2007 and 2011 shows that only five of  the 119 
approved medications belong to the class of  
antimicrobials (antibiotic, antimycobacterial, 
antiprotozoal, and antifungal agents) (Mullard 
2011).

Seventeen NTDs exist, including three 
major protozoan diseases: human African 
trypanosomiasis (HAT or “sleeping sickness”), 
Chagas’ disease, and leishmaniasis, which affect 
many millions of  people worldwide. In 2009, an 
estimated 10 million people were infected with 
Chagas’ disease, and the estimated number of  
annual deaths was 10,000. In turn, leishmaniases 
cause approximately 50,000 deaths annually. As 
for HAT, the total number of  infected people in 
2006 was 50,000-70,000 (WHO 2010), although 
the number of  new infections appears to be 
dwindling (Schmidt et al. 2012a).

The protozoan Trypanosoma cruzi is the 
etiological agent of  Chagas’ disease. It is estimated 
that there are eight million inhabitants infected 

with this disease in Latin America; 30-40% has 
or will develop cardiomyopathy or mega digestive 
syndrome (Parker & Sethi 2011). The life cycle 
of  T. cruzi implicates hematophagous triatomine 
insect (vectors), a wide range of  vertebrate 
mammalian hosts and different developmental 
forms of  the parasite. Briefly, after insect vectors 
ingest bloodstream trypomastigotes from an 
infected mammalian host, T. cruzi forms convert 
into epimastigotes that proliferate and then 
differentiate into metacyclic forms inside the 
posterior intestine of  the triatomine. These 
infective parasite forms are discharged in the feces 
of  the triatomine and can invade new vertebrate 
cells, in which they undergo another round of  
differentiation into the intracellular amastigote 
forms. The latter proliferate and transform back 
to trypomastigotes, the form that disseminates the 
infection (Soeiro & Castro 2011). 

Although effective efforts to control vectorial 
and blood transmission have significantly reduced 
the number of  new cases, there are still many 
challenges that need to be confronted regarding 
Chagas’ disease. The disease has a peculiar 
epidemiology, characterized by a variety of  risk 
factors, several potential vectors and reservoirs, 
different forms of  transmission, and a number of  
parasite isolates in domiciliary, peridomiciliary, and 
sylvatic environments; furthermore, prophylactic 
therapies and effective chemotherapeutic schemes 
are virtually inexistent (Coura 2007).

Chagas’ disease constitutes a complex 
condition in which T. cruzi effectively invades 
human cells. All transmission routes involve 
infective but non-proliferative trypomastigotes 
entering the bloodstream and eluding the immune 
system by permeating a variety of  cell types, 
including muscle and nerve cells of  the heart 
and the gastrointestinal tract, as well as cells of  
the reticuloendothelial system. Tissue damage 
in the mammalian host results from both direct 
parasite action and an inflammatory process. The 
initial acute phase has low (<10%) mortality and 
generally presents mild and unspecific symptoms. 
Macrophages, IFN-gamma, and CD4+ and CD8+ 
Th1 lymphocytes are the key elements controlling 
parasite replication (Urbina 2010).
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A life-long chronic condition follows the 
acute phase of  Chagas’ disease. In the chronic 
stage, the cellular immune response limits parasite 
proliferation but cannot eradicate the infection 
(Albareda et al. 2006). The most severe of   
these manifestations is chronic Chagas 
cardiomyopathy (CCC), which typically appears 
decades after the initial infection, and may result 
in cardiac arrhythmia, ventricular aneurysm, 
congestive heart failure, thromboembolism, 
and sudden cardiac death. This condition is the 
leading cause of  cardiac disease and cardiac  
death in underprivileged, rural, and rural-
originated urban populations, in Latin America 
(Rassi et al. 2009).

Nifurtimox and Benznidazole are the two 
drugs currently available to treat chagasic patients; 
however, their toxicity is well known as well as 
their limited effect on different parasite isolates 
and disease phases making the discovery of  novel 
medications extremely urgent. Nifurtimox, which 
is produced and used mainly in Central America 
but not Brazil, has a high incidence of  side effects 
(reported by 40% of  patients), which include 
nausea, vomiting, abdominal pain, weight loss, 
severe anorexia, and adverse neurological effects 
such as restlessness, paresthesias, twitching, 
insomnia, and seizures (Marin-Neto et al. 2009). 

