Published Jul 12, 2021



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


P. L. Powar

Rishabh Tiwari

Vishnu Narayan Mishra

##plugins.themes.bootstrap3.article.details##

Abstract

In the present paper, rational wedge functions for degree two approximation have been computed over a pentagonal discretization of the domain, by using an analytic approach which is an extension of Dasgupta’s approach for linear approximation. This technique allows to avoid the computation of the exterior intersection points of the elements, which was a key component of the technique initiated by Wachspress. The necessary condition for the existence of the denominator function was established by Wachspress whereas our assertion, induced by the technique of Dasgupta, assures the sufficiency of the existence. Considering the adjoint (denominator) functions for linear approximation obtained by Dasgupta, invariance of the adjoint for degree two approximation is established. In other words, the method proposed by Dasgupta for the construction ofWachspress coordinates for linear approximation is extended to obtain the coordinates for quadratic approximation. The assertions have been supported by considering some illustrative examples.

Keywords

Adjoint, invariance, pentagonal discretization, wedge functions

References
[1] Möbius AF. Der barycentrische Calcul: ein neues Hülfsmittel zur analytischen Behandlung der Geometrie. Barth. 1827.

[2] Wachspress EL. A rational basis for function approximation. Conference on Applications of Numerical Analysis. Springer: 223–252, 1971.
doi: https://doi.org/10.1093/imamat/8.1.57.

[3] Wachspress EL. A rational basis for function approximation: II. Curved sides. IMA Journal of Applied Mathematics. 11.1: 83–104, 1973.
doi: https://doi.org/10.1093/imamat/11.1.83.

[4] Warren J. Barycentric coordinates for convex polytopes. Advances in Computational Mathematics. 6.1: 97–108, 1996.
doi: https://doi.org/10.1007/bf02127699.

[5] Wachspress EL. A rational finite element basis. 1975.
doi: https://doi.org/10.1016/s0076-5392(09)x6007-8.

[6] Wachspress E. Rational bases and generalized barycentrics. Springer. 2016.
doi: http://dx.doi.org/10.1007/978-3-319-21614-0.

[7] Gordon WJ and Wixom JA. Pseudo-harmonic interpolation on convex domains. SIAM Journal on Numerical Analysis. 11.5: 909–933, 1974.
doi: https://doi.org/10.1137/0711072.

[8] Meyer M, Barr A, Lee H, and Desbrun M. Generalized barycentric coordinates on irregular polygons. Journal of graphics tools. 7.1: 13–22, 2002.
doi: https://doi.org/10.1201/b10628-10.

[9] Floater MS. Mean value coordinates. Computer aided geometric design. 20.1: 19–27, 2003.
doi: https://doi.org/10.1016/s0167-8396(03)00002-5.

[10] Malsch EA and Dasgupta G. Shape functions for polygonal domains with interior nodes. International Journal for Numerical Methods in Engineering. 61.8: 1153–1172, 2004.
doi: https://doi.org/10.1002/nme.1099.

[11] Sukumar N. Construction of polygonal interpolants: a maximum entropy approach. International journal for numerical methods in engineering. 61.12: 2159–2181, 2004.
doi: https://doi.org/10.1002/nme.1193.

[12] Floater MS, Kós G, and Reimers M. Mean value coordinates in 3D. Computer Aided Geometric Design. 22.7: 623–631, 2005.
doi: https://doi.org/10.1016/j.cagd.2005.06.004.

[13] Meyer M, Barr A, Lee H, and Desbrun M. Generalized barycentric coordinates on irregular polygons. Journal of graphics tools. 7.1: 13–22, 2002.
doi: https://doi.org/10.1201/b10628-10.

[14] Dasgupta G. Interpolants within convex polygons: Wachspress’ shape functions. Journal of Aerospace Engineering. 16.1: 1–8, 2003.
doi: https://doi.org/10.1061/(ASCE)0893-1321(2003)16:1(1).

[15] Dasgupta G. Integration within polygonal finite elements. Journal of Aerospace Engineering. 16.1: 9–18, 2003.
doi: https://doi.org/10.1061/(asce)0893-1321(2003)16:1(9).

[16] Malsch EA and Dasgupta G. Interpolations for temperature distributions: A method for all non-concave polygons. International Journal of Solids and Structures. 41.8: 2165–2188, 2004.
doi: https://doi.org/10.1016/j.ijsolstr.2003.11.037.

[17] Hormann K and Sukumar N. Generalized barycentric coordinates in computer graphics and computational mechanics. CRC press. 2017.
doi: https://doi.org/10.1201/9781315153452.

[18] Hjelle Ø and Dæhlen M. Triangulations and applications. Springer Science & Business Media. 2006.
doi: http://dx.doi.org/10.1007/3-540-33261-8.

[19] Dasgupta G. Finite Element Concepts. Springer. 2018.
doi: https://doi.org/10.1007/978-1-4939-7423-8.
How to Cite
Powar, P. L., Tiwari, R., & Mishra, V. N. (2021). Extension of Dasgupta’s Technique for Higher Degree Approximation. Universitas Scientiarum, 26(2), 139–157. https://doi.org/10.11144/Javeriana.SC26-2.eodt
Section
Mathematics and Statistics