Published Oct 15, 2022



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Luz Marina Baena

Gloria Edith Guerrero-Álvarez

Maria Camila Giraldo-González

##plugins.themes.bootstrap3.article.details##

Abstract

Silk fibroin (SF) is a biomacromolecule composed of proteins with properties, such as biocompatibility, biodegradability, and low immunogenicity. Thus, Silk fibroin nanoparticles (FNps) overcome the disadvantages of non-degradable synthetic nanoparticles. We studied the structural and thermal properties of SF and FNps from Bombyx mori L. cross-breed Pilamo I cocoons. Raw fibroin (RF) was obtained using a sodium Na2CO3 solution as part of an experimental design to improve extraction, and FNps were obtained by denaturing RF with a ternary solution of CaCl2:H2O:CH3CH2OH, followed by precipitation using an anti-solvent method with propanol. Pilamo I cocoon, RF, and FNps were characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy
(SEM), and elemental chemical analysis of energy dispersive X-rays (EDS). The Light Scattering (DLS) and the thermal properties of RF and FNps were studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The FTIR results showed that sericin-free raw fibroin was obtained, and the SEM results showed that the nanometer-sized particles had a globular structure and apparent porosity. The differences in the enthalpy of the crystallization peaks in the DSC and TGA curves showed that the FNps had higher thermal stability than RF fibers. This result furthers the development of alternative materials as vehicles of active compounds from natural extracts.

Keywords

fibroin, nanoparticles, FTIR, SEM, thermogravimetric analysis

References
Chelazzi D, Badillo D, Giorgi R, Cincinelli P, Cincinelli A, Banglioni P. Self-Regenerated Silk Fibroin with Controlled Crystallinity for the Reinforcement of Silk, Journal of Colloid and Interface Science, 576: 230–40, 2020.
doi: 10.1016/j.jcis.2020.04.114

Cifuentes C. Manual Técnico de Sericultura, 1st ed. Fondo editorial de Risaralda, Pereira, 1999.

Daithankar V, Padamwar M, Pisal S, Mahadik K. Moisturizing Efficiency of Silk Protein Hydrolysate: Silk Fibroin, Indian Journal of Biotechnology, 4(1): 115–21, 2005.

Chen, Porter D, Vollrath F. Silk Cocoon (Bombyx Mori): Multi-Layer Structure and Mechanical Properties, Acta Biomaterialia, 8: 2620–27, 2012.
doi: 10.1016/j.actbio.2012.03.043

Faraji J, Sepehri A. Titanium Dioxide Nanoparticles and Sodium Nitroprusside Alleviate the Adverse Effects of Cadmium Stress on Germination and Seedling Growth of Wheat (Triticum Aestivum L.). Universitas Scientiarum, 23(1): 61–87, 2018.
doi: 10.11144/Javeriana.SC23-1.tdna

Gregory D, Kumar P, Jimenez A, Zhang Y, Ebbens S, Zhao X. Reactive Inkjet Printing and Propulsion Analysis of Silk-Based Self-Propelled Micro-Stirrers, Journal of Visualized Experiments, (146): 1–10, 2019.
doi: 10.3791/59030

Mohammad H, Ramkumar S. Functionalized Nanofibers for Advanced Applications, Indian Journal of Fibre and Textile Research, 31(1): 41–51, 2006.

Jaramillo N, Álvarez C, Restrepo A. Structural and Thermal Properties of Silk Fibroin Films Obtained from Cocoon and Waste Silk Fibers as Raw Materials, Procedia Engineering, 200: 384–88, 2017.
doi: 10.1016/j.proeng.2017.07.054

Kim H, Song D, Kim M, Ryu S, Um I, Ki C, Park Y. Effect of Silk Fibroin Molecular Weight on Physical Property of Silk Hydrogel, Polymer, 90: 26–33, 2016.
doi: 10.1016/j.polymer.2016.02.054

Koh L, Cheng Y, Teng C, Khin Y, Loh X, Tee S, Low M, Ye E, Yu H, Zhang Y, Han M. Structures, Mechanical Properties and Applications of Silk Fibroin Materials, Progress in Polymer Science, 46: 86–110, 2015.
doi: 10.1016/j.progpolymsci.2015.02.001

Koperska M, Pawcwnis D, Bagniuk M, Zaitz M, Missori M, Lojewski T, Lojewska J. Degradation Markers of Fibroin in Silk through Infrared Spectroscopy, Polymer Degradation and Stability, 105(1): 185–96, 2014.
doi: 10.1016/j.polymdegradstab.2014.04.008

Liu B, Song Y, Jin L, Wang Z, Pu D, Lin S, Zhou C, You H, Ma Y, Li Y, Sung P, Zhang Y. Silk Structure and Degradation, Colloids and Surfaces B: Biointerfaces, 131: 122–28, 2015.
doi: 10.1016/j.colsurfb.2015.04.040