 Available in Brazil, nitroheterocyclic 
Benznidazole is used to treat Chagas’ disease. 
Benznidazole is effective against the circulating 
form of  the parasite (trypomastigotes) in the 
acute phase of  the disease, but its efficacy during 
the chronic stage is debatable (Silva et al. 2013). 
Compared to Nifurtimox, Benznidazole has fewer 
side effects such as hypersensitivity (dermatitis, 
generalized edema, ganglionic infarction, 
and joint and muscle pains), bone marrow 
depletion, and peripheral polyneuropathy (Coura 
2009). Benznidazole is produced by LAFEPE 
(Laboratório Farmacêutico do Estado de 
Pernambuco, Recife, Brazil); supported by recent 
DNDi (Drugs for Neglected Diseases initiative) 
efforts, it will begin to manufacture a pediatric 
formulation (Soeiro & Castro 2011). Because of  
the limited efficacy of  the currently available drug 
treatments and the lack of  a vaccine, controlling 

the transmission of  the etiological agent in 
endemic areas necessarily depends on reducing 
the vector home population through insecticide 
spraying programs, improved housing conditions, 
and campaigns to raise awareness in vulnerable 
communities. Infection by T. cruzi, in particular, is 
likely to remain endemic in sylvatic hosts despite 
spraying and insect control efforts. Contemporary 
drug treatments fall short in treating this disease 
because of  the long life span of  infected human 
hosts, its resistance to triatomine insecticides, and 
the ease with which protozoans develop resistance 
to the drugs (Diotaiuti et al. 1995, Murta & 
Romanha 1998, Vassena et al. 2000).

Given the significant limitations of  the 
medications currently available, particularly their 
inability to treat chronic patients, new steps have 
been taken toward specific chemotherapeutic 
approaches for the management of  Chagas’ 
disease (Urbina 2010). Natural sources such 
as plants exhibit a wide diversity of  secondary 
metabolites and may play an important role as new 
drug leads (Schmidt et al. 2012b).

Research into natural products

In developing and less developed countries, 
underprivileged communities have used traditional 
plant-based curative applications and medicinal 
products since ancient times. Chemical substances 
derived not only from plants, but also from animals 
and microorganisms have long been employed to 
treat a number of  human diseases. In fact, drug 
discovery studies based on natural toxins and their 
derivatives have culminated in the development of  
many therapeutic agents (Tempone et al. 2007).

The research, development, and use of  
natural products as therapeutic agents, especially 
those derived from higher plants, have increased 
significantly (Gurib-Fakim 2006). Commonly, the 
plant part subjected to the extraction procedure is 
the same as the one used in traditional medicine; 
however, other parts should be assessed, to 
determine which section contains the highest 
concentration of  the active compounds. Because 
it is not certain whether only the most polar 
compounds will display the best action, activity 
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screening should use solvents of  different 
polarities to extract the substances (Izumi et al. 
2010).

Scientists have isolated several primary 
metabolites from plants, for example, vincristine, 
vinblastine, taxol, podopyllotoxin, and morphine. 
Many of  these compounds have been modified, to 
yield better analogues in terms of  activity, toxicity, 
and solubility (Hostettmann et al. 1997).

A preliminary investigation of  chemical 
constituents is motivating; it provides information 
about the extracts and indicates the nature 
of  its constituents, facilitating the selection 
of  chromatographic techniques. The organic 
compounds should be identified by infrared 
spectroscopy (IR), which determines the presence 
or absence of  functional groups; by ultraviolet 
spectroscopy (UV), which shows whether the 
compounds bear combined unsaturated bonds; 
by hydrogen and carbon-13 nuclear magnetic 
resonance spectroscopy (1H-NMR and 13C-NMR, 
respectively), which determines the nature and 
chemical environment of  hydrogens and carbons, 
respectively, and represents the most important 
technique when investigating molecular structure; 
and by mass spectrometry (MS), which furnishes 
data on the weight and molecular formula, 
and helps identify the fragments typical of  the 
molecule (Maciel et al. 2002).

Novel technologies that include recombinant 
pathogens and rapid detection methods are 
contributing to the development of  drugs for the 
treatment of  neglected diseases. About ten years 
ago, the advent of  high-throughput screening 
(HTS) technology revolutionized the process of  
early drug development, enabling researchers to 
rapidly collect enormous amounts of  data and 
explore compound libraries with unprecedented 
thoroughness (Phatak et al. 2009). One of  the 
fastest HTS systems is Lucio Freitas-Junior’s at the 
Institute Pasteur in Korea: a 384-well cell-culture 
system that combines an automated confocal 
microscope with an image analyzer that can screen 
up to 30,000 compounds a week (Clayton 2010). 
In 2011, Andriani et al. (2011) also reported the 
advantages of  using HTS for the discovery of  
drugs to treat neglected diseases.

