Published Sep 6, 2022



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Daniel Restrepo Santamaria

Andrés Felipe Navia

Jaime Palacio

Luz Fernanda Jiménez-Segura

##plugins.themes.bootstrap3.article.details##

Abstract

Construction of dams for hydropower in Andean rivers of Colombia is increasing loss of species of the region. Fish species that persist in these artificial ecosystems are those which find favorable the new conditions for their recruitment. Because feeding is one of the fish life strategies that influence their persistence in reservoirs, we analyzed the stomach contents of the species present in two cascade reservoirs in the Magdalena river basin. The objectives were to describe the diet, to determine their feeding strategies and to evaluate if the rainy season or spatial distribution affects the diet of the fish species. Our results indicate that the fish species Brycon henni and Astyanax microlepis that feed on a wide range of resources that the system offers and adopt a generalist strategy. Also, opportunistic species such as Roeboides dayi and Hoplosternum magdalenae occupied these environments. Climatic seasonality does not influence the feeding habits of the fish species inhabiting the study reservoirs. Knowledge of the feeding habits of fish species is a priority for strengthening the environmental management of aquatic resources of the Andes.

Keywords

Neotropical fish, freshwater fish diet, andean rivers, generalist strategy

References
[1] Opperman J, Hartmann J, Raepple J, Angarita H, Beames P, Chapin E, Geressu R, Grill G, Harou J, Hurford A, Kammen D, Kelman R, Martin E, Martins T, Peters R, Rogéliz C, Shirley R. The Power of Rivers: A Business Case. The Nature Conservancy, Washington, D.C. 2017.
URL: https://www.seforall.org/sites/default/files/powerofriversreport_final1.pdf

[2] Finer M, Jenkins CN. Proliferation of hydroelectric dams in the Andean amazon and implications for Andes-amazon connectivity. PLoS ONE, 7(4): 1–9, 2012.
doi: 10.1371/journal.pone.0035126

[3] Miranda LE, Coppola G, Boxrucker J. Reservoir Fish Habitats: A Perspective on Coping with Climate Change. Reviews in Fisheries Science and Aquaculture, 28(4): 478–498, 2020.
doi: 10.1080/23308249.2020.1767035

[4] Jiménez-Segura L, Restrepo-Santamaría D, López-Casas S, Delagado J, Valderrama M, Álvarez J, Gómez D. Ictiofauna y desarrollo del sector hidroeléctrico en la cuenca del río Magdalena - Cauca, Colombia. Biota Colombiana, 15(2): 3–25, 2014.
URL: http://revistas.humboldt.org.co/index.php/biota/article/view/317

[5] Liermann CR, Nilsson C, Robertson J, Ng RY. Implications of dam obstruction for global freshwater fish diversity. BioScience, 62(6): 539–548, 2012.
doi: 10.1525/bio.2012.62.6.5

[6] Carvajal-Quintero JD, Januchowski-Hartley SR, Maldonado-Ocampo JA, Jézéquel C, Delgado J, Tedesco PA. Damming Fragments Species’ Ranges and Heightens Extinction Risk. Conservation Letters, 10(6): 708–716, 2017.
doi: 10.1111/conl.12336

[7] Hahn NS, Fugi R. Alimentação de peixes em reservatórios brasileiros: alterações e conseqüências nos estágios iniciais do represamento. Oecologia Brasiliensis, 11(04): 469–480, 2007.
doi: 10.4257/oeco.2007.1104.01

[8] Winemiller KO, Agostinho AA, Pellegrini-Caramaschi E. Fish Ecology in Tropical Streams. Tropical Stream Ecology: 107–146, 2008.