Loganathan S, Babu V, Mishra R, Pugazhenthi G, Thomas S. Thermogravimetric Analysis for Characterization of Nanomaterials, Thermal and Rheological Measurement Techniques for Nanomaterials Characterization, 67–108, 2017.
doi: 10.1016/B978-0-323-46139-9.00004-9

Lozano A, Correa H, Pérez M, Pagan A, Montalban M, Villora G, Cénis J. Silk Fibroin Nanoparticles: Efficient Vehicles for the Natural Antioxidant Quercetin, International Journal of Pharmaceutics, 518(1–2): 11–19, 2017.
doi: 10.1016/j.ijpharm.2016.12.046

Ma D, Yansong W, Wenjie D. Silk Fibroin-Based Biomaterials for Musculoskeletal Tissue Engineering, Materials Science and Engineering, C 89(23): 456–69, 2018.
doi: 10.1016/j.msec.2018.04.062

Mollahosseini H, Fashandi H, Khoddami Akbar, Zarrebini M, Nikukar H. Recycling of Waste Silk Fibers towards Silk Fibroin Fibers with Different Structures through Wet Spinning Technique, Journal of Cleaner Production, 236: 117653, 2019.
doi: 10.1016/j.jclepro.2019.117653

Montalbán M. Propiedades de Líquidos Iónicos y Su Aplicación a La Síntesis de Nanopartículas, Tesis Doctoral, Universidad de Murcia, 2016.
http://hdl.handle.net/10803/399283

Niu S, William G, Wu J, Zharing X, Zheng H, Li S, Zhu L. A Novel Chitosan-Based Nanomedicine for Multi-Drug Resistant Breast Cancer Therapy, Chemical Engineering Journal, 369: 134–49, 2019.
doi: 10.1016/j.cej.2019.02.201

Qu J, Liu Y, Yu Y, Li J, Luo J, Li M. Silk Fibroin Nanoparticles Prepared by Electrospray as Controlled Release Carriers of Cisplatin, Materials Science and Engineering, C 44: 166–74, 2014.
doi: 10.1016/j.msec.2014.08.034

Tudora M, Zaharia C, Stancu I, Vasile E, Truca R, Cincu C. Natural Silk Fibroin Micro- and Nanoparticles with Potential Uses in Drug Delivery Systems, UPB Scientific Bulletin, Series B: Chemistry and Materials Science, 75(1): 43–52, 2013.

Wenk E, Merkle H, Meinel L. Silk Fibroin as a Vehicle for Drug Delivery Applications, Journal of Controlled Release, 150(2): 128–41, 2011.
doi: 10.1016/j.jconrel.2010.11.007

Wu M, Zhu L, Zhou Z, Zhang Y. Coimmobilization of Naringinases on Silk Fibroin Nanoparticles and Its Application in Food Packaging, Journal of Nanoparticles, 1–5, 2013.
doi: 10.1155/2013/901401

Xie M, Li Y, Zhao Z, Chen A, Li J, Hu J. Solubility Enhancement of Curcumin via Supercritical CO2 Based Silk Fibroin Carrier, Journal of Supercritical Fluids, 103: 1–9, 2015.
doi: 10.1016/j.supflu.2015.04.021

Xu Z, Shi L, Yang M, Zhu L. Preparation and Biomedical Applications of Silk Fibroin- Nanoparticles Composites with Enhanced Properties, A Review, Materials Science and Engineering, C 95: 302–11, 2019.
doi: 10.1016/j.msec.2018.11.010

Yadav D, Kumar N. Nanonization of Curcumin by Antisolvent Precipitation: Process Development, Characterization, Freeze Drying and Stability Performance, International Journal of Pharmaceutics, 477(1–2): 564–77, 2014.
doi: 10.1016/j.ijpharm.2014.10.070

Zhang Y, Shen W, Xiang R, Zhunge L, Gag W, Wang W. Formation of Silk Fibroin Nanoparticles in Water-Miscible Organic Solvent and Their Characterization, Journal of Nanoparticle Research, 9(5): 885–900, 2007.
doi: 10.1007/s11051-006-9162-x

Zhao Z, Li Y, Xie M. Silk Fibroin-Based Nanoparticles for Drug Delivery, International Journal of Molecular Sciences, 16(3): 4880–4903, 2015.
doi: 10.3390/ijms16034880
How to Cite
Baena, L. M., Guerrero-Álvarez, G. E., & Giraldo-González, M. C. (2022). Preparation and characterization of fibroin nanoparticles obtained from Bombyx mori L. Pilamo 1 cocoons. Universitas Scientiarum, 27(3), 275–290. https://doi.org/10.11144/Javeriana.SC273.pacof
Section
Chemistry