The use of  antiparasitic drugs is common 
worldwide; fittingly, incidences of  parasite 
resistance to some of  these drugs are frequent. 
As a result, alternative treatments, especially those 
involving natural products, have emerged over the 
last years (Santos et al. 2012). In the past decades, 
several research groups have described the effect 
of  plant-derived compounds on T. cruzi in the 
particular case of  trypanosomiasis (Grael et al. 
2000). 

More recent studies have reported on 
compounds isolated from natural products that 
are active against T. cruzi. Veiga-Santos et al. 
(2013) demonstrated the antitrypanosomal activity 
of  the amides piperovatine and piperlonguminine 
isolated from Piper ovatum against epimastigotes 
(IC50 of  41.5±0.7 and 53.8±6.2 µM, respectively) 
and intracellular amastigotes (IC50 of  35±6.9 and 
33.9±5.4 µM, respectively).

Similar to other high incidence diseases, basic 
research in Chagas’ disease is characterized by 
a large number of  studies conducted on animal 
models infected by Trypanosoma cruzi. Different 
aspects of  the human disease are reproduced after 
infection with Trypanosoma cruzi in mice (Sato et 
al. 1992), hamsters (Santos-Buch & Teixeira 1974), 
rabbits (Ramirez et al. 1994), Rhesus monkeys 
(Galvão-Castro et al. 1984) and dogs (Andrade et 
al. 1984).

Several studies have also analyzed the in vivo 
trypanocidal activity of  substances isolated from 
pepper. Esperandim et al. (2013), for example, 
evaluated the in vivo therapeutic properties of  
(-)-cubebin, a compound isolated from the dry 
seeds of  Piper cubeba, and (-)-Hinokinin, prepared 
by (-)-cubebin oxidation. Results revealed increased 
cell nuclei in untreated infected animals as 
compared to uninfected mice. The values obtained 
for infected animals treated with (-)-cubebin and 
(-)-hinokinin were close to those observed for 
uninfected mice. For the spleen, perimeter values 
of  10.85 µm (p <0.01) and 10.90 µm (p<0.05) 
were obtained for mice treated with (-)-cubebin 50 
mg/kg and (-)-hinokinin 20 mg/kg, respectively, 
whereas untreated infected animals provided a 
perimeter of  11.76 µm. Saraiva et al. (2010) loaded 
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(-)-hinokinin onto poly (D, L-lactide-co-glycolide) 
microparticles and revealed that the treatment of  
infected mice with 40 mg/kg of  (-)-hinokinin-
loaded microparticles, every 2 days could bring 
about a significant decrease in parasitemia levels 
in comparison with those recorded in untreated 
controls (P<0.05 at days 12, 14,16, 19, and 21 
post-infection with T. cruzi).

Laurella et al. (2012) evaluated the trypanocidal 
activity of  the Argentinean Mikania species. 
The organic extracts of  M. micrantha, M. 
periplocifolia, M. parodii, and M. cordifolia displayed 
significant antiprotozoal activity against T. cruzi 
epimastigotes and L. braziliensis promastigotes 
in vitro. The authors suggested that terpenoids, 
mainly sesquiterpene lactones and diterpenes, 
present in the genus Mikania accounted for the 
antitrypanosomal activity.

Escobar et al. (2010) have reported that essential 
oils obtained from different species of  Lippia spp, 
a widely distributed genus of  Colombian plants, 
exhibited important activity against Leishmania 
chagasi and Trypanosoma cruzi.

Despite all the efforts by researchers from 
different countries, the treatment of  Chagas’ 
disease has seen little progress. Experiments 
with active compounds isolated from plants have 
shown that modifying the molecule increases 
activity significantly; however, scientists rarely 
perform such alterations to the original compound, 
perhaps overlooking opportunities to find new 
drugs. There are many advantages to studying the 
medicinal benefits of  natural products. In the case 
of  Chagas’ disease, the prospect of  developing 
new drugs has led to the screening of  the 
antitrypanosomal activity of  almost 400 species 
belonging to more than 100 plant families over the 
last 15 years (Izumi et al. 2010).

