Published Jul 23, 2020



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Frank Ramírez-Rodríguez https://orcid.org/0000-0002-9520-2910

Betty López https://orcid.org/0000-0002-5564-9531

##plugins.themes.bootstrap3.article.details##

Abstract

Cobalt and iron MCM-41 catalysts were synthesized through an in-situ incorporation process starting from commercial iron and cobalt nitrates. The incorporation was confirmed by diffuse reflectance UV spectroscopy (DRS-UV) inspecting the cobalt and iron silicate-like photon absorption features and comparing with pure MCM-41-Co and MCM-41-Fe catalysts. Additionally it was found that the incorporation of cobalt and iron does not compromise the mesoporous structure of MCM-41 as confirmed by N2 adsorption isotherms. All catalysts showed high surface areas (∼1100 m2g−1). Catalysts performance was conducted in a simple methane chemical vapor deposition (CVD) set up at 800 °C to produce single wall carbon nanotubes (SWCNT) under a constant flow of methane for 30 min. CVD products were characterized by thermogravimetric analysis (TGA) and Raman spectroscopy, finding that the iron content in the catalysts favors the selectivity and yield of graphitic-like structures, and confirming the presence of SWCNT by the appearance of a characteristic radial breathing mode (RBM) signals. These results were supported by Density Functional Theory (DFT) simulations of the methane dissociation (CH4 +TM → H3C –TMH) over Con (n = 1–5) and ComFe (m = 1–4), finding a different activation energy trend where ComFe (m = 1–4) clusters have the lower activation energy. The DFT study also revealed a charge difference (δC − δTM) higher in the case of dissociation over ComFe (m = 1–4) which may lead to an electrostatic stabilization of the transition metal, diminishing the activation energy of those clusters and leading to a faster carbon uptake.

Keywords

DFT, Raman, SWCNT, UV-Vis

References
[1] MS Dresselhaus, G Dresselhaus, JC Charlier, E Hernandez. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 362(1823): 2065-2098, 2004.
doi: 10.1098/rsta.2004.1430

[2] Prabhakar R Bandaru. Journal of Nanoscience and Nanotechnology, 7(4): 1239-1267, 2007.
doi: 10.1166/jnn.2007.307

[3] M Cadek, JN Coleman, KP Ryan, V Nicolosi, G Bister, A Fonseca, JB Nagy, K Szostak, F Béguin, WJ Blaut. Nano Letters, 4(2): 353-356, 2004.
doi: 10.1021/NL035009O

[4] Erik T Thostenson, Zhifeng Ren, Tsu-Wei Chou. Composites Science and Technology, 61(13): 1899-1912, 2001. doi: 10.1016/S0266-3538(01)00094-X

[5] Min-Feng Yu, Bradley S Files, Sivaram Arepalli, Rodney S Ruoff. Physical Review Letters, 84(24): 5552-5555, 2000.
doi: 10.1103/PhysRevLett.84.5552

[6] AR Tameev, L Licea Jiménez, L Ya Pereshivko, RW Rychwalski, AV Vannikov. Journal of Physics: Conference Series, 61(1): 1152- 1156, 2007.
doi: 10.1088/1742-6596/61/1/228

[7] Shenqiang Ren, Marco Bernardi, Richard R Lunt, Vladimir Bulovic, Jeffrey C Grossman, Silvija Gradečak. Nano letters,
doi: 10.1021/nl202796u

[8] Tom Grace, LePing Yu, Christopher Gibson, Daniel Tune, Huda Alturaif, Zeid Al Othman, Joseph Shapter. Nanomaterials, 6(3): 52, 2016.
doi: 10.3390/nano6030052

[9] T Du, SA Getty, Enrique Cobas, MS Fuhrer, T Dürkop, SA Getty, Enrique Cobas, MS Fuhrer. Extraordinary Mobility in Semiconducting Carbon Nanotubes. Nano Letters, 4(1): 35-39, 2003.
doi: 10.1021/nl034841q

[10] Rebecca S Park, Gage Hills, Joon Sohn, Subhasish Mitra, Max M. Shulaker, H-S PhilipWong. ACS Nano, 11(5): 4785-4791, 2017.
doi: 10.1021/acsnano.7b01164

[11] Jing Kong, Alan M Cassell, Hongjie Dai. Chemical Physics Letters, 292(4-6): 567-574, 1998.
doi: 10.1016/S0009-2614(98)00745-3

[12] Li Wei, Shihe Bai, Wenkuan Peng, Yang Yuan, Rongmei Si, Kunli Goh, Rongrong Jiang, Yuan Chen. Carbon, 66: 134-143, 2014.
doi: 10.1016/j.carbon.2013.08.051

[13] D Ciuparu, Y Chen, S Lim, GL Haller, L Pfefferle. Journal of Physical Chemistry B, 108(2): 503-507, 2004.
doi: 10.1021/jp036453i

[14] Bartosz Kruszka, Artur P. Terzyk, L.M. Hoyos-Palacio, Ag García, JF Pérez-Robles, J González, HV Martínez Tejada. IOP Conference Series: Materials Science and Engineering, 59(1): 012005, 2014.

