Published Dec 30, 2020



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Carolina Ramos-Montaño

Leidy Johana Vanegas-Cano

Nancy Milena Cárdenas-Avella

Karen Lizeth Pulido-Herrera

Sindy Paola Buitrago-Puentes

##plugins.themes.bootstrap3.article.details##

Abstract

The regenerative success of generalist and specialist species may be due to differences in their physiology. Measurements of stomatal conductance (gS) provide an efficient way to infer immediate physiological responses of plants to diurnal environment variation. Radiation, air temperature, and relative humidity were measured in the Colombian Amazon rainforest, to identify the extreme environmental conditions that limit the gS of seedlings in three site types: small gap, open forest, and closed forest. We hypothesized that the diurnal physiological performance of generalist species must be plastic in these three environments. Morphological traits, gS, and leaf temperature were evaluated in seedlings of four species: one generalist, common to all sites, and one specialist from each site. The gap site was warmer and more irradiated than the other two sites, which caused several midday physiological depressions, limited seedling survival, and facilitated the specialized strategy. Leaf and air temperatures were strong determinants of overall gS. The generalist species was physiologically plastic and, at some hours of the day, more efficient than the specialists from open forest and
closed forests. This factor interplay could allow the coexistence of both types of plants.

Keywords

leaf temperature, seedling, shade-tolerance, stomatal conductance, Heliophyte, gap dynamics

References
Ashton MS, Gunatilleke CV, Gunatilleke IAU, Griscom HP, Singhakumara BPM. The effect of shade on leaf structure and
physiology of tree seedlings from a mixed dipterocarp forest, Botanical Journal of the Linnean Society, 167(3): 332-343, 2011.
doi: 10.1111/j.1095-8339.2011.01181.x

Augspurger CK. Seedling survival of tropical tree species: interactions of dispersal distance, light-gaps, and pathogens,
Ecology, 65(6): 1705-1712, 1984.
doi: 10.2307/1937766

Baltzer J, Thomas SC. Determinants of whole-plant light requirements in Bornean rain forest tree saplings, Journal of Ecology, 95(6): 1208-1221, 2007.
doi: 10.1111/j.1365-2745.2007.01286.x

Bonal D, Guehl JM. Contrasting patterns of leaf water potential and gas exchange responses to drought in seedlings of tropical rainforest species, Functional Ecology, 15(4): 490-496, 2001.
doi: 10.1046/j.0269-8463.2001.00537.x

Brokaw NV. Gap-phase regeneration in a tropical forest, Ecology, 66(3): 682-687, 1985.
doi: 10.2307/1940529

Brunet J, Valtinat K, Mayr ML, Felton A, Lindbladh M, Bruun HH. Understory succession in post-agricultural oak forests: habitat fragmentation affects forest specialists and generalists differently, Forest Ecology and Management, 262(9): 1863-1871, 2011.
doi: 10.1016/j.foreco.2011.08.007

Carswell FE, Meir P, Wandelli V, Bonates LCM, Barbosa EM, Nobre AD, Grace J, Jarvis PG. Photosynthetic capacity in a central
Amazonian rain forest, Tree Physiology, 20(3): 179-186, 2000.
doi: 10.1093/treephys/20.3.179

Chazdon RL, Montgomery RA. La adquisiciión de carbono en las plantas. Pages 225-250 in MR Guariguata and GH Kattan,
editors. Ecología y conservación de bosques Neotropicales. Ediciones LUR, San José, 2002.

Cheesman AW, Winter K. Growth response and acclimation of CO2 exchange characteristics to elevated temperatures in tropical tree seedlings, Journal of Experimental Botany, 64(12): 3817-3828, 2013.
doi: 10.1093/jxb/ert211

Clark DV, Clark DA, Rich PM. Comparative analysis of microhabitat utilization by saplings of nine tree species in Neotropical rain forest, Biotropica, 25(4): 397-407, 1993.
doi: 10.2307/2388863

Claussen JW. Acclimation abilities of three tropical rainforest seedlings to an increase in light intensity, Forest Ecology and
Management, 80(1-3): 245-255, 1996.
doi: 10.1016/0378-1127(95)03606-7

Collantes A, Granados D, López G. Sucesión de grupos ecológicos de árboles en una selva mediana subperennifolia secundaria, Revista Chapingo serie Ciencias forestales y del ambiente, 6(1): 5-14, 2000.