Ursolic acid (1) and oleanolic acid (2) (Figure 
1) both compounds and triterpenoids are widely 
distributed in the plant kingdom and have been 
frequently isolated as isomeric mixtures. Several 
articles have exposed an abundant interest in 
these triterpenoids including their isolation, 
chemical modifications, and pharmacological and 
toxicological studies (Liu 2005).

Compounds 1 and 2 effectively protect 
laboratory animals from chemically induced liver 
injury. In China, compound 2 has been marketed 
as an oral drug for human liver disorders. The 
hepatoprotective mechanism of  these two 
compounds may inhibit toxic activation and 
enhance the body’s defense systems (Liu 1995).

Fig. 1. Chemical structures of  the triterpenes 
acids isolated from Miconia species and synthetic 
derivatives tested for trypanocidal activity. Figure 
from Cunha WR, et al.: In Vitro Trypanocidal 
Activity of  Triterpenes from Miconia Species. 
Planta Med 2003; 69:470-472. Reproduced with 
kind permission from Georg Thieme Velag KG.
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Triterpenoids have also been found to have 
antiparasitic activity against Plasmodium falciparum 
(Steele et al. 1999), Trypanosoma (Leite et al. 2006), 
and Leishmania species (Torres-Santos et al. 2004). 
They have also been reported to exert biological 
activity against Mycobacterium tuberculosis (Gua et 
al. 2004), and potential antiviral activity against 
HIV (Ovesna et al. 2004). Despite the biological 
activities displayed by these triterpenoids, further 
studies are necessary to explain their action 
mechanisms.

Miconia species contain triterpenes, coumarins, 
and benzoquinones (Gunatilaka et al. 2001). 
Miconia extracts and their isolated compounds 
display remarkable biological activities, such as 
antitumoral (Cunha et al. 2008), analgesic and anti-
inflammatory actions. Ursolic acid and oleanolic 
acid are just two of  the many biologically active 
substances that can be isolated from Miconia 
species. Fittingly, this genus may greatly contribute 
to the discovery of  new drugs derived from natural 
products.

The genus Miconia: a natural source of  
biologically active substances against 
Trypanosoma cruzi

Melastomataceae is one of  the main families of  
neotropical flora, with about 5,000 species 
belonging to 185 genera and 11 tribes. The 
interest in these plants stems from its eye-catching 
flowers; in Brazil, Miconia, the largest genus of  the 
Melastomataceae family, is represented by about 250 
ornamental species (Martins et al. 1996, Marcon & 
Costa 2000). It is native to the forests of  Central 
and South America extending from southern 
Mexico, in the north, toward the south through 
Guatemala, British Honduras, Nicaragua, Costa 
Rica, Panama, Colombia, Ecuador, Peru, Bolivia, 
Brazil, Paraguay, and northern Argentina.

The biological properties of  some Miconia 
species have drawn researchers’ attention; extracts 
and isolated compounds exhibit antibiotic, 
antitumoral, analgesic, and antimalarial activities 
(Hasrat et al. 1997, Cunha et al. 2003, Serpeloni et 
al. 2008). Our team has been working with Miconia 
species and has tested several of  their biological 

actions, including the trypanocidal activity of  
isolated compounds and structurally modified 
molecules. We have also screened Miconia plant 
extracts against trypomastigote blood forms of  
T. cruzi in vitro and have found that methylene 
chloride extracts of  M. fallax and M. stenostachya 
showed significant antitrypanosomal activity. 

In 2003, we conducted a study in our laboratory 
(Cunha et al. 2003), which demonstrated that 
some compounds isolated from methylene 
chloride extracts of  M. fallax and M. stenostachya 
present a trypanocidal effect. Using spectroscopic 
methods–MS, and 1H- and 13C-NMR, this same 
study elucidated the structure of  the isolated 
compounds and synthetic derivatives. To assay 
trypanocidal activity according to a previous 
report (Grael et al. 2000), we elicited lysis of  
bloodstream trypomastigotes of  the Y strain of  
T. cruzi by adding the isolated compounds and 
their synthetic derivatives to the infected blood. 
Ursolic (1) and oleanolic (2) acids were the major 
components of  the methylene chloride extract of  
M. fallax, which also contained oleanolic (3) and 
sumaresinolic (4) acids (Figure 1). A previous 
study on M. stenostachya revealed the presence of  
sumaresinolic and gypsogenic (5) acids (Figure 1). 
We treated the mixture of  compounds 1 and 2 with 
excess acetic anhydride in pyridine, to obtain the 
C-3 acetoxy derivatives 1a and 2a which, in CH2N2 
and Et2O, yielded a mixture of  C-28 methyl ester 
derivatives 1b and 2b (Figure 1). Table 1 shows 
lysis percentages of  T. cruzi tripomastigotes forms 
induced by addition to the infected blood of  the 
isolated compounds and their synthetic derivatives. 
The natural compounds 1, 2, and 5, which contain 
OH and COOH groups, provided the lowest IC50 

