Published Mar 12, 2021



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Julian Esteban Másmela-Mendoza https://orcid.org/0000-0001-9841-8242

Luz Marina Lizarazo Forero http://orcid.org/0000-0002-7849-7876

##plugins.themes.bootstrap3.article.details##

Abstract

The objective of study was to isolate and determine the identity of denitrifying bacteria from limnetic areas of Lake Tota (Colombian Andes) with and without rainbow trout production activities. We examined the relationships between the lake’s physicochemical factors (oxygen, nitrogen, and phosphorus content) and two bacterial communities (denitrifying bacteria and coliforms). Water samples were taken 20m below the surface from July to September at five limnetic zones; two of which were close to rainbow trout farming areas. In each zone, the concentrations of oxygen, nitrogen, and phosphorus were measured. To identify and quantify the abundance of bacteria, the most probable number (MPN) technique was used, employing minimal medium for denitrifying bacteria and medium for nitrate reducing bacteria (NRB). A greater number of denitrifying bacteria were found in the fish farming zones, identifying bacteria of the genera Bacillus, Pseudomonas, Nocardia, and Streptomyces. The number of nitrate-reducing bacteria revealed statistically significant differences throughout the sampling period, increasing from July to September and was related to a decrease in precipitation. The density of NRB and total phosphorus were directly correlated. High bacterial densities of denitrifying
bacteria and coliforms are indicative of changes from oligotrophic to eutrophic states in the studied limnetic areas.

Keywords

Denitrifying bacteria, eutrophication, fish farms, freshwater lakes, water pollution

References
[1] Bertrand JC, Bonin P, Caumette P, Gattuso JP, Grégori G, Guyoneaud R, Roux XL, Matheron R, and Poly F. “Biogeochemical cycles.” Environmental microbiology: fundamentals and applications. Springer Netherlands: 511–617, July 2014.
doi: 10.1007/978-94-017-9118-2_14.

[2] Zumft WG. Cell biology and molecular basis of denitrification. Microbiology and molecular biology reviews. 61.4: 533–616, 1997. issn: 1092-2172.

[3] Shapleigh JP. “The denitrifying prokaryotes.” The prokaryotes. Springer New York: 769–792, 2006.
doi: 10.1007/0-387-30742-7_23.

[4] Zhao X, Wei Z, Zhao Y, Xi B, Wang X, Zhao T, Zhang X, and Wei Y. Environmental factors influencing the distribution of ammonifying and denitrifying bacteria and water qualities in 10 lakes and reservoirs of the northeast, china. Microbial biotechnology. 8.3: 541–548, Mar. 2015.
doi: 10.1111/1751-7915.12260.

[5] Wei J, Li wei, cui lijuan, and lei yinru. Denitrifying bacterial communities in surfaceflow constructed wetlands during different seasons : characteristics and relationships with environment factors. Mar. 2017.
doi: 10.7287/peerj.preprints.2848v1.

[6] Zhang W, Gao Y, Yi N, Wang C, Di P, and Yan S. Variations in abundance and community composition of denitrifying bacteria during a cyanobacterial bloom in a eutrophic shallow lake in china. Journal of freshwater ecology. 32.1: 467–476, Jan. 2017.
doi: 10.1080/02705060.2017.1323681.

[7] Shapleigh JP. “Denitrifying prokaryotes.” The prokaryotes. Springer Berlin Heidelberg: 405– 425, 2013.
doi: 10.1007/978-3-642-30141-4_71.

[8] Hernández E, Aguirre N, Palacio J, Ramrez JJ, Duque SR, Guisande C, Aranguren N, and Mogollón M. Evaluación comparativa de algunas caractersticas limnológicas de seis ambientes lenticos de colombia. Revista facultad de ingenieria universidad de antioquia. 69: 216–228, 2013.

[9] Cardozo A, Gomes DF, Silva EM da, Duque S, Rangel J, Sifeddine A, Turcq B, and Albuquerque ALS. Holocene paleolimnological reconstruction of a high altitude colombian tropical lake. Palaeogeography, palaeoclimatology, palaeoecology. 415: 127–136, Dec. 2014.
doi: 10.1016/j.palaeo.2014.03.013.

[10] Moriarty DJ. The role of microorganisms in aquaculture ponds. Aquaculture. 151.1-4: 333– 349, May 1997.
doi: 10.1016/s0044-8486(96)01487-1.

[11] Lv P, Luo J, Zhuang X, Zhang D, Huang Z, and Bai Z. Diversity of culturable aerobic denitrifying bacteria in the sediment, water and biofilms in liangshui river of beijing, china. Scientific reports. 7.1. Aug. 2017.
doi: 10.1038/s41598-017-09556-9.

[12] Ni Z, Wu X, Li L, Lv Z, Zhang Z, Hao A, Iseri Y, Kuba T, Zhang X, Wu WM, and Li C. Pollution control and in situ bioremediation for lake aquaculture using an ecological dam. Journal of cleaner production. 172: 2256–2265, Jan. 2018.
doi: 10.1016/j.jclepro.2017.11.185.