Collins B, Dunne K, Pickett S. Responses of forest herbs to canopy gaps. Pages 218-234 in A. Pickett and S. White, editors. The Ecology of natural disturbance and patch dynamics. Academic Press, New York, 1985.
doi: 10.1016/B978-0-08-050495-7.50017-X

Craven D, Gulamhussein S, Berlyn GP. Physiological and anatomical responses of Acacia koa (Gray) seedlings to varying light and drought conditions, Environmental and Experimental Botany, 69(2): 205-213, 2010.
doi: 10.1016/j.envexpbot.2010.04.002

Dalling JW, Lovelock CE, Hubbell SP. Growth responses of seedlings of two Neotropical pioneer species to simulated forest
gap, Journal of Tropical Ecology, 15(6): 827-839, 1999.
doi: 10.1017/S0266467499001200

Dalling JW, Winter K, Hubbell SP. Variation in growth responses of Neotropical pioneers to simulated forest gaps, Functional Ecology, 18(5): 725-736, 2004.
doi: 10.1111/j.0269-8463.2004.00868.x

Damour G, Simonneau T, Cochard H, Urban L. An overview of models of stomatal conductance at the leaf level, Plant Cell and Environment, 33(9): 1419-1438, 2010.
doi: 10.1111/j.1365-3040.2010.02181.x

Denslow JS. Gap partitioning among tropical rainforest trees, Biotropica, 12(2): 47-55, 1980.
doi: 10.2307/2388156

Denslow JS. Tropical rainforest gaps and tree species diversity, Annual Review of Ecology and Systematics, 18: 431-451, 1987.
doi: 10.1146/annurev.es.18.110187.002243

Denslow JS, Newell E, Ellison AM. The effect of understory palms and cyclanths on the growth and survival of Inga seedlings, Biotropica, 23(3): 225-234, 1991.
doi: 10.2307/2388199

Domingues TF, Martinelli LA, Ehleringer JR. Ecophysiological traits of plant functional groups in forest and pasture ecosystems from eastern Amazonia, Brazil, Plant Ecology, 193(1): 101-112, 2007.
doi: 10.1007/s11258-006-9251-z

Dupuy JM, Chazdom RL. Interacting effects of canopy gap, understory vegetation and leaf litter on tree seedling recruitment and composition in tropical secondary forests, Forest Ecology and Management, 255(11): 3716-3725, 2008.
doi: 10.1016/j.foreco.2008.03.021

Ehleringer JR, Werk KS. Modifications of solar-radiation absorption patterns and implications for carbon gain at the leaf level. Pages 57-82 in T. J. Givnish, editor. On the economy of plant form and function. Cambridge University Press, Cambridge, 1986.

Fetcher N, Oberbauer SF, Rojas G, Strain RB. Efectos del régimen de luz sobre la fotosíntesis y el crecimiento de plántulas de árboles de un bosque lluvioso tropical de Costa Rica, Revista de Biología Tropical, 35: 97-110, 1987.

Gravel D, Beaudet M, Messier C. Large-scale synchrony of gap dynamics and the distribution of understory tree species in
maple–beech forests, Oecologia, 162(1): 153-161, 2010.
doi: 10.1007/s00442-009-1426-6

Harms KE, Wright SJ, Hernández O, Herre EA. Pervasive densitydependent recruitment enhances seedling diversity in a tropical forest, Nature, 404: 493-495, 2000.
doi: 10.1038/35006630

Holdridge LR. Ecología basada en zonas de vida. Editorial IICA, San José, 2000.