values (21.3, 80.4, and 56.6 µM, respectively); the 
synthetic derivatives afforded higher IC50 values 
(Table 1). The presence of  polar groups appeared 
critical to the trypanocidal activity.

As part of  our ongoing search for potential 
trypanocidal compounds, in our laboratory, we also 
fractionated the methylene chloride active extracts 
of  M. sellowiana Naud. and M. ligustroides (DC.) 
Naudin. and identified other triterpenes acids 
active against the trypomastigote forms of  T. cruzi 
(Cunha et al. 2006). This latter work, employed 
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a methodology different from that previously 
reported in Cunha et al. (2003); we tested other 
isolated triterpenes, and assessed their activity 
against T. cruzi trypomastigotes by using the MTT 
colorimetric method [MTT, 3-(4,5-dimethylthiazol-
2-yl)-2-5-diphenyltetrazolium bromide] using 
low concentrations of  the compounds. Vacuum 
liquid chromatography of  the methylene chloride 
extract of  M. sellowiana over 400 g of  silica gel 60 
provided fractions F2 and F3. After filtration of  
over 60 g of  a celite:norit mixture, the elution of  
the combined fractions F2 and F3 with methylene 
chloride produced 350 mg of  compound 1. The 
1H- and 13C-NMR data of  this solid revealed 
the presence of  a mixture of  maslic acid (6) and 
2α-hydroxyursolic acid (8) (Figure 1). 

Vacuum liquid chromatography of  the 
methylene chloride extract of  M. ligustroides (6.5 
g) on silica gel with increasing proportions of  the 
same organic solvents used to fractionate the M. 

sellowiana extract, produced arjunolic acid (7) and 
a mixture of  compounds 1 and 2. Purification of  
the latter mixture by HPLC yielded compound 2 
and the potassium salt derivative of  1 (1c) (Figure 
1). The in vitro biological assay of  compounds 1 
and 2 on the trypomastigote forms of  T. cruzi 
(obtained by culturing the LLMCK2 cell lineage) 
using the MTT colorimetric (Muelas-Serrano et 
al. 2000) indicated that compounds 1 and 2 were 
the most active amongst the isolated compounds, 
with IC50 of  17.1 and 12.8 μM, respectively (Table 
2). The IC50 value of  the mixture of  compounds 1 
and 2 was lower than those achieved for the pure 
acids 1 and 2 in isolation, suggesting a synergistic 
effect. The potassium salt derivative of  1 (1c) was 
more potent (IC50 8.9 μM) than its active parent 
acid 1. In contrast, a mixture of  compounds 6 
and 8 was much less potent than a mixture of  1 
and 2. Finally, compound 7 (Figure 1) displayed 
weak trypanocidal activity (IC50 = 76.3 μM) when 
compared with the other triterpenes.

Table 1. In vitro trypanocidal activity of  triterpenes isolated from two Miconia species and their synthetic derivatives 
against the Y strain of  Trypanosoma cruzi. aPositive control. bMice infected blood containing the same DMSO used 
in the stocks solution (negative control) did not present reduction of  the parasite number. Table 1 from Cunha 
WR, et al.: In Vitro Trypanocidal Activity of  Triterpenes from Miconia Species. Planta Med 2003; 69:470-472. 
Reproduced with kind permission from Georg Thieme Velag KG.
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We tested the most active compounds in 
vivo using mice (swiss albino) infected with 
approximately 2 × 104 trypomastigote forms. The 
treatment group received a daily intraperitoneal 
injection of  the tested compound at a concentration 
of  2 mg kg-1 for 13 days. The number of  parasites 
was counted according to the technique described 
by Brener (1962); the in vivo trypanocidal activity 
was expressed as the percentage of  T. cruzi 
trypomastigote lysis. We also evaluated the animals’ 
survival time; compound 1 and its derivative salt 
1c reduced parasites in the parasitemic peak more 
significantly (75.7% and 70.4%, respectively), 
increasing the survival time for all the treated 
animals. The results indicated that the structural 
variable most consistently influencing the activity 
were the hydroxyl groups at C-2, C-23, and 
C-28. Taking into account that a mixture of  
compounds 6 and 8 was much less active than the 
mixture of  compounds 1 and 2, we inferred that 
hydroxylation at C-2 decreased the trypanocidal 
activity. In the same way, hydroxylation at C-23 
(compound 4) should also diminish the in vitro 
activity against T. cruzi. In principle, this reduction 
might be interpreted as the result of  the increased 
polarity of  compounds 6, 7, and 8 as compared 
to compounds 1 and 5. Compound 1c (much 