[13] Wang P, Yuan Y, Li Q, Yang J, Zheng Y, He M, Geng H, Xiong L, and Liu D. Isolation and immobilization of new aerobic denitrifying bacteria. International biodeterioration & biodegradation. 76: 12–17, Jan. 2013.
doi: 10.1016/j.ibiod.2012.06.008.

[14] Unidad de ecología en sistemas acuáticos C. Efecto de la variabilidad climática de un ciclo anual sobre el flujo de nutrientes (c, n y p), fuentes y biocaptación en el lago de tota. informe final. Convenio 092 de 2015 Uptc & Corpoboyacá: 41–55, 2015.

[15] Lachat Applications. Determination of total phosphorus in manual persulfate digests. Technical report. New York, USA: Lachat Instruments. 2013.

[16] Atlas RM. Handbook of media for environmental microbiology. CRC press. 2005.

[17] Valls J and Nacente R. Handbook of microbiological culture media. Barcelona, España: Scharlau Chemie. 2011.

[18] Standard methods for the examination of water and wastewater - 22. ed. American Public Health Association. 2013. ISBN: 9780875530130.

[19] Roldán G and Ramírez J. Fundamentos de limnología neotropical. Editorial Universidad de Antioquia. 2008.

[20] Nguyen VD, Bac N, and Hoang TH. Dissolved oxygen as an indicator for eutrophication in freshwater lakes: 47, Sept. 2016.

[21] Sipaúba-Tavares L, Donadon A, and Milan R. Water quality and plankton populations in an earthen polyculture pond. Brazilian journal of biology. 71.4: 845–855, Nov. 2011.
doi:10.1590/s1519-69842011000500005.

[22] Wang F, Zhao Y, Xie S, and Li J. Implication of nitrifying and denitrifying bacteria for nitrogen removal in a shallow lake. CLEAN - soil, air, water. 45.4: 1500319, Mar. 2017.
doi:10.1002/clen.201500319.

[23] Palacin-Lizarbe C and Catalan J. Denitrification rates in mountain lake sediments. en.
doi: 10.5061/DRYAD.J6Q573N95. 2020.

[24] Sun L, Zhao X, Zhang H, and Zhang Y. Biological characteristics of a denitrifying phosphorus-accumulating bacterium. Ecological engineering. 81: 82–88, Aug. 2015.
doi: 10.1016/j.ecoleng.2015.04.030.

[25] Ceppa F, Faccenda F, Filippo CD, Albanese D, Pindo M, Martelli R, Marconi P, Lunelli F, Fava F, and Parisi G. Influence of essential oils in diet and life-stage on gut microbiota and fillet quality of rainbow trout (oncorhynchus mykiss). International journal of food sciences and nutrition. 69.3: 318–333, Aug. 2017. doi: 10.1080/09637486.2017.1370699.

[26] Castellano-Hinojosa A, Correa-Galeote D, Carrillo P, Bedmar EJ, and Medina-Sánchez JM. Denitrification and biodiversity of denitrifiers in a high-mountain mediterranean lake. Frontiers in microbiology. 8. Oct. 2017.
doi: 10.3389/fmicb.2017.01911.

[27] Pkala-Safiska A. Contemporary threats of bacterial infections in freshwater fish. Journal of veterinary research. 62.3: 261–267, Sept. 2018.
doi: 10.2478/jvetres-2018-0037.

[28] Parshukov A, Kashinskaya E, Simonov E, Hlunov O, Izvekova G, Andree K, and Solovyev M. Variations of the intestinal gut microbiota of farmed rainbow trout,oncorhynchus mykiss(walbaum), depending on the infection status of the fish. Journal of applied microbiology. 127.2: 379–395, June 2019.
doi: 10.1111/jam.14302.

[29] Barman P, Partha B, Mondal KC, and Mohapatra PKD. Water quality improvement of penaeus monodon culture pond for higher productivity through biomediation. Acta biologica szegediensis. 59.2: 169–177, 2015.

[30] Mesa JLBL de, Quintero GM, and Ortiz OLO. Aislamiento e identificación de diez cepas bacterianas desnitrificantes a partir de un suelo agrcola contaminado con abonos nitrogenados proveniente de una finca productora de cebolla en la laguna de tota, boyacá, colombia. Nova. 4.6: 50, Dec. 2006.
doi: 10.22490/24629448.360.

[31] Ribeiro L, Barbosa M, Rezende Pinto F de, Guariz C, Maluta R, Rossi J, Rossi G, Lemos M, and Amaral L do. Shiga toxigenic and enteropathogenic escherichia coli in water and fish from pay-to-fish ponds. Letters in applied microbiology. 62.3: 216–220, Feb. 2016.
doi: 10.1111/lam.12536.

[32] TEY YH, JONG KJ, FEN SY, and WONG HC. Occurrence of vibrio parahaemolyticus, vibrio cholerae, and vibrio vulnificus in the aquacultural environments of taiwan. Journal of food protection. 78.5: 969–976, May 2015.
doi: 10.4315/0362-028x.jfp-14-405.
How to Cite
Másmela-Mendoza, J. E., & Lizarazo Forero, L. M. (2021). Denitrifying bacteria in the limnetic zone of Lake Tota, Colombia. Universitas Scientiarum, 26(1), 1–16. https://doi.org/10.11144/Javeriana.SC26-1.dbit
Section
Microbiology