Hölsher D, Leuschner C, Bohman K, Juhrbandt J, Tjitrosemito S. Photosynthetic characteristics in relation to leaf traits in eight co-existing pioneer tree species in Central Sulawesi, Indonesia, Journal of Tropical Ecology, 20(2): 157-164, 2004.
doi: 10.1017/S0266467403001251

Houter NC, Pons TL. Gap size effects on photoinhibition in understorey saplings in tropical rainforest, Plant Ecology, 179(1):
43-51, 2005.
doi: 10.1007/s11258-004-5775-2

Hubbell SP, Foster RB, O'brien ST, Condit KE, Wechsler B, Wright SJ, Lao SLD. Light-gap disturbances, recruitment limitation, and tree diversity in a Neotropical forest, Science, 283(5401): 554-557, 1999.
doi: 10.1126/science.283.5401.554

Ishii H, Ohsugi Y. Light acclimation potential and carry-over effects vary among three evergreen tree species with contrasting patterns of leaf emergence and maturation, Tree Physiology, 31(8): 819-830, 2011.
doi: 10.1093/treephys/tpr079

Kamakura M, Kosugi Y, Takanashi S, Matsumoto K, Okumura M, Philip E. Patchy stomatal behavior during midday depression of leaf CO2 exchange in tropical trees, Tree Physiology, 31(2): 160- 168, 2011.
doi: 10.1093/treephys/tpq102

Kosugi Y, Takanashi S, Yokoyama N, Philip E, Kamakura M. Vertical variation in leaf gas exchange parameters for a Southeast Asian tropical rainforest in Peninsular Malaysia, Journal of Plant Research, 125(6): 735-748, 2012.
doi: 10.1007/s10265-012-0495-5

Krause GH, Koroleva OY, Dalling JW, Winter K. Acclimation of tropical tree seedlings to excessive light in simulated tree-fall
gaps, Plant Cell and Environment, 24(12): 1345-1352, 2001.
doi: 10.1046/j.0016-8025.2001.00786.x

Lambers H, Chapin III FS, Pons TL. Plant physiological ecology. Springer, New York, 2008.
doi: 10.1007/978-0-387-78341-3

Larcher W. Physiological plant ecology. Springer, Berlin, 2003. Leakey ADB, Press MC, Scholes JD. High-temperature inhibition of photosynthesis is greater under sunflecks that uniform irradiance in a tropical rain forest tree seedling, Plant Cell and Environment, 26(10): 1681-1690, 2003.
doi: 10.1046/j.1365-3040.2003.01086.x

Leite ITA, Takaki M. Phytochrome and temperature control of seed germination in Muntingia calabura L.(Elaeocarpaceae).
Brazilian Archives of Biology and Technology, 44(3): 297-302, 2001.
doi: 10.1590/S1516-89132001000300012

Lobo E, Dalling JW. Effects of topography, soil type and forest age on the frequency and size distribution of canopy gap disturbances in a tropical forest, Biogeosciences, 10(4): 6769-6781, 2013.
doi: 10.5194/bgd-10-7103-2013

Luken JO, Kuddes LM, Tholemeier TC. Response of understory species to gap formation in soil disturbance in Lonicera maackii thickets, Restoration Ecology, 5(3): 229-235, 2008.
doi: 10.1046/j.1526-100X.1997.09727.x

Malagón CD. Minerología de algunos suelos Colombianos, Suelos Ecuatoriales, 8: 316-321, 1997.

Martínez-Ramos M. Claros, ciclos vitales de los árboles tropicales y regeneración natural de las selvas altas perennifolias. Pages 191- 239 in A. Gómez-Pompa and S. D. Amo, editors. Claros, ciclos vitales de los árboles tropicales y regeneración natural de las selvas altas perennifolias. INIREB, Alhambra, 1985.

Martino D. América del Sur Deforestación en la Amazonía: Principales factores de presión y perspectivas, Revista Sur, 169:
3-22, 2007.