more polar than compound 1) was most potent. 
Thus, introducing an additional hydroxyl at the 
A-ring (at C-2 or C-23) may affect trypanocidal 
activity, may develop an intramolecular hydrogen 
bond with the hydroxyl at C-3, or the additional 
hydroxyl may hinder binding to the enzymatic 
site. On the basis of  these results, we concluded 
that the free hydroxyl at C-3 and the polarity of  
C-28 determines the in vitro trypanocidal activity 
of  triterpenes, at least for the analyzed set of  
compounds. 

Ferreira et al. (2010) examined the in vitro and 
in vivo trypanocidal activity of  compounds 1 and 
2 against the Bolivian strain of  T. cruzi. They also 
evaluated the acute toxicity of  these compounds 
by determining the median lethal dose (LD50) 
and quantifying its biochemical parameters. The 
authors undertook the in vitro trypanocidal assay 
according to the protocol established by Cunha et 
al. (2006). For the in vivo assay, BALB/C albino 
mice received 20 mg kg-1 of  the target compound 
orally, on a daily basis, for 20 days. The number of  
parasites was quantified according to the technique 
described by Brener (1962); the in vivo trypanocidal 
activity was expressed as the percentage of  
trypomastigote lysis. 

Table 2. Results of  the in vitro trypanocidal activity of  the isolated compounds and synthetic derivatives. Gentian 
violet (positive control) displayed IC50 = 31 μM. The negative control, RPMI-1640 medium plus 1% DMSO, 
displayed 0% lysis. Table 2 from Cunha WR, et al.: A study of  trypanocidal activity of  triterpene acids isolated from 
Miconia species. Phytother Res 2006; 20:474-478. Reproduced with kind permission from John Wiley & Sons, Ltd.
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In vitro, compound 1 proved to be a more 
active trypanocidal agent than compound 2; 
IC50 values were 45.2 and 25.5 μM, respectively. 
Corroborating the in vitro assays, in vivo assays 
showed that compound 1 reduced the number of  
parasites at the parasitemic peak more significantly 
(60%) than compound 2 (40%). Additionally, all 
the animals treated with compound 1 survived 
longer as compared with the negative control. 
The presence of  a hydroxyl group and a carboxyl 
group is important for the trypanocidal effect of  
both compounds 1 and 2 (Cunha et al. 2006, Leite 
et al. 2006). However, while compound 1 contains 
methyl groups at C19 and C20, compound 2 has 
two methyl groups at C20; this implies that the 
methyl group at C19 enhances trypanocidal activity 
against the Bolivian strain, which is more resistant 
to chemotherapy with Benznidazole (Ribeiro et al. 
1988, Martinez-Díaz et al. 2001). The lethal dose 
(LD50) in BALB/C albino mice receiving a single 
oral dose of  the tested terpenoid at a concentration 
of  2,000 mg kg-1, as determined by the Litchfield 
& Wilcoxon method (1949) after 72 h (Pires et 
al. 2004), did not evidence mortality or toxicity. 
Hence, it is totally safe to use these compounds in 
trials involving a much lower dose (20 mg/kg/day).