[9] Montaña CG, Layman CA, Winemiller KO. Gape size influences seasonal patterns of piscivore diets in three Neotropical rivers. Neotropical Ichthyology, 9(3): 647–655, 2011.
doi: 10.1590/S1679-62252011005000028

[10] Jiménez-Segura L, Galvis-Vergara G, Cala-Cala P, García-Alzate C, López-Casas S, Ríos- Pulgarín M, Arango G, Mancera Rodríguez N, Gutiérrez-Bonilla F, Álvarez-León R. Freshwater fish faunas, habitats and conservation challenges in the Caribbean river basins of north-western South America. Journal of Fish Biology, 89(1): 65–101, 2016.
doi: 10.1111/jfb.13018

[11] Pouilly M, Barrera S, Rosales C. Changes of taxonomic and trophic structure of fish assemblages along an environmental gradient in the Upper Beni watershed (Bolivia), Journal of Fish Biology, 68(1): 137–156, 2006.
doi: 10.1111/j.0022-1112.2006.00883.x

[12] Gandini CV, Sampaio FAC, Pompeu PS. Hydropeaking effects of on the diet of a Neotropical fish community. Neotropical Ichthyology, 12(4): 795–802, 2014.
doi: 10.1590/1982-0224-20130151

[13] De Mérona B, Vigouroux R, Horeau V. Changes in food resources and their utilization by fish assemblages in a large tropical reservoir in South America (Petit-Saut Dam, French Guiana). Acta Oecologica, 24(3): 147–156, 2003.
doi: 10.1016/S1146-609X(03)00065-1

[14] Loureiro-Crippa VE, Hahn NS. Use of food resources by the fish fauna of a small reservoir (rio Jordão, Brazil) before and shortly after its filling. Neotropical Ichthyology, 4(3): 357–362, 2006.
doi: 10.1590/s1679-62252006000300007

[15] Delariva RL, Hahn NS, Kashiwaqui EAL. Diet and trophic structure of the fish fauna in a subtropical ecosystem: Impoundment effects. Neotropical Ichthyology, 11(4): 891–904, 2013.
doi: 10.1590/S1679-62252013000400017

[16] Tognelli MF, Anderson EP, Jiménez-Segura L, Chuctaya J, Chocano L, Maldonado-Ocampo JA, Mesa-Salazar L, Mojica JI, Carvajal-Vallejos FM, Correa V, Ortega H, Rivadeneira Romero JF, Sánchez-Duarte P, Cox NA. Hidalgo M, Jiménez Prado P, Lasso CA, Sarmiento J, Velásquez MA, Villa-Navarro FA. Assessing conservation priorities of endemic freshwater fishes in the Tropical Andes region. Aquatic Conservation: Marine and Freshwater Ecosystems, 29(7): 1123–1132, 2019.
doi: 10.1002/aqc.2971

[17] Braga RR, Bornatowski H, Vitule JRS. Feeding ecology of fishes: An overview of worldwide publications. Reviews in Fish Biology and Fisheries, 22(4): 915–929, 2012.
doi: 10.1007/s11160-012-9273-7

[18] Anderson EP, Maldonado-Ocampo JA. A regional perspective on the diversity and conservation of tropical Andean fishes, Conservation Biology, 25(1): 30–39, 2011.
doi: 10.1111/j.1523-1739.2010.01568.x

[19] Mojica J, Usma J, Alvarez R, Lasso C. Libro rojo de peces dulciacuícolas de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Instituto de Ciencias Naturales de la Universidad Nacional de Colombia, WWF Colombia y Universidad de Manizales. Bogotá, D. C., Colombia, 2012.
URL: http://humboldt.org.co/es/estado-de-los-recursos-naturales/item/1161-libro-rojo-peces-dulceacuicolas-colombia

[20] Jaramillo-Villa U, Maldonado-Ocampo JA, Escobar F. Altitudinal variation in fish assemblage diversity in streams of the central Andes of Colombia. Journal of Fish Biology, 76(10): 2401–2417, 2010.
doi: 10.1111/j.1095-8649.2010.02629.x

[21] DoNascimiento C, Villa Navarro FA, Albornoz Garzón J, Herrera Collazos E. Checklist of the freshwater fishes of Colombia. v. 2.12. Asociación Colombiana de Ictiólogos. Dataset/Checklist. 2020.
doi: 10.15472/numrso