Myers JA, Kitajima K. Carbohydrate storage enhances seedling shade and stress tolerance in a neotropical forest, Journal of
Ecology, 95(2): 383-395, 2007.
doi: 10.1111/j.1365-2745.2006.01207.x

Nascimento HCS, Marenco RA. Mesophyll conductance variations in response to diurnal environmental factors in Myrcia paivae and Minquartia guianensis in Central Amazonia, Photosynthetica, 51(3): 457-464, 2013.
doi: 10.1007/s11099-013-0046-x

Ni BR, Pallardy SG. Stomatal and nonstomatal limitations to net photosynthesis in seedlings of woody angiosperms, Plant
Physiology, 99(4): 1502-1508, 1992.
doi: 10.1104/pp.99.4.1502

Oberbauer SF, Clark DB, Clark DA, Rich PM, Vega G. Light environment, gas exchange, and annual growth of saplings of
three species of rain forest trees in Costa Rica, Journal of Tropical Ecology, 9(4): 511-523, 1993.
doi: 10.1017/S0266467400007586

Pearcy RW. Photosynthetic gas exchange responses of Australian tropical forest trees in canopy, gap and understory microenvironments, Functional Ecology, 1(3): 169-178, 1987.
doi: 10.2307/2389419

Pearson TR, Burslem DF, Mullins CE, Dalling JW. Germination ecology of Neotropical pioneers: interacting effects of
environmental conditions and seed size, Ecology, 83(10): 2798- 2807, 2002.
doi: 10.2307/3072016

Peña MA, Cárdenas D, Duque A. Distribución de especies y su relación con la variación ambiental y espacial a escala local en un bosque de tierra firme en la Amazonia Colombiana, Actualidades biologicas, 32(92): 41-51, 2010.

Phillips OL, Malhi Y, Higuchi N, Lurance WF, Núñez PV, Vásquez RM, Laurance SG, Ferreira LV, Stern M, Brown S, Grace J.
Changes in the carbon balance of tropical forest: evidence from long-term plots, Science, 282(5388): 439-442, 1998.
doi: 10.1126/science.282.5388.439

Pons TL, Welschen BA. Midday depression of net photosynthesis in the tropical rainforest tree Eperua grandiflora: contributions of stomatal and internal conductances, respiration and Rubisco functioning, Tree Physiology, 23(14): 937-947, 2003.
doi: 10.1093/treephys/23.14.937

Räsänen ME, Salo JS, Kalliola RJ. Fluvial perturbance in the western Amazon basin: regulation by long-term sub-andean tectonics, Science, 238(4832): 1398-1401, 1987.
doi: 10.1126/science.238.4832.1398

Rivera D. La Amazonía de Colombia. IM Edit ores, Cali, 2008.

Roberts J, Cabral OM, Ferreira-De-Aguiar L. Stomatal and boundary-layer conductances in an Amazonian terra firme rain
forest, Journal of Applied Ecology, 27(1): 336-353, 1990.
doi: 10.2307/2403590

Romo RM. Efecto de la luz en el crecimiento de plántulas de Dipteryx micrantha Harms "Shihuahuaco" transplantadas a sotobosque, claros y plantaciones, Ecología Aplicada, 4(1-2): 1-8, 2005.

Rundel PW, Sharifi MR, Gibson AC, Esler KJ. Structural and physiological adaptation to light environments in Neotropical
Heliconia (Heliconiaceae), Journal of Tropical Ecology, 14(6): 789-801, 1998.
doi: 10.1017/S0266467498000571

Saldaña A, Meave J, Sánchez-Velaquez LR. Seedling biomass allocation and vital rates of cloud forest tree species: responses to light in shade house conditions, Forest Ecology and Management, 258(7): 1650-1659, 2009.
doi: 10.1016/j.foreco.2009.07.027

Santiago LS, Wright SJ. Leaf functional traits of tropical forest plants in relation to growth form, Functional Ecology, 21 (1):19-27, 2007.
doi: 10.1111/j.1365-2435.2006.01218.x

Santos-Filho M, Silva DJD, Sanaiotti TM. Edge effects and landscape matrix use by a small mammal community in fragments of semideciduous submontane forest in Mato Grosso, Brazil, Brazilian Journal of Biology, 68(4) :703-710, 2008.
doi: 10.1590/S1519-69842008000400004

Schnitzer SA, Mascaro J, Carson WP. Treefall gaps and the maintenance of species diversity in tropical forest. Pages 196-
209 in W. P. Carson and S. A. Schnitzer, editors. Tropical Forest Community Ecology. Blackwell Publishing, Oxford, 2008.