Biochemical parameters, were measured using 
male Wistar rats that received compounds 1 and 
2 at concentrations of  20 and 50 mg kg-1 for 20 
days; their diet was normal and drinking water 
was available to them ad libitum. At the end of  the 
experimental period, the animals were sacrificed. 
Their blood was collected, to measure serum 
aspartate amino transferase (AST), serum alanine 
amino transferase (ALT), alkaline phosphatase 
(ALP), gamma-glutamyltranspeptidase (GGT), 
bilirubin, glucose, urea, and creatinine levels, 
to obtain information about liver and kidney 
functions. Neither compound 1 nor compound 2 
altered the levels of  these biochemical parameters, 
deeming these substances safe for experimental 
tests. One of  the most important properties of  
these compounds is their antioxidant capacity. 
Martin-Aragón et al. (2001) suggested that 
compound 1 may prevent the initiation and 
propagation of  the lipid peroxidation process as it 
scavenges free radicals through conjugation with 

glutathione, controlling oxidative damage and tissue 
protection. Recent studies have also confirmed that 
compounds 1 and 2 offer antioxidative protection 
and exert hepatoprotective effects (Saravanan et 
al. 2006, Liu et al. 2012).

The most recent study by our group researched 
the effects of  compounds 1 and 2 on interleukin 
levels by comparing treated and untreated chagasic 
mice (Ferreira et al. 2013). For the in vivo assay, 
we administered daily doses of  20 and 50 mg of  
the target drug kg-1 for 20 days to male BALB/C 
albino mice by oral and intraperitoneal means. We 
counted the number of  trypomastigotes following 
the method described by Brener (1962) to evaluate 
parasitemia. For the cytokine assays, we treated 
mice with 20 mg kg-1 of  the substances; collected 
plasma samples seven days post-infection, and 
measured γ-IFN and IL-10 concentrations using 
a specific two-site enzyme-linked immunosorbent 
assay (ELISA). 

Intraperitoneal delivery of  20 mg kg-1 compounds 
1 and 2 did not significantly affect the Y strain of  
T. cruzi as compared with control groups. Similarly, 
50 mg kg-1 of  these compounds did not reduce the 
number of  circulating parasitic forms; treatment 
with these triterpenes did not enhance survival, 
either. On the other hand, orally administered 
compound 1 (20 mg kg-1) decreased the number 
of  parasites by approximately 30% as compared 
with the negative control group. However, 50 mg 
kg-1 oral compounds 1 and 2 exhibited significant 
biological activity against the Y strain of  T. cruzi, 
reducing parasite burden by 79% and 76% at 
the parasitemic peak, respectively. Additionally, 
all the mice treated with these triterpene acids 
displayed longer survival time compared to the 
negative control group. Animals treated with these 
substances presented significantly lower γ-INF 
concentrations, which explains the exacerbated 
parasitemia detected in these mice; treated animals 
also displayed elevated IL-10 concentrations. The 
results from intraperitoneal administration were 
unexpected; earlier studies on animals infected with 
the same T. cruzi strain and treated with 2.0 mg/
kg/day compounds 1 and 2 showed significantly 
reduced parasitemic levels and increased survival 
times (Cunha et al. 2006). However, the cytokine 
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assays performed by our group demonstrated 
significantly diminished γ-IFN levels. This effect 
could account for the exacerbated parasitemia 
because γ-IFN is associated with host resistance 
during the acute phase of  infection. In contrast, 
treatment with compounds 1 and 2 elicited 
significantly higher IL-10. Various studies have 
reported that increased susceptibility of  infected 
animals correlates with enhanced production of  
the anti-inflammatory cytokine IL-10 (Minoprio 
et al. 1993, Reed et al. 1994). Our results are 
consistent with previous works; they demonstrate 
that treatment with triterpenes suppresses the 
production of  proinflammatory cytokines such 
as γ-IFN and generates IL-10 (Nataraju et al. 
2009, Martín et al. 2010). Therefore, compounds 
1 and 2 initiate an immunosuppressive effect that 
could interfere with host parasitemia control. The 
significantly reduced parasitism observed with oral 
administration of  compound 1 may be due to its 
low absorption in the bowels, as verified in a recent 
study evaluating ursolic acid pharmacokinetics 
after oral administration (Jeong et al. 2007). In 
conclusion, orally administered compound 2 was 
more effective in our study, possibly because it 
is less absorbed by the intestines, which leads to 
fewer immune alterations and better control of  the 
number of  parasites.

Conclusion 
Controlling or eliminating NTDs could bring 
millions of  people out of  poverty; it could increase 
access to education, because NTDs currently 
infect more than 400 million school-aged children 
in the developing world. Treating these children’s 
infections is the single most cost–effective way 
to boost school attendance, opening the door to 
growth and learning for the next generation of  
workers. Additionally, controlling and eliminating 
NTDs strengthens worker productivity, 
contributing hundreds of  billions of  dollars to 
developing economies through increased worker 
productivity (Franco–Paredes et al. 2007).

However, economic consideration by the 
pharmaceutical industry outweighs all other 
benefits. Returns on development costs are 
unsatisfactory; consequently, it is necessary to 

find cheaper alternatives to treat Chagas’ disease. 
This could be achieved by increasing the activity 
of  the presently used anti-Chagasic drugs, or by 
modifying the host’s immune response, which 
would make current therapies more effective 
(Maya et al. 2007). Some research groups have 
focused their research on finding a safe and reliable 
therapeutic drug to eradicate the parasite as well as 
a prophylactic drug to enhance human blood prior 
to transfusion (Mckerrow et al. 2009).

Studying natural substances yields valuable 
results, especially against diseases for which a 
cure does not yet exist or for which a treatment 
is available but its administration is challenging 
for the patient. Determining the efficacy of  a 
tested drug or its optimum concentration is very 
important; however, providing information on 
target drugs, parasite biology, or drug interaction 
with the host cell is a valuable additional stride 
(Maya et al. 2007).

Several studies of  Miconia plant extracts against 
trypomastigotes blood forms of  T. cruzi have 
demonstrated significant trypanocidal activity. 
The isolated triterpenes ursolic and oleanolic acids 
were the most active compounds against T. cruzi. 
Nevertheless, more studies on the derivatives of  
these two compounds and on other triterpenoid 
acids are vital, to elucidate structure-activity 
relationships and develop novel therapeutic agents 
against Chagas’ disease.
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Productos naturales y mal de Chagas: la acción de los 
ácidos triterpenos aislados de especies de Miconia.

Resumen. El protozoario Trypanosoma cruzi causa mal de 
Chagas, enfermedad que aún es problema de salud pública 
relevante en América Latina. El fármaco disponible en 
Brasil para el tratamiento es benznidazol. Este compuesto 
es eficaz contra la forma de circulación del parásito en la 
fase aguda de la enfermedad, pero su eficacia durante 
la fase crónica es discutible. Por lo tanto, la búsqueda de 
nuevos medicamentos que pueden tratar el mal de Chagas 
es necesaria. Las fuentes naturales presentan amplia 
gama de metabolitos secundarios y pueden desempeñar 
papel importante en el descubrimiento de nuevas drogas 
potenciales. Miconia es un género de los más grandes 
perteneciente a la familia Melatomateceae, incluyendo cerca de 
1.000 especies de plantas; sólo en Brasil hay aproximadamente 
250 de estas especies en florestas y sabanas. Los estudios 
sobre las diversas actividades biológicas de las especies 
Miconia han presentando resultados promisorios. Varios 
autores han evaluado extractos de estas plantas contra T. 
cruzi, comprobando que estos exiben actividad tripanocida 
significativa. La presencia de ácidos ursólico y oleanólico 
determinan la actividad biológica. 

Palabras clave: Mal de Chagas; Trypanosoma cruzi; Miconia.

Produtos naturais e doença de Chagas: a ação de 
triterpenos ácidos isolados de espécies de Miconia.

Resumo. A doença de Chagas é uma doença negligenciada 
causada pelo protozoário Trypanosoma cruzi e ainda 
permanece como um relevante problema de saúde pública 
na América Latina. O medicamento disponível para o 
tratamento clínico no Brasil é o benzonidazol, que é efetivo 
contra as formas circulantes do parasita na fase aguda da 
doença, entretanto, sua eficácia na fase crônica permanece 
discutível. A pesquisa por novas drogas que possam ser 
utilizadas no tratamento dessa doença é urgentemente 
necessária e as fontes naturais com os seus metabólitos 
secundários diversificados, podem desempenhar um papel 
extremamente importante. Miconia é um dos maiores 
gêneros pertencente à família Melastomataceae incluindo cerca 
de 1.000 espécies e, no Brasil existem cerca de 250 espécies 
em florestas e savanas. Estudos realizados com o objetivo 
de descrever as diferentes atividades biológicas de espécies 
de Miconia têm apresentado resultados promissores. Vários 
autores têm avaliado os extratos dessas plantas contra as 
formas tripomastigotas sanguíneas de T. cruzi (in vitro) e 
verificado que essas amostras exibem atvidade tripanocida 
significativa. A presença dos triterpenos ácidos ursólico 
oleanólico está relacionada com esta atividade biológica. 

Palavras-chave: Doença de Chagas; Trypanosoma cruzi; 
Miconia.
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