[22] Álvarez-Bustamante J, Jaramillo-Villa Ú, Jiménez-Segura LF. Ictiofauna de embalses en cascada en el cauce de un río tropical andino. Actualidades Biológicas, 40(108): 46–58, 2018.
doi: 10.17533/udea.acbi.v40n108a05

[23] Silva-Arroyave SM. Evaluación de la calidad del agua del futuro Embalse Porce III por la influencia de la descarga del Embalse Porce II: Modelo de simulación de calidad del agua del futuro embalse Porce III. Revista Ingenierías Universidad de Medellín, 7(13): 21–37, 2011.
URL: https://revistas.udem.edu.co/index.php/ingenierias/article/view/193

[24] Javahery S, Nekoubin H, Moradlu AH. Effect of anaesthesia with clove oil in fish (review). Fish Physiology and Biochemistry, 38(6): 1545–1552, 2012.
doi: 10.1007/s10695-012-9682-5

[25] Hyslop EJ. Stomach contents analysis-a review of methods and their application. Journal of Fish Biology, 17: 411–442, 1980.

[26] Ferry LA, Cailliet GM. Sample size and data analysis: are we characterizing and comparing
diet properly? Gutshop, 96: 71–80, 1996.

[27] Cortés E. A critical review of methods of studying fish feeding based on analysis of stomach contents: application to elasmobranch fishes. Canadian Journal of Fisheries and Aquatic Sciences, 54(3): 726–738, 1997.
doi: 10.1139/cjfas-54-3-726

[28] Colwell RK, Chao A, Gotelli NJ, Lin SY, Mao CX, Chazdon RL, Longino JT. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. Journal of Plant Ecology, 5(1): 3–21, 2012.
doi: 10.1093/jpe/rtr044

[29] Zar JH. Biostatistical analysis (Fifth). New Jersey, Prentice Hall, Inc. 2010

[30] Bizzarro JJ, Robinson HJ, Rinewalt CS, Ebert DA. Comparative feeding ecology of four sympatric skate species off central California, USA. Environmental Biology of Fishes, 80(2–3): 197–220, 2007.
doi: 10.1007/s10641-007-9241-6

[31] Magurran A. Measuring Biologcial Diversity. In Blackwell Publishing. 2004.

[32] Amundsen P. A new approach to graphical analysis of feeding strategy from stomach contents data—modification of the Costello (1990) method. Journal of Fish Biology, 48(4): 607–614, 1996.
doi: 10.1006/jfbi.1996.0060

[33] Clarke KR. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18: 117–143, 1993.

[34] Gordi T, Khamis H. Simple solution to a common statistical problem: Interpreting multiple tests. Clinical Therapeutics, 26(5): 780–786, 2004.
doi: 10.1016/S0149-2918(04)90078-1

[35] Hammer Ø, Harper DAT, Ryan PD. PAST : Paleontological Statistics Software Package for Education and Data Analysis PAST. Palaeontologia Electronica, 4(1): 9 ,2001.
URL: https://palaeo-electronica.org/2001_1/past/issue1_01.html

[36] Wootton RJ. Ecology of teleost fishes. Dordrecht: Kluwer Academic Publishers. 1998

[37] Ortaz M. Habitos alimenticios de los peces de un río de montaña. Neotropical. Biotropica, 24(4): 550, 1992.
doi: 10.2307/2389019

[38] Ramírez A, Pinilla G. Trophic habits, morphometry and gonadal status of five fish species in different climatic periods at the Río Sogamoso (Santander, Colombia). Acta Biológica Colombiana, 17(2): 241–258, 2012.

[39] Gaspar da Luz KD, Fugi R, Abujanra F, Agostinho A. Alterations in the Pterodoras granulosus
(Valenciennes, 1833) (Osteichthyes, Doradidae) diet due to the abundance variation of abivalve invader species in the Itaipu Reservoir, Brazil. Acta Scientiarum, 24(2): 427–432, 2002.

