Published Aug 28, 2018



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Leonardo Solanilla

William O Clavijo

Yessica P Velasco

##plugins.themes.bootstrap3.article.details##

Abstract

The Cartesian-Newtonian paradigm of mechanics establishes that, within an inertial frame, a body either remains at rest or moves uniformly on a line, unless a force acts externally upon it. This crucial assertion breaks down when the classical concepts of space, time and measurement reveal to be inadequate. If, for example, the space is non-flat, an effective translation might occur from rest in the absence of external applied force. In this paper we examine mathematically the motion of a small object or lizard on an arbitrary curved surface. Particularly, we allow the lizard’s shape to undergo a cyclic deformation due exclusively to internal forces, so that the total linear momentum is conserved. In addition to the fact that the deformation produces a swimming event, we prove –under fairly simplifying assumptions that such a translationis some what directly proportional to the Gauss curvature of the surface at the point where the lizardlies.

Keywords

Non-Euclidean Differential Geometry, Local Riemannian Geometry, Lagrangian Formalism, Equations of Motion.

References
Atkins R. The Lie Algebra of Local Killing Fields, The Open Mathematics Journal, 4: 5-11, 2011.
doi: 10.2174/1874117701104010005


Blau SK. The Force Need Not Be with You: Curvature Begets Motion, Physics Today, 56: 6-21, 2003.
doi: 10.1063/1.1595043

Avron JE, Kenneth O. Swimming in curved space or the Baron and the cat, New Journal of Physics, 8: 2-15, 2006.
doi: 10.1088/1367-2630/8/5/068

Cherman A, Delgado J, Duda F, Ehlers K, Koiller J, Montgomery R. Low Reynolds Number Swimming in Two Dimensions, World Scientific Monograph Series in Mathematic Hamiltonian Systems and Celestial Mechanics, 1: 32-62, 2000.
doi: 10.1142/9789812792099_0003

Gauss CF. Allgemeine Auflösung der Aufgabe: die Theile einer gegebnen Fläche auf einer andern gegenen Fläche so abzubilden, dass die Abbildung dem Abgebildeten in den kleinsten Theilen
ähnlich ist. (Copenhagen: Die königlichen Socitetät der Wissenschaften), SLUB Wir führen Wissen, 1822.
Retrieved from http://digital.slub-dresden.de/werkansicht/dlf/29517/1/

Littlejohn RG, Reinsch M. Gauge fields in the separation of rotations and internal motions in the n-body problem, Reviews of Modern Physics, 69(1): 213-276, 1997.
doi: 10.1103/revmodphys.69.213

Shapere A, Wilczek F. Geometry of self-propulsion at low Reynolds number, Journal of Fluid Mechanics, 198: 557-585,1989.
doi: 10.1017/S002211208900025X

Stoker JJ. Differential Geometry. New York: Wiley, 1989.
doi: 10.1002/9781118165461

Wisdom J. Swimming in Spacetime: Motion by Cyclic Changes in Body Shape, Science, 299(5614): 1865-1869, 2003.
doi: 10.1126/science.1081406
How to Cite
Solanilla, L., Clavijo, W. O., & Velasco, Y. P. (2018). Swimming in Curved Surfaces and Gauss Curvature. Universitas Scientiarum, 23(2), 319–331. https://doi.org/10.11144/Javeriana.SC23-2.sics
Section
Mathematics and Statistics