[15] Yoshikazu Homma, Yoshiro Kobayashi, Toshio Ogino, Daisuke Takagi, Roichi Ito, Yung Joon Yj Yung Joon Jung, Pulickel M Pm Ajayan. The Journal of Physical Chemistry B, 107(44): 12161-12164,2003.
doi: 10.1021/jp0353845

[16] Codruta Zoican Loebick, Darlington Abanulo, Magda Majewska, Gary L Haller, Lisa D Pfefferle. Effect of reaction temperature in the selective synthesis of single wall carbon nanotubes (SWNT) on a bimetallic CoCr-MCM-41 catalyst. Applied Catalysis A: General, 374(1-2): 213-220, 2010.
doi: 10.1016/j.apcata.2009.12.010

[17] Yiming Li, Woong Kim, Yuegang Zhang, Marco Rolandi, Dunwei Wang, and Hongjie Dai. Growth of single walled carbon nanotubes from discrete catalytic nanoparticles of various sizes. Journal of Physical Chemistry B, 105(46): 11424-11431, 2001.
doi: 10.1021/jp012085b

[18] László Vanyorek, Danilo Loche, Hajnalka Katona, Maria Francesca Casula, Anna Corrias, Zoltán Kónya, Ákos Kukovecz, Imre Kiricsi. Optimization of the catalytic chemical vapor deposition synthesis of multiwall carbon nanotubes on FeCo(Ni)/SiO2 aerogel catalysts by statistical design of experiments. Journal of Physical Chemistry C, 115(13): 5894-5902, 2011.
doi: 10.1021/jp111860x

[19] Codruta Zoican Loebick, Sungchul Lee, Salim Derrouiche, Mark Schwab, Yuan Chen, Gary L Haller, Lisa Pfefferle. Journal of Catalysis, 271: 358-369, 2010.
doi: 10.1016/j.jcat.2010.02.021

[20] Frank Neese. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2(1): 73-78, 2012.
doi: 10.1002/wcms.81

[21] Ansgar Schäfer, Christian Huber, Reinhart Ahlrichs. The Journal of Chemical Physics, 100(8): 5829-5835, 1994.
doi: 10.1063/1.467146

[22] Cynthia J Jameson, Angel C. de Dios. The Journal of Chemical Physics, 97(1): 417-434, 1992.
doi: 10.1063/1.463586

[23] Carlo Adamo, Vincenzo Barone. Journal of Chemical Physics, 110(13): 6158-6170, 1999.
doi: 10.1063/1.478522

[24] Stephen Brunauer, PH Emmett, Edward Teller. Journal of the American Chemical Society, 60(1): 309-319, 1938.
doi: 10.1021/ja01269a023

[25] Elliott P Barrett, Leslie G Joyner, Paul P Halenda. Journal of the American Chemical Society, 73(1): 373-380, 1951.
doi: 10.1021/ja01145a126

[26] MD Donohue, GL Aranovich. Advances in Colloid and Interface Science, 76-77: 137-152, 1998.
doi: 10.1016/S0001-8686(98)00044-X

[27] Sangyun Lim, Dragos Ciuparu, Chanho Pak, Frank Dobek, Yuan Chen, David Harding, Lisa Pfefferle, Gary Haller. The Journal of Physical Chemistry B, 107(40): 11048-11056, 2003.
doi: 10.1021/jp0304778

[28] XS Zhao, GQ Lu, AK Whittaker, GJ Millar, HY Zhu. Journal of Physical Chemistry B, 101(33): 6525-6531, 1997.
doi: 10.1021/jp971366+

[29] L Pfefferle, G Haller, Y Chen, D Ciuparu, S Lim, YH Yang. Abstracts of Papers of the American Chemical Society, 229: 15565- 15571, 2005.
doi: 10.1021/jp048067m

[30] Younes Brik, Mohamed Kacimi, Mahfoud Ziyad, François Bozon-Verduraz. Journal of Catalysis, 202(1): 118-128, 2001.
doi: 10.1006/jcat.2001.3262

[31] Ettireddy P Reddy, Bo Sun, Panagiotis G Smirniotis. Journal of Physical Chemistry B, 108(44): 17198-17205, 2004.
doi: 10.1021/JP047419M

[32] Brian J Landi, Cory D Cress, Chris M Evans, Ryne P Raffaelle. Chemistry of Materials, 17(26): 6819-6834, 2005.
doi: 10.1021/cm052002u

[33] RA Jishi, L Venkataraman, MS Dresselhaus, G Dresselhaus. Chemical Physics Letters, 209(1-2): 77-82, 1993.
doi: 10.1016/0009-2614(93)87205-H

[34] G Dresselhaus A Jorio, MA Pimenta, AG Souza Filho, R Saito, MS Dresselhaus. New journal of Physics, 5(1):1-11, 2012.
doi: 10.1088/1367-2630/5/1/139

[35] IT Ghampson, C Newman, L Kong, E Pier, KD Hurley, RA Pollock, BR Walsh, B Goundie, J Wright, MC Wheeler, RW Meulenberg, WJ Desisto. Applied Catalysis A, General, 388(1-2): 57-67, 2010.
doi: 10.1016/j.apcata.2010.08.028

[36] Jingde Li, Eric Croiset, Luis Ricardez-Sandoval. Effects of metal elements in catalytic growth of carbon nanotubes/graphene: A first principles DFT study. Applied Surface Science, 317: 923-928, 2014.
doi: 10.1016/j.apsusc.2014.09.008

[37] Xiaobin Hao, Qiang Wang, Debao Li, Riguang Zhang, Baojun Wang. RSC Adv., 4(81): 43004-43011, 2014.
doi: 10.1039/C4RA04050C

[38] Qiao Sun, Zhen Li, MengWang, Aijun Du, Sean C Smith. Chemical Physics Letters, 550: 41-46, 2012.
doi: 10.1016/j.cplett.2012.08.057
How to Cite
Ramírez-Rodríguez, F., & López, B. (2020). Single wall carbon nanotubes growth over cobalt-iron mesoporous MCM-41 bimetallic catalyst under methane chemical vapor deposition, an experimental and DFT evaluation. Universitas Scientiarum, 25(2), 227–246. https://doi.org/10.11144/Javeriana.SC25-2.swcn
Section
Material Science