[40] Herrera-Pérez J, Parra JL, Restrepo-Santamaría D, Jiménez-Segura LF. The influence of abiotic environment and connectivity on the distribution of diversity in an Andean fish fluvial network. Frontiers in Environmental Science, 7:9, 2019.
doi: 10.3389/fenvs.2019.00009

[41] Maldonado-Ocampo JA, Ortega-Lara JS, Usma-Oviedo G, Galvis-Vergara, Villa-Navarro FA, Vásquez Gamboa L, Prada-Pedreros S, Ardila Rodríguez C. Peces de los Andes de Colombia. Instituto de investigación de recursos biológicos Alexander von Humboldt. Bogotá, D.C.-Colombia. 2005.
URL: http://repository.humboldt.org.co/handle/20.500.11761/32534

[42] García Alzate RJ, García-Alzate C, Botero-Botero A. Composición, estacionalidad y hábitat de los peces de la quebrada Cristales, afluente del Río la Vieja, Alto Cauca, Colombia. Revista de Investigaciones Universidad del Quindío, 19: 115–121, 2009.

[43] Román-Valencia C, Ruiz-C RI, Giraldo A. Dieta y reproducción de dos especies sintópicas: Hemibrycon boquiae y Bryconamericus caucanus (Pisces: Characidae) en la quebrada Boquía, río Quindío, Alto Cauca, Colombia. Revista Del Museo Argentino de Ciencias Naturales, 1: 55–62, 2008.
doi: 10.22179/REVMACN.10.292

[44] Botero-Botero A, Ramírez-Castro H. Ecología trófica de la Sabaleta Brycon henni (Pisces: Characidae) en el río Portugal de Piedras, Alto Cauca, Colombia. Revista MVZ Cordoba, 16(1): 2349–2355, 2011.
doi: 10.21897/rmvz.293

[45] Nico LG, de Morales M. Nutrient content of piranha (Characidae, Serrasalminae) prey items. Copeia, 2: 524–528, 1994.
doi: 10.2307/1447004

[46] Sazima I. Scale-eating in characoids and other fishes. Environmental Biology of Fishes, 9(2):
87–101, 1983.
doi: 10.1007/BF00690855

[47] Ortaz M, Cano S, González E, Peñaherrera C. Dieta de Roeboides Dayi (Pisces: Characidae) en un embalse Neotropical de Venezuela. Acta Biologica Venezuelica 23(1): 15–22, 2003.

[48] Peterson CC, Winemiller KO. Ontogenic diet shifts and scale-eating in Roeboides dayi, a Neotropical characid. Environmental Biology of Fishes, 49(1): 111–118, 1997.
doi: 10.1023/A:1007353425275

[49] Hernández-Serna A, Granado-Lorencio C, Jiménez-Segura L. Diel cycle size-dependent trophic structure of neotropical fishes: a three year case analysis from 35 floodplain lakes in Colombia. Journal of Applied Ichthyology, 31: 638–645, 2015.
doi: 10.1111/jai.12748

[50] De Mérona B, Vigouroux R. Diet changes in fish species from a large reservoir in South America and their impact on the trophic structure of fish assemblages (Petit-Saut Dam, French Guiana). Annales de Limnologie, 42(1): 53–61, 2006.
doi: 10.1051/limn/2006006

[51] Agostinho AA, Pelicice FM, Gomes LC. Dams and the fish fauna of the Neotropical region: Impacts and management related to diversity and fisheries. Brazilian Journal of Biology, 68(4 suppl.): 1119–1132, 2008.
doi: 10.1590/S1519-69842008000500019

[52] Winemiller KO, Jepsen DB. Effects of seasonality and fish movement on tropical river food webs. Journal of Fish Biology, 53: 267–296, 1998.
doi: 10.1111/j.1095-8649.1998.tb01032.x

[53] Lowe-McConnell RH. Estudos ecologicos de comunidades de peixes tropicais. São Paulo Edusp. 1999.
How to Cite
Restrepo Santamaria, D. ., Navia, A. F., Palacio, J., & Jiménez-Segura, L. F. (2022). Feeding strategy of fish that colonize reservoirs in the Magdalena river basin. Universitas Scientiarum, 27(3), 234–252. https://doi.org/10.11144/Javeriana.SC273.fsof
Section
Ecology