Slot M, Poorter L. Diversity of Tropical Tree Seedling Responses to Drought, Biotropica, 39(6): 683-690, 2007.
doi: 10.1111/j.1744-7429.2007.00328.x

Smith AP, Hogan KP, Idol JR. Spatial and temporal patterns of light and canopy structure in a lowland tropical moist forest,
Biotropica, 24(4): 503-511, 1992.
doi: 10.2307/2389012

Sullivan NH, Bolstad PV, Vose JM. Estimates of net photosynthetic parameters for twelve tree species in mature forests of the southern Appalachians, Tree Physiology, 16(4): 397-406, 1996.
doi: 10.1093/treephys/16.4.397

Uhl C, Clark K, Dezzeo N, Maquirino P. Vegetation dynamics in Amazonian treefall gaps, Ecology, 69(3): 751-763, 1988.
doi: 10.2307/1941024

Valladares F, Allen MT, Pearcy RW. Photosynthetic responses to dynamic light under field conditions in six tropical rainforest shrubs occurring along a light gradient, Oecologia, 111(4): 505- 514, 1997.
doi: 10.1007/s004420050264

Valladares F, Wright SJ, Lasso E, Kitajima K, Pearcy RW. Plastic phenotypic response to light of 16 congeneric shrubs from a
Panamanian rainforest, Ecology, 81(7): 1925-1936, 2000.
doi: 10.1890/0012-9658(2000)081[1925:PPRTLO]2.0.CO;2

Van Der Meer PJ, Sterck FJ, Bongers F. Tree seedling performance in canopy gaps in a tropical rain forest at Nouragues, French Guiana, Journal of Tropical Ecology, 14(2): 119-137, 1998.
doi: 10.1017/S026646749800011X

Vázquez-Yanes C, Smith H. Phytochrome control of seed germination in the tropical rain forest pioneer trees Cecropia
obtusifolia and Piper auritum and its ecological significance, New Phytologist, 92(4): 477-485, 1982.
doi: 10.1111/j.1469-8137.1982.tb03405.x

Wagner S, Fischer H, Huth F. Canopy effects on vegetation caused by harvesting and regeneration treatments, European Journal of Forest Research, 130(1), 17-40, 2011.
doi: 10.1007/s10342-010-0378-z

Whitmore TC. Canopy gaps and the two major groups of forest trees, Ecology, 70(3): 536-538, 1989.
doi: 10.2307/1940195

Whitmore TC. An introduction to tropical rain forests. 2nd edition. Oxford University Press, New York, 1998.

Wright JS, Muller-Landau HC, Condit R, Hubbell SP. Gapdependent recruitment, realized vital rates, and size distributions
of tropical trees, Ecology, 84(12): 3174-3185, 2003.
doi: 10.1890/02-0038

WWF. Amazonia viva, una década de descubrimientos: 1999-2009.

WWF-Brasil, 2010.

Yu O, Goudriaan J, Wang TD. Modelling diurnal courses of photosynthesis and transpiration of leaves on the basis of
stomatal and non-stomatal responses, including photoinhibition, Photosynthetica, 39(1): 43-51, 2001.
doi: 10.1023/A:1012435717205
How to Cite
Ramos-Montaño, C., Vanegas-Cano, L. J., Cárdenas-Avella, N. M., Pulido-Herrera, K. L., & Buitrago-Puentes, S. P. (2020). Diurnal physiological behavior of seedlings in the Amazon rainforest: generalist versus specialist species of shade and sun. Universitas Scientiarum, 25(3), 489–516. https://doi.org/10.11144/Javeriana.SC25-3.dpbo
Section
